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Abstract In this paper we demonstrate the application of pressure perturbation calorimetry

(PPC) to the characterization of 2-propanol/water mixtures. PPC of different 2-propanol/

water mixtures provides two useful measurements: (i) the change in heat (DQ); and (ii) the

d �Cp=dp
� �

T
value. The results demonstrate that the DQ values of the mixtures deviate from

that expected for a random mixture, with a maximum at *20–25 mol% 2-propanol. This

coincides with the concentration at which molecular dynamics (MD) simulations show a

maximum deviation from random distribution, and also the point at which alcohol–alcohol

hydrogen bonds become dominant over alcohol–water hydrogen bonds. Furthermore, the

d �Cp=dp
� �

T
value showed transitions at 2.5 mol% 2-propanol and at approximately

14 mol% 2-propanol. Below 2.5 mol% 2-propanol the values of d �Cp=dp
� �

T
are negative;

this is indicative of the presence of isolated 2-propanol molecules surrounded by water

molecules. Above 2.5 mol% 2-propanol d �Cp=dp
� �

T
rises, reaching a maximum

at *14 mol% corresponding to a point where mixed alcohol–water networks are thought

to dominate. The values and trends identified by PPC show excellent agreement not only

with those obtained from MD simulations but also with results in the literature derived

using viscometry, THz spectroscopy, NMR and neutron diffraction.

Keywords Isopropanol � Differential scanning calorimetry � Heat capacity �
Thermal expansion coefficient � Molar expansivity
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1 Introduction

Pressure perturbation calorimetry (PPC) is the measurement of pressure induced heat

changes in a sample. Identical pressure pulses are applied to a reference and a sample cell,

and the difference change in heat (DQ) between the two cells is measured using a

calorimeter. This technique can be applied across a range of temperatures. Early PPC

subjected the samples to high-pressure changes (up to 4000 bar) and was suitable for

studying phase transitions in organic solvents and polymers [1–4]. The current low pressure,

high sensitivity, PPC technology became available around 2001 [5]. A modification to

existing highly sensitive differential scanning calorimetry (DSC) instrumentation has

enabled this type of analysis to be carried out at lower pressure changes (± 4 bar). There are

relatively few studies on small molecules in water using PPC analysis [6–8]. The majority of

published studies investigate macromolecules including synthetic polymers [5, 9–11],

proteins [12–17] and nucleic acids [18, 19] in pure water or in buffered solutions. The results

are expressed as the calculated thermal expansion coefficient (a). Research into lipids in

water has employed PPC to investigate structures such as micelles and lipid bilayers with the

results often expressed in terms of molar expansivity (E) [20–23].

In this paper we describe the application of PPC and molecular dynamics (MD) sim-

ulation to study 2-propanol/water mixtures. Understanding the structural dynamics of the

binary 2-propanol/water systems at the molecular scale is of interest as these mixtures may

be present in products such as disinfectants, paint and ink formulations, fuel additives and

deicer products. 2-Propanol/water mixtures were selected in this study as they have pre-

viously been widely investigated using a variety of analytical technologies including

viscosity measurements [24], neutron diffraction [25], nuclear magnetic resonance spec-

troscopy (NMR) [25, 26] and terahertz time domain spectroscopy (THz-TDS) [25, 26]. The

non-ideality of 2-propanol water mixtures has also been demonstrated and explanations for

the observed non-ideality proposed. This system therefore provided an ideal mixture to

demonstrate the utility of PPC and to enhance our ability to interpret PPC data.

The goal of the research presented in this paper is to demonstrate the potential of PPC

analysis as a tool to investigate the behavior of aqueous solutions of small molecules such

as 2-propanol through measuring the difference in heat (DQ) and the gradient d �Cp=dp
� �

T
:

Complementary MD simulations were employed in order to correlate the observed PPC

results with the mesoscale structure of the solutions. These were further compared and

contrasted with previous literature studies employing a variety of methods including vis-

cosity measurements, neutron diffraction, NMR spectroscopy and THz-TDS analysis

[24–26]. PPC is a relatively quick, easy-to-use, technique that enables direct measurement

of thermodynamic parameters which represents a valuable addition to the analytical toolkit

in this field.

2 Molecular Dynamics Simulations

Simulations were performed using DLPOLY classic [27] with a time step of 0.5 fs. All the

simulations were carried out at a temperature of 25 �C and a pressure of 1 bar with a NPT

ensemble using a Nose–Hoover thermostat and barostat with relaxation times of 0.01 and

0.05 fs.

Simulations were run on configurations with a total of 3000 molecules with mole

percentages of 2-propanol of 0, 1, 2.5, 5, 10, 15, 20, 25, 30, 35, 40 and 100%. The
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simulation box was generated by randomly mixing the appropriate number of water and

2-propanol molecules using the packmol software [28] with a tolerance of 2.0. Simulations

were then equilibrated and then run for several ns until convergence of the configurational

energy and enthalpy was reached. Convergence was judged to have occurred when the

configurational energy of four successive block averages of 250 ps were within

50 kJ�mol-1 of each other. The water molecules were modelled using the TIP3P [29]

forcefield and the 2-propanol molecules were modelled with the general amber forcefield

[30], specifically the gaff03 forcefield. Charges for 2-propanol were calculated using the

semi-empirical method AM1-BCC [31] and standard Lorentz–Berthelot mixing rules were

used for the cross term interactions between the 2-propanol and water molecules. The

short-range interactions of the forcefields were cutoff at 10 Å.

The hydrogen bonding of the mixtures was calculated from the final 1 ns of the MD

simulations. A hydrogen bond was registered if the angle between the H–O–H was

between 150� and 210� and the separation between the non-bonded oxygen atom and

hydrogen atom was less than 2.5 Å.

The segregation of the water and 2-propanol molecules was examined and compared to

random distributions of the 2-propanol and water molecules. This deviation from random

distribution of the solution was examined by generating an ensemble of 2500 random

arrangements of water and 2-propanol molecules with the same mole percentages as the

MD runs with a box volume equal to that of the final MD simulations. Each of these

configurations was then divided into 1000 equal sized smaller boxes and the number of

water molecules and 2-propanol molecules appearing in each box recorded. Water mole-

cules were defined to be present in a box if the oxygen atom was present and 2-propanol

molecules were defined as present in a box if a carbon atom was present. For each water–

propanol mix the count was then averaged across all 1000 boxes and normalized to give the

fraction of boxes with a particular number of water and 2-propanol molecules. This

generated a statistical distribution of boxes with the amount of water and/or alcohol

molecules present. The same procedure was then carried out on the data from the MD

simulations by using the trajectory of the final 1 ns of data with 2500 configurations for

each simulation as outputted along the trajectory, ensuring the ensembles were the same

size. The sum of the differences between the two distributions (random/ideal and real) was

then recorded as the degree of non-ideality in the actual MD simulations via Eq. 1:

Non ideality ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

½Ns xsð Þ � NRðxRÞ�2
q

ð1Þ

where the subscript s refers to the simulation data, the subscript R refers to the random

distribution and N(x) is the fraction of the distribution with x alcohols present.

3 Pressure Perturbation Calorimetry (PPC) Measurements

Ultra-pure water and 2-propanol were sourced from Sigma-Aldrich, Gillingham, UK with

purities[ 99.9%. PPC measurements were obtained using a capillary Nano-DSC (TA

Instruments, New Castle, DE, USA). Samples were degassed for 20 min at 4 �C by vac-

uum to remove dissolved gas from samples and eliminate bubble formation during the

scan. Heat changes (DQ) were measured during alternating pressure pulses of ± 4 bar

from 1 bar to 5 bar at 1 �C intervals, every 10 min, from 7 to 62 �C, giving a usable data

range of 9–61 �C. A heating rate of 0.1 �C�min-1 was used to satisfy isothermal conditions

required during pressure pulses; this scanning rate is slower than the instrument feedback
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[19]. The instrument was held at a constant temperature for an hour before each scan to

ensure that any asymmetry between the reference and sample cells was minimal. The

DQ values were calculated by integrating the area underneath the thermal spikes that were

caused by the pressure change, calculated using NanoAnalyze software (TA Instruments,

New Castle, DE, USA) provided by the manufacturer. Water baseline scans were per-

formed with pure water in both the reference and sample cell, while scans with 2-propanol

present were performed with ultra-pure water in the reference cell and the water/alcohol

mixture in the sample cell. The area under each thermal power spike was calculated by

integration using NanoAnalyze software (TA Instruments, New Castle, DE, USA) and

defined the heat change during pressurization for that temperature.

4 Interpretation of the DQ Values

The DQ value of the 2-propanol water mixtures is, by the nature of the experiment, relative

to pure water and is dominated by the energy released from the hydrogen bonds broken

during pressurization.

The equations for analysis of PPC data were first derived and published by Lin et al. in

2002 [6], which was built upon the earlier work of Kujawa and Winnik in (see Supple-

mentary Information) [5], i.e.:

DQ ¼ TDp a0 � �að ÞVpartgs ð2Þ

where �a is the thermal expansion of the solute partial volume, a0 is the thermal expansion

of the solvent volume, gs is the total weight of the solute and Vpart is the partial specific

volume of the solute. It was previously argued that while gsVpart is not constant it can be

treated as such, as gs is decreased by displacement effects as temperature increases, while

the Vpart increases during heating [6]. The calculation of �a using Eq. 2 assumes that Vpart is

constant irrespective of concentration and this equation has been used extensively for the

analysis of macromolecules in solution [6, 9–12, 15–19]. While this analysis may be valid

for macromolecules, it has been shown that it does not hold for small solutes like salts [7]

and it is therefore questionable as to whether it can be applied to 2-propanol–water mix-

tures. Additionally, this analysis only holds at a low solute concentration where the

apparent volume of the solute approximates the partial specific volume at infinite dilution

[8], and hence is not applicable over the entire concentration range.

For the study of ion pairs in solution, Eq. 3 was developed where the assumption is that

ions have discrete hydration layers that can be treated separately from the unperturbed bulk

water (see Supplementary Information) [7]:

DQ ¼ TDpxs nþ 1ð Þ Vbabð Þ � n �Vh�ah � Vsas½ � þ A0 ð3Þ

where Vb is the molar volume of bulk solvent, �Vh is the average molar volume of the

solvent within the hydration layer; Vs is the molar volume of solute, n is the number water

molecules in the hydration layer of the solute, xb is the molar fraction of the bulk solvent,

xh is the molar fraction of the solvent within the hydration layer, xs is the molar fraction of

the solute, and ab, ah and as are the thermal expansion coefficients of the bulk water,

hydration layer and solute, respectively. The physical origin of A’ has not been established

but may be a function of ion pair interactions.

For a 2-propanol water mixture, Eq. 3 can be applied at low 2-propanol concentrations

where 2-propanol molecules exist as isolated species within a bulk water phase (taken as
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below 2.5 mol% in this work, see the discussion below). However, if 2-propanol molecules

form a component of extended mesoscale networks, then Eq. 3 does not apply. Elsewhere,

it has been suggested that methanol and water form separate, bi-percolating liquid net-

works at the concentrations where thermodynamic properties are at their maxima [32].

By the nature of the PPC measurement, the measured DQ value is related to the

structural rearrangement of the solution upon the application of a pressure pulse. As the

structure of alcohol–water mixtures is well-established to be dominated by hydrogen-

bonding interactions, it is proposed herein that DQ be interpreted as the energy released

from the hydrogen bonds broken during pressurization. As such, it is directly related to

both the population of hydrogen bonds, i.e. between water and water, water and 2-pro-

panol, and 2-propanol and 2-propanol, and also to the change in enthalpy associated with

the breaking of these bonds. The absence or reduction of hydrogen bonding in the

hydration layer around 2-propanol alkyl groups, or where the water is excluded by

2-propanol cluster formation, is therefore evident in the DQ value. The greater the extent of

this reduction in hydrogen bonding then the greater the magnitude of the negative

DQ value. DQ would hence be expected to decrease with increasing 2-propanol

concentration.

5 Interpretation of the d �Cp=dp
� �

T
Values

Interpretation of the physical origin of the d �Cp=dp
� �

T
value has been used to attempt to

understand the relationship between water and solutes [8, 33]. In 1969 Loren Hepler used

Eq. 4 to define the effect of a solute on water structure [33]:

d �Cp;part=dp
� �

T
¼ �T d2ðVpartÞ=dT2

� �
p

ð4Þ

where �Cp;part is the partial molar heat capacity. Water was viewed as a mixture of two

species: a bulky ‘‘ice-like’’ species with relatively low density and high structure, the other

a denser less structured species. As temperature increases the proportion of the ‘‘ice-like’’

species was believed to decline, being replaced by the denser species. The characteristics

of various solutes were interpreted in terms of their ‘‘structure-making’’ or ‘‘structure-

breaking’’ capacity with alcohols being structure-making and electrolytes being structure-

breaking. A similar logic was employed by Pielak and co-workers in 2004 in order to

disprove the hypothesis that the ‘‘structure-making’’ or ‘‘structure-breaking’’ capacity of

solutes was the origin of the Hofmeister effect [8]. They also substituted the definition for

the thermal expansion coefficient (a ¼ 1=VpartðdðVpart�aÞ=dTp) to give Eq. 5 [8]:

d �Cp;part=dp
� �

T
¼ �T d Vpart�a

� �
=dT

� �
p

ð5Þ

Extending this logic, it is proposed herein that the d �Cp;part=dp
� �

T
value is not a measure

of the ‘‘structure-making’’ or ‘‘structure-breaking’’ capacity of a solute, but instead can, at

low solute concentrations, be due to the water in hydration layers around the solute

molecules. Pielak and co-workers showed that hydrophobic solutes (1,3-dimethylurea,

trimethylamine N-oxide dihydrate, 1,3-diethylurea) produced negative d �Cp;part=dp
� �

T
val-

ues; neutral polar solutes (sarcosine, urea, glucose, trehalose, sucrose, betaine, glycerol,

stachyose, melezitose) produced weakly positive d �Cp;part=dp
� �

T
values; charged salts

produced stronger positive d �Cp;part=dp
� �

T
values [8]. The higher charge density ion pairs
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{(NH4)2SO4, NH4Cl} produced higher positive d �Cp;part=dp
� �

T
values than low charge

density ion pairs (guanidinium chloride, guanidinium thiocyanate). Later work suggested

the d �Cp;part=dp
� �

T
value of the salt was related to the charge of the ion, rather than the

charge density as had previously been proposed [7], the d Vpart�a
� �

=dT value being positive

for a hydration layer interacting with hydrophilic molecules and being negative for

hydration layers interacting with hydrophobic molecules. This interpretation cannot be

directly extended to higher solute concentrations, where complexes such as networks or

micelles form, as the Vpart value is determined at infinite dilution and assumes no inter-

solute interaction. The interpretation of d �Cp=dp
� �

T
at such compositions remains open to

conjecture. In the case of the PPC measurements used in this paper (where networks of 2-

propanol in water are expected [25, 26]), the average molar heat capacity ( �Cp) for the

mixture is determined, avoiding the assumption of no inter-solute interaction when using

the �Cp;part value.

6 Results

The raw data from a pressure perturbation scan of 2.5, 5 and 15 mol% 2-propanol in water

are shown in Figs. S1–S3 in Supplementary information. Alternating pressure pulses from

1 to 5 bar and then 5 to 1 bar were applied to the samples at 1 �C intervals from 7 to 56 �C,

with a heating rate of 0.1 �C�min-1. The heat changes (DQ) recorded upon pressurization

of 0–100 mol% 2-propanol/water mixtures at temperatures between 7–61 �C are shown in

Fig. 1 and Table 1. Regardless of temperature, the DQ values become increasingly neg-

ative as the 2-propanol concentration increases; however different trends are observed as a

function of temperature for the different compositions. Specifically, a negative gradient

Fig. 1 Heat changes from pressure increase (1–5 bar) from 7 to 65 �C for different 2-propanol mixtures.
The 2-propanol composition from the top to the bottom curves is 1, 2, 2.5, 5, 8, 10, 12, 13, 14, 15, 16, 20, 40,
60, 80 and 100 mol%. Note the noisy data is at 5 and 8 mol% where the 2-propanol concentrations are
higher than 40 mol%

180 J Solution Chem (2017) 46:175–189

123



(DQ vs. T) is observed for concentrations between 1 and 2.5 mol% 2-propanol, while

above 5 mol% a positive gradient is observed with the maximum gradient occurring at

14 ± 2 mol% 2-propanol (Fig. 1).

When the heat change (DQ) at 25 �C is plotted against 2-propanol concentration

(Fig. 2a, inset) the non-linearity of this relationship is apparent. The difference between the

measured DQ values and those values that would be obtained if the relationship was

directly proportional to the molar composition of the solution (DDQ) is plotted as a

function of 2-propanol concentration (Fig. 2a). A maximum in DDQ between 20 and

40 mol% 2-propanol is clearly observed. This trend shows a close similarity to the relative

kinematic viscosity measurements at 25.5 �C taken from the literature, see Fig. 2b [28].

This is not unexpected as the DQ value of an aqueous mixture is dominated by the energy

released from the hydrogen bonds broken during pressurization. This is related to the

viscosity of water where the attractive forces (which in the case of water are dominated by

hydrogen bonds) have to break and reform for the molecules to move past each other.

When the calculated average gradients, d �Cp=dp
� �

T
; between 9–35 and 35–61 �C, are

plotted against 2-propanol concentration (Fig. 3) a complex relationship is observed. At

concentrations between 0 and 2.5 mol%, d �Cp=dp
� �

T
is negative and then rises to a peak at

14 ± 2 mol% 2-propanol. The peak at 14 ± 2 mol% 2-propanol is higher in magnitude for

the low temperature range (9–35 �C) than for the higher temperature range (35–61 �C). At

Table 1 The experimentally determined difference in heat (DQ) at 25.5 �C, the average gradient

d �Cp=dp
� �

T
between 9 and 35 �C, d �Cp=dp

� �
T

between 35 and 61 �C, and the kinematic viscosity (v) at

25.0 �C at different concentrations of 2-propanol

Concentration of 2-propanol
(mol%)

DQ (lJ) d �Cp=dp
� �

T

9–35 �C
(mJ�bar-1�K-1)

d �Cp=dp
� �

T

35–61 �C
(mJ�bar-1�K-1)

va

(106 m�s2)

0.0 70 0.89

1.0 -403 -4.8 -3.5

1.5 -737 -5.1 -4.8

2.0 -1243 -5.6 -5.6

2.5 -1683 -5.6 -6.0

5.0 -5214 -2.2 -3.0

8.0 -12156 20.3 9.8

10.0 -15324 34.1 18.4 2.59

12.0 -17469 45.3 22.0

13.0 -18080 47.6 21.4

14.0 -18923 49.1 21.1

15.0 -19560 47.6 21.3

16.0 -19785 47.8 20.0

20.0 -21630 44.1 15.8 3.31

40.0 -26242 30.7 3.6 3.46

60.0 -28436 17.5 -6.7 3.02

80.0 -30103 13.9 -11.2 2.70

100.0 -28808 -20.4 2.65

a Measured using a capillary viscometer [24]
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Fig. 2 a Deviation from linear relationship between heat and 2-propanol concentration at 25.5 �C (the inset
shows the difference in heat versus 2-propanol concentration at 25.5 �C taken from Fig. 1), and b deviation
from linear relationship between the viscosity and 2-propanol concentration at 25.0 �C (the inset shows the
kinematic viscosity vs. 2-propanol concentration at 25.0 �C taken from Soliman and Marschall [24],
measured with a capillary viscometer, illustrating the obvious non-linearity in both data set)
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concentrations above 15 mol% 2-propanol, the value of d �Cp=dp
� �

T
decreases with

increasing 2-propanol concentration. In the higher temperature range (35–61 �C),

d �Cp=dp
� �

T
became negative at concentrations between 40 and 60 mol% 2-propanol.

It is noteworthy that these trends in d �Cp=dp
� �

T
can be broadly correlated with obser-

vations about the DQ values shown in Fig. 1. Between 1 and 2.5 mol% 2-propanol,

Fig. 3 a Average gradient d �Cp=dp
� �

T
between 9 and 35 �C (triangles) or 35 and 61 �C (squares) for

2-propanol concentrations between 0 and 100 mol% and b between 0 and 20 mol%. The average gradient
was calculated using partial least-squares regression. The filled symbols have an R2 values greater than 0.8
and the empty symbols have an R2 values less than 0.8
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DQ values follow a consistent monotonic trend. Between 5 and 8 mol% they follow an

erratic, non-monotonic trend, and then between 10 and 40 mol% the data sets again follow

a consistent monotonic trend. Finally, over 40 mol% they became erratic again. This is

indicative of the instrument not reaching equilibrium between 5 and 8 mol% and again

over 40 mol%. Attempts to overcome this behavior by increasing the time between

pressure changes resulted in either very slow equilibration or oscillatory behavior (data not

shown).

Molecular dynamics (MD) simulation of 2-propanol water mixtures (Fig. 4; Table 2)

shows that very few of the 2-propanol molecules are hydrogen bonded to other 2-propanol

molecules below a concentration of 2.5 mol% 2-propanol, suggesting that the alcohol

molecules exist as isolated species surrounded by water. Above 2.5 mol% 2-propanol the

number of hydrogen bonds between 2-propanol molecules steadily rises with a corre-

sponding drop in 2-propanol/water hydrogen bonds, indicating the formation of larger

alcohol networks. The rise in hydrogen bonds between 2-propanol molecules slows above

25 mol% 2-propanol. The number of 2-propanol molecules without hydrogen bonds

remains constant at approximately 7%.

The distribution of water and 2-propanol molecules during the course of the MD

simulation shows deviations from a random distribution and thereby implies segrega-

tion of water and 2-propanol (Fig. 5). Below 2.5 mol% 2-propanol the solution

remains effectively a random mixture, suggesting little segregation. Above 2.5 mol%

2-propanol the extent of the deviations from a random distribution rises and reaches a

maximum around 25 mol% 2-propanol, indicative of extensive segregation or cluster

formation.

Fig. 4 Variation of the percentage of 2-propanol molecules with either hydrogen bonds to other 2-propanol
molecules, with water molecules or with no hydrogen bonds, with the concentration of 2-propanol calculated
using molecular dynamics simulation

184 J Solution Chem (2017) 46:175–189
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7 Discussion

A physical interpretation of the DQ and the d �Cp=dp
� �

T
values calculated from the PPC

experiments can be postulated through comparison to previous experimental work that

provided viscosity [24], excess enthalpy, relative absorbance at 1 THz [25, 26] and acti-

vation energy for a molecular diffusive jump of 2-propanol in 2-propanol/water mixtures

[25], and to the MD simulation data presented herein.

Table 2 Variation of the percentages of 2-propanol molecules with either hydrogen bonds to other
2-propanol molecules (P–P) or to water molecules (P–W), or with no hydrogen bonds, along with the
concentration of propanol and the calculated deviations from the random distribution (non-ideality) as
determined using molecular dynamic simulation

Concentration of 2-propanol
(mol%)

P–P (%) P–W (%) No H-bonds (%) Non-ideality

1 1.42 90.41 5.75 0.076

2.5 2.71 88.83 6.30 0.061

5 10.33 81.29 6.63 0.08

10 30.54 60.95 7.27 0.213

15 36.68 54.9 7.33 0.295

20 43.52 48.31 7.24 0.369

25 50.37 41.3 7.58 0.431

30 50.77 41.02 7.47 0.436

35 57.01 34.84 7.46 0.422

Fig. 5 The deviation from the random distribution (non-ideality) versus 2-propanol concentration,
calculated using molecular dynamics simulation where non-ideality suggests that segregation of the water
and 2-propanol is occurring
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Below 2.5 mol% 2-propanol the results of the PPC analysis and MD simulation are

consistent with individual 2-propanol molecules being surrounded by water molecules with

little interaction between the 2-propanol molecules. The image of the MD simulation of

1 mol% 2-propanol illustrates this clearly (Fig. 6). The deviations from random distribu-

tion, calculated using MD simulation as the degree of non-ideality, are low between 0 and

5 mol% 2-propanol (Fig. 5), thereby suggesting that the solution is well mixed and little or

no segregation has occurred. The drop in DQ as the 2-propanol concentration rises follows

a non-linear trend between 0 and 20 mol% 2-propanol, with the curve more shallow below

2.5 mol% 2-propanol as compared to higher 2-propanol concentrations (Fig. 2). The plot

of d �Cp=dp
� �

T
versus 2-propanol concentration (Fig. 3) shows a negative value below

5 mol% 2-propanol. This is consistent with previous PPC research where negative values

were observed for hydrophobic solutes in water whereas positive values were measured for

charged or polar solutes [8].

Between 2.5 and 5 mol% 2-propanol there is a transition where segregation of 2-

propanol and water molecules starts to occur. This is most clearly observed in the

d �Cp=dp
� �

T
versus 2-propanol concentration plot (Fig. 3) where the d �Cp=dp

� �
T

value starts

to rise and becomes positive at a concentration just over 5 mol% 2-propanol. The drop in

the DQ values also becomes steeper at this point. At 2-propanol concentrations greater than

2.5 mol% the 2-propanol molecules therefore start to interact with each other and isolated

2-propanol molecules with discrete hydration layers are no longer present. This is captured

by MD simulation (Figs. 4, 5) as a rise in hydrogen bonding between 2-propanol molecules

Fig. 6 Images of the molecular dynamic simulation of 1, 5, 25 and 40 mol% 2-propanol in water
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and deviation from a random distribution of the mixture. The DDQ and the d �Cp=dp
� �

T

values measured by PPC also rise (Figs. 2, 3) as does kinematic viscosity [22], excess

enthalpy, relative absorbance at 1 THz [25, 26], and activation energy for a molecular

diffusive jump of 2-propanol in 2-propanol water mixtures [25]. The peaks in these values,

however, are not consistent. The excess enthalpy and the peak in activation energy for a

molecular diffusive jump of 2-propanol in 2-propanol–water mixtures occur around

10 mol% 2-propanol [25]. The d �Cp=dp
� �

T
values and relative absorbance at the 1 THz

[25, 26] peak is between 12 and 18 mol% 2-propanol.

Previous THz-TDS analysis suggested that below 2 mol% 2-propanol, 2-propanol exists

as discrete molecules with an extensive hydration layer surrounding each alcohol molecule

[26]. Above 2 mol% the 2-propanol molecules start to interact with each other [26]. THz-

TDS measured a maximum in absorption relative to an ideal solution at around

10–15 mol% 2-propanol while the relative relaxation strength of 2-propanol, as measured

by NMR, also has a maximum between 10 and 15 mol% 2-propanol [25, 26]. Neutron

diffraction at two 2-propanol concentrations (10 and 30 mol%) indicated that there was a

heterogeneous mixture of interactions between 2-propanol and water [25]. At 10 mol%

2-propanol there is significant clustering of 2-propanol, as evidenced by the number of

hydrogen bonds between alcohol molecules; however, at 30 mol% 2-propanol there are

increased 2-propanol–water interactions indicating a relatively well mixed solution. These

results were interpreted as evidence that the maximum extent of the alcohol water network

occurs at around 10 mol% 2-propanol.

The kinematic viscosity [24] and the -DDQ peak are between 20–30 mol% 2-propanol

which does not match the peak at 14 ± 2 mol% 2-propanol detected by d �Cp=dp
� �

T
; THz

spectroscopy, NMR relaxation and neutron diffraction studies [25]. The DDQ and kine-

matic viscosity peak between 20–30 mol% 2-propanol coincides with the maximum in

degree of non-ideality determined by the MD simulation and suggests this peak is not

directly related to the 2-propanol/water hydrogen bonded network detected by d �Cp=dp
� �

T

and THz-TDS [25]. This does suggest a complex relationship between water and 2-pro-

panol within mesoscopic structured mixtures. The properties of the binary mixtures that

exhibit peaks between 10 and 30 mol% all have the same ultimate physical origin, i.e. the

breaking and reforming of hydrogen bonds, but are different manifestations of this,

involving distinct physical processes and hence there is no precise overlap between the

values.

At higher concentrations of 2-propanol (greater than 20–30 mol%) the further addition

of 2-propanol can disrupt the 2-propanol/water networks; however the difference in

d �Cp=dp
� �

T
between 9–21 and 49–61 �C suggests that in the lower temperature regime the

2-propanol/water hydrogen bonded networks are more extensive and persistent. They do

not breakdown readily with addition of more 2-propanol, this was observed as a

stable positive d �Cp=dp
� �

T
value. At 49–61 �C the 2-propanol/water hydrogen bonded

networks are less stable and readily break down with addition of 2-propanol, this is

observed as a decline in d �Cp=dp
� �

T
:

The DQ value of the 2-propanol water mixtures is, by the nature of the experiment,

relative to ultra-pure water and is dominated by the energy released from the hydrogen

bonds broken during pressurization. This is related to viscosity of water where the

attractive forces (in the case of water dominated by the hydrogen bonds) have to break and

reform for the molecules to move past each other. We therefore contend that the similarity
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of the DQ value (Fig. 2a) and kinematic viscosity (Fig. 2b) is not coincidental as both arise

from the same mechanistic origin.

8 Conclusion

The application of PPC to the analysis of 2-propanol/water mixtures has, through com-

parison to complementary molecular dynamic simulations, been shown to yield informa-

tive data. The change in heat, DQ, is indicative of bond breaking upon pressurization and is

therefore correlated with viscosity and diffusivity. The d �Cp=dp
� �

T
values are related to the

mesoscopic structure of the 2-propanol/water mixture. PPC data suggest the hydration

layers around individual 2-propanol molecules (at\2.5 mol% 2-propanol) can be detected

by the negative d �Cp=dp
� �

T
values relative to pure water. PPC can also detect the stable,

constrained 2-propanol/water networks (with a peak at 14 ± 2 mol% 2-propanol) which

are clearly detected as a positive peak in d �Cp=dp
� �

T
relative to pure water. PPC is a

relatively straightforward analytical technique that supplies useful data for solvent–solvent

and solvent–solute mixtures. It takes less than one day to acquire a complete data set for a

sample covering a wide temperature range (7–62 �C), has a low operational cost and uses

readily available commercial microcalorimetry DSC instruments, making it practical for

routine laboratory use, and hence represents a valuable addition to the experimental toolkit

in this field.
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