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Abstract

Combinations of ‘omics’ investigations (i.e, transcriptomic, proteomic, metabolomic and/or fluxomic) are increasingly applied to
get comprehensive understanding of biological systems. Because the latter are organized as complex networks of molecular and
functional interactions, the intuitive interpretation of multi-omics datasets is difficult. Here we describe a simple strategy to
visualize and analyze multi-omics data. Graphical representations of complex biological networks can be generated using
Cytoscape where all molecular and functional components could be explicitly represented using a set of dedicated symbols. This
representation can be used i) to compile all biologically-relevant information regarding the network through web link association,
and ii) to map the network components with multi-omics data. A Cytoscape plugin was developed to increase the possibilities of
both multi-omic data representation and interpretation. This plugin allowed different adjustable colour scales to be applied to the
various omics data and performed the automatic extraction and visualization of the most significant changes in the datasets. For
illustration purpose, the approach was applied to the central carbon metabolism of Escherichia coli. The obtained network
contained 774 components and 1232 interactions, highlighting the complexity of bacterial multi-level regulations. The structured
representation of this network represents a valuable resource for systemic studies of E. coli, as illustrated from the application to
multi-omics data. Some current issues in network representation are discussed on the basis of this work.
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Introduction

The graphical visualization and analysis of multi-omics data is a

challenge in systems biology [1,2]. The representation of true

biological networks includes several layers of complexity due to the

embedding of multiple biological components and processes – e.g

gene expression, protein biosynthesis, regulatory processes, etc -.

Given that each layer includes thousand of components even in the

simplest cell, there are strong needs for visualization tools that ease

the intuitive interpretation of multi-omics data. In this regard, such

a tool should explicitly represent all the molecular components in

the studied phenomenon (data representation), as well as all the

interactions between these components (data understanding).

Numerous solutions have been recently developed for the re-

presentation of complex networks as well as the analysis of multi-

omics datasets [3]. Some of the most complex tool packages

(‘‘Cyclone’’ [4], ‘‘the Gaggle’’ [5], ‘‘Prometra’’ [6]) succeed to present

together data from multiple dimensions through the association of

several software. These tools are powerful and versatile but require

significant computing efforts, which can limit their use by biologists.

Some commercial tools also offer a combination of data and net-

work visualization (i.e, ‘‘Genespring’’: http://www.genespring.com;

‘‘Ingenuity Pathways Analysis’’: http://www.ingenuity.com/), but

they are quite expensive and lack the flexibility of open-source

software. Some tools have been developed to represent either

metabolic or regulatory networks (e.g., Pathway Tools [7]), but to our

knowledge, no freely-available solution has been developed to bring

forward the regulatory aspect conjointly to omic-data display.

Finally, the representations of biomolecular networks that are

automatically generated by current software are often far from both

the academic conventions and biological perception of the net-

works, thereby making difficult the intuitive interpretation of data.

The objective of this work was to propose a cost-less and

straightforward strategy to represent both complex biomolecular

networks and multi-omics data in the same graphical representa-

tion. A simple graphical formalism was designed to represent all

network components (structural and functional components). These

components were compiled using the open source software

Cytoscape [8]. MODAM, a custom-made Cytoscape plugin, was

developed to optimize the mapping of multi-omics data and their

interpretation. This approach was applied to the central metabolic

network of the bacterium Escherichia coli, as a typical example of

cellular metabolism and its regulation, with hundreds of metabolic

or regulatory interactions. The resulting network encompasses 774

components and 1232 interactions that are represented accordingly

to biochemistry text-book drawing conventions. The mapping of

multi-omics data from Ishii et al. [9] offered a valuable example of

the approach, as discussed in the final part of this publication.

Results

Dedicated formalism
The aim of this work was to develop a strategy for the repre-

sentation of complex biomolecular networks that facilitates the
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intuitive interpretation of multi-omics datasets. A graphical for-

malism (figure 1) was introduced to represent explicitly any com-

ponent of the system (RNA, proteins, activities, fluxes, and

metabolites) as well as any kind of structural and regulatory

interaction between two components (metabolic reactions, tran-

scriptional and translational regulations, control of enzymes by

metabolic effectors or by phosphorylation, and hierarchical rela-

tionships – genes to proteins, proteins to activities, and activities to

reactions). This formalism can be applied to generate maps repre-

senting the structural and regulatory knowledge for all types of

biomolecular networks. Beside its universality, the presented for-

malism provides a graphical representation compatible with an

intuitive understanding of the network structure.

Application to the assembly of E. coli central carbon
metabolic network

For illustration, the graphical formalism was applied to build up

a map of Escherichia coli central carbon metabolism and its

regulations. Cellular metabolism represents a valuable example of

a complex and tightly regulated biomolecular network. The

central carbon metabolism is composed of a set of highly inter-

connected reactions that provide a variety of molecules, energy

and redox power to the cell to sustain survival, growth, and

adaptation. It carries some of the most basic processes of life and is

subjected to intense regulation. The central carbon metabolism

and its regulation have been extensively studied and a large wealth

of information is available to generate a highly detailed network

describing all known metabolic and regulatory interactions.

The first step is the network delineation, which is determined by

the biologic purpose. For this work, the network has to be large

enough to illustrate the strategy and consistent enough to depict E.

coli central carbon metabolism. The network was consequently

delimited to include all the central carbon metabolic pathways:

glycolysis/gluconeogenesis, pentose phosphate, TCA, glyoxylate,

Entner-Doudoroff, methylglyoxal and acetate (figure 2).

The second step was to collect and gather all the molecular and

functional information related to this network and its regulation

from relevant databases: the information was compiled for meta-

bolic pathways (KEGG [10], Ecocyc [11]), biochemical reactions

(Brenda [12]), and their regulations (Ecocyc [11], Colibri [13],

RegulonDB [14]) in addition to literature data (e.g. NCBI [15]).

Inconsistencies in the so-established network were curated using

existing literature (NCBI) and personal expertise. The final network

(figure 2 and figure S1) contained 55 metabolic reactions, 63

metabolites, and required 77 enzymatic activities generated from

93 different polypeptides and as many mRNAs. A total of 41 small

molecules were identified as effectors of enzymatic activities and

were responsible for 43 activations and 83 inhibitions. A total of

Figure 1. Dedicated formalism. All molecular or functional components of the metabolic and regulatory networks are explicitly represented using
specific symbols. Each RNA (square) encodes a polypeptide (rounded square). Polypeptides or polypeptide complexes generate functional entities –
i.e., enzymes or regulators – (hexagons). Enzymes catalyze reactions (circles), which allow the inter-conversion of metabolites (diamonds). A color
code can be applied to each node (symbol) in the network to visualize experimental data (gene expression for the squares, protein abundance for the
rounded squares, specific activity for the hexagons, metabolite concentrations for the diamonds and flux values for the circle). Interactions between
the components are indicated with lines (edges). Four main kinds of interactions were considered and were represented using lines with specific
colors: biochemical conversions (grey lines), transcriptional and translational regulations (blue lines), control of enzymatic activities by metabolic
effectors or by phosphorylation (green lines), hierarchical relationships – i.e. RNAs to proteins, proteins to activities, activities to reactions - (pink lines).
In the given example, a metabolite X is converted in Y through the reaction ECx.x.x.x. The reaction requires a molecule of H2O and produces a
molecule of CO2. The metabolite W is a negative effector of this reaction. The reaction depends on the enzymatic activity ‘‘Actv’’ which is a property
of the protein ‘‘Actv Prot’’. This protein is encoded by the gene ‘‘Actv gene’’ whose transcription is induced by the activity ‘‘Trxu Factor’’, itself
resulting from the protein and gene ‘‘Trxu’’. Translation of ‘‘Actv Prot’’ is controlled by the translation factor ‘‘Trlu Fact’’.
doi:10.1371/journal.pone.0021318.g001

Visualization of Multi-Omics Data
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Figure 2. E. coli central carbon metabolism pathways and its regulations. The central part of the figure represents the central carbon
metabolism (yellow background), with glucose entry (central topmost part) and gluconate entry (right topmost part), methylglyoxal pathway
(leftmost central part), glycolysis/gluconeogenesis (left central part), Entner-Doudoroff pathway (rightmost central part), pentose phosphate pathway
(right top part), TCA cycle with glyoxylate shunt (bottommost part), acetate metabolism (right bottom part) and transhydrogenase reactions (right

Visualization of Multi-Omics Data
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411 transcriptional controls were also identified. Translational

controls exerted by small non-coding RNAs were also introduced

where needed (e.g. Csr system). As most of the transcriptional

factors are themselves under transcriptional control, all the in-

direct degrees of transcriptional regulations were included.

The third step consisted in organizing the network layout to

facilitate the intuitive reading of the biological information despite

the considerably high number of components. The aim is to opti-

mize the clarity of the representation (e.g. reduction of edge lengths,

etc) while respecting the academic conventions for intuitiveness.

This is not feasible with the automatic tools for network repre-

sentation that are currently available (figure S2). Because a meta-

bolic-centric representation was considered, the graphical layout of

E. coli central metabolism was designed so as to make clear the

structure of the metabolic network according to usual conventions

(such as a vertical glycolytic pathway from glucose at the top to a

circular TCA at the bottom). Consequently, the graphical layout

(figure 2) was organized as a core of metabolic processes surrounded

by 3 successive layers representing respectively metabolic control

(inner layer), genome expression (medium layer), and transcriptional

control (outer layer, or ‘outskirt’). Some transcriptional factors (for

example DgsA/Mlc, DcuR, FlhCD) were highly specific to a

pathway meanwhile other factors (e.g. CRP, ArcA, FNR, IHF,

FruR, Fis and Sigma S) were extremely pleiotropic. Likewise, ATP,

ADP, AMP, phosphate and coenzyme A have numerous implica-

tions in enzymatic activity control. For these pleiotropic regulators,

a ‘‘passageway’’ representation was introduced to avoid too many

crossing lines over the central part of the graph (external blue lines,

green lines surrounding the central part). The resulting interaction

map provides a unique graphical interface to access the knowledge

accumulated about E. coli central carbon metabolism and a valuable

illustration of the complexity of its regulations.

It has to be noted that, using the same strategy, the same net-

work could be represented in a different manner depending on the

biological question. For illustration, it could be organised around

pleiotropic transcriptional regulators if the question was mainly

related to global regulation.

Interactivity and mapping with omics data using
Cytoscape

All the relevant biological knowledge was compiled as an inter-

active graph object using the open source software Cytoscape [8].

Combined with the graphical formalism, this network-dedicated

software was found to be a convenient and handy platform to

bypass the complexity of representing multi-level regulated

networks. Besides facilitating the compilation of the data in the

form of a graph, it offers numerous additional benefits. A first

useful functionality of Cytoscape is the possibility to link any edge

or node of a graph to a specific webpage. This functionality was

used to link each component of the interaction network to cor-

responding information web pages in relevant databases (e.g.,

Ecocyc, Brenda, Pubmed, etc.). In most cases, this allows getting

molecule structures, reaction details, enzymatic effectors and their

targets, gene and protein properties, or gene regulation networks

(figure 3). Therefore, this function is extremely useful to get access

to detailed information about the displayed network and its

components in an interactive manner, and thereby to speed up

data interpretation.

In addition to graphical representation and compilation of

biological information, Cytoscape offers also the possibility to map

the metabolic/regulatory network with multi-omics data. Since all

network components – i.e. RNAs, proteins, metabolites, fluxes -,

are explicitly represented, the various omics data – i.e. transcrip-

tomics, proteomics, metabolomics, and fluxomics – can be

visualized in parallel on the same graph. A unique color scale

can be applied to all nodes to plot the experimental values for all

types of data. To validate this functionality, complete sets of multi-

omics data extracted from the work of Ishii et al. [9] were plotted

on the graphical display. This is illustrated in figure 4 for the

comparison of two datasets corresponding to E. coli cells grown at

m = 0.7 h21 and m = 0.2 h21, respectively. The display of the

multi-omics data on the network showed the activation (in red) of

the PTS gene expression at both the transcriptional and trans-

lational levels. This activation is likely to be controlled by the Mlc/

dgsA transcriptional factor. Another transport system, i.e. the

mannose PTS operon, is also under the control of Mlc/DgsA.

However, this operon is down-regulated (green), which could be

explained by the influence of the NagC transcriptional factor. In

spite of the induction of the PTS transport system, the glycolytic

flux seems to be stable (yellow). This apparent lack of effect is due

to the fact that flux data were expressed relative to the rate of

glucose uptake. Indeed, the absolute rate of glycolysis in the fast-

growing cells was higher than in the slow-growing cells. In ad-

dition, the display of the relative flux data showed a significant

redirection of the carbon flux towards the pentose phosphate

pathway (PPP) when the growth rate is increased. The genes

encoding the PPP enzymes were mostly upregulated at the

transcriptional level (zwf, gnd, rpiA, rpe, tktA, talB), but not at the

protein level. The correlation of transcriptomic and proteomic

data showed a Pearson score of 0.04 for PPP components,

compared to 0.68 for glycolysis (using the data for the four growth

rates described in Ishii et al. [9]; data not shown). It is beyond the

scope of this paper to re-interpret the authors’ results but the

application of the proposed formalism to this particular case does

point out either inconsistencies in the data or the occurrence of an

unidentified translational mechanism that controls PPP. It does

however illustrate the usefulness of the introduced formalism and

representation to assess the overall coherence of complex datasets

and, thereby, to help formulate working hypothesis for future

investigations.

Multi-Omic Data Miner (MODAM): a Cytoscape plugin to
facilitate multilayer data interpretation

Cytoscape offers the possibility to represent different entities

through dedicated symbols and to apply a colour scale according

to numerical values. The latter functionality is useful for the

visualization of one particular type of omic data but is limited for

multi-omics data representation. In particular, a graphical pro-

perty (i.e. colour) can be associated to only one kind of attribute

(e.g. transcriptomic values). To apply the colour scale to all omics

data, all biological components must be declared with the same

and unique attribute. Such generic design does not allow pro-

cessing separately the different types of omics data to account for

differences in data format (e.g. ratios, absolute values, etc) or

differences in the amplitudes of changes between, which can be

highly different from one type of data to another. The nature of

changes can be different too. For instance, the flux through a

central/bottom part). The first outskirt (green background) corresponds to the enzymatic activities and their metabolic controls. The second outskirt
(pink background) represents the gene and protein encoding the activities. The third outskirt exhibits the direct and indirect transcriptional and
traductional regulations (blue background). See the text for additional descriptions.
doi:10.1371/journal.pone.0021318.g002

Visualization of Multi-Omics Data
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reversible reaction can be orientated in the direction opposite to

that of a reference condition, The reverse direction can be

expressed as a negative value, and has to be explicitly visualized on

the graphical representation using dedicated attributes. The appli-

cation of a unique colour scale to all types of data can hamper the

visibility or nature of changes associated with some types of omics

data compared to other types.

Here, we propose MODAM (stands for Multi-Omic Data

Miner), a new plugin to overcome this problem and to extend

Cytoscape functionalities toward data mining in multi-omics

datasets. These functionalities are accessible through a user-friendly

GUI (figure 5A). A strong benefit of MODAM is to allow multiple

independent colour scales to be applied in parallel. The adjustment

of the colour scale using independent cursors for each omic set is a

straightforward and convenient operation. These cursors allow

mapping the data according to their relative distributions and not

only according to arbitrary thresholds [16]. Each individual clour

scale ranges from green (ratios below one) to yellow (similar values)

and red (ratios above one). Negative flux ratios were represented

with a dedicated blue colour scale (see example of the PPP fluxes in

figures S3 and S4) We also offer through MODAM the possibility to

highlight the strongest variations by matching the node size (gene

Figure 3. Utilization as a web-platform for biological information. Cytoscape allows linking any component of the network (node or edge) to
a webpage. This functionality was used to link all the nodes and edges of the graph to relevant information in the databases from which the
biological network was generated. For example, one can select the fumarate reductase activity (highlighted in green in the cytoscape main
visualization window) and click on the associated link (‘‘Source’’) to access the corresponding information page in Ecocyc (bottom window).
doi:10.1371/journal.pone.0021318.g003
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and protein expression, metabolite accumulation) or edge width

(fluxes) to the fold change. This display mode (refered to as ‘‘impact

mode’’) is well-suited to embrace large scale network information.

Both modes (‘‘impact mode’’ and ‘‘normal mode’’; figures S3 and

S4) could be easily switched using the GUI interface of MODAM.

The complete interaction network contains hundreds of com-

ponents among which many of them were not monitored by omics

data or for which changes were not significant. In the biological

interpretation of the results, these parts of the network can be

discarded in order to focus on the core of the modifications. To do

so, MODAM includes extra features like the automatic extraction

of three sub-networks highlighting the most significant data. A first

sub-network contains all the biological entities that are down

regulated (Figure 5B). Since the components extracted by such

process are not necessarily directly connected one to each other,

the sub-network extraction was extended to include all their direct

neighbours (i.e. components they are directly connected to). A

second network can be obtained by extracting only up-regulated

components and their neighbours (Figure 5C). Finally a third

network containing both up- and down- regulated elements is

proposed (Figure 5D). To illustrate, MODAM was used to extract

the main changes between an E. coli strain (Dzwf) deleted for the

gene zwf encoding glucose-6-phosphate dehydrogenase (G6PDH)

and its isogenic wild type strain [9]. The G6PDH is the first

committed step of the PPP and its absence in the Dzwf strain

blocks the flux of carbon through the oxidative part of this

pathway, resulting in significant metabolic rearrangements. The

sub-network of transcriptional factors involved in the metabolic

adaptation to zwf knock-out could be automatically extracted from

the selection (Figure 5) of the most (up- and down-) regulated

components. This sub-network (Figure 6) nicely highlights the role

of the transcriptional factors CRP, FNR, ARCA and IHF in the

resulting differential expression of central carbon metabolic genes.

In particular, a pool of four less expressed genes (sdhB, sucB, sucC,

Figure 4. Detail of the network mapped with multi-omics data. The network was used to visualize a set of multi-omics data – including
transcriptomic, proteomic, metabolomic and fluxomic data - from Ishii et al. [9]. The figure shows a detail of the whole network, which is displayed in
miniature in the upper right corner with a highlight of the expanded region (using the ‘‘impact mode’’ while the central figure is displayed in ‘‘normal
mode’’ ; see text for details). The displayed data correspond to the comparison of E. coli MG1655 K12 grown at a growth rate of 0.7 h21 compared to
the same strain grown at 0.2 h21. The color scale tends from green for a greater value of the low growth rate to red for a greater value in the rapidly
growing cells, through yellow for equivalent values. Grey shapes are nodes with no associated values. Full size of the figure in ‘‘normal mode’’ is
available on figure S1.
doi:10.1371/journal.pone.0021318.g004

Figure 5. MODAM plug-in interface. The main MODAM interface is the panel below the graph representations (A). For each omics data it is
possible to change the coloring threshold expressed in percentage of the significant elements. The user can also select, via the radio buttons, which
omics data will be displayed and taken into account for the subnetwork extraction. Note that any modification is directly applied to the view in order
to provide an interactive feedback to users. Four representations are available:,the subnetwork of down-regulated elements (B), the sub-network of
up-regulated ones (C), the joint up-and down regulated elements subnetwork (D), and the global representation (E).
doi:10.1371/journal.pone.0021318.g005
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sucD), all implicated in succinate metabolism, is regulated by the

four transcription factors. This kind of conclusion could not be

directly raised from the initial network representation since the

considered components and their interactions are widely distrib-

uted over the graph.

Last but not least, the E. coli central carbon metabolism network

presented in this work has been set up as default on the launch of

MODAM, as well as the best Cytoscape parameters and visual

properties to display the whole network. This will provide any user

with fast access to the knowledge compiled in this work. Users can

also create their own networks following the conventions given in

the manual of the plugin and, this way, can apply MODAM to

their own networks.

Discussion

This work presents a simple, handy and inexpensive strategy to

facilitate the visualization and analysis of complex multi-omics

datasets (companion web-page at https://sites.google.com/site/

modamplugin/). The central concept is to decompose the struc-

tural and functional components from gene expression to translation,

from activities to fluxes. It was possible to represent the different

types of interaction and therefore, to conciliate regulatory and

structural networks on the same figure, and to map this network

with multi-omics data. The visualization strategy could be divided in

three steps: (i) network delineation and data gathering; (ii) com-

pilation, justification and organization, using Cytoscape; (iii) data

mapping and interpretation using the custom-made plugin MODAM.

The graphical representation of complex biological networks

and multi-omics data is currently a challenge as many problems

are known to be computationally difficult [17,18,19,20]. The main

difficulty lies in the design of graphical layouts that contain the

complete information but facilitate data visualization and inter-

pretation. For intuitiveness, there is likely no generic layout that

can be considered since both network limits and representation

depend on the biological question to be addressed. In this work,

the purpose was to illustrate the potential of the visualization

strategy by tackling the complexity of E. coli central carbon meta-

bolism and its many regulations. Hence, metabolic processes were

represented at the center of the figure and usual metabolic

conventions were applied to facilitate intuitive reading. For other

biological focuses (e.g. a genetic-centric purpose), different network

Figure 6. Major transcriptional factors implicated in a Dzwf metabolic reshuffling using MODAM. The ‘‘select experiment’’ option of the
MODAM interface was used to pick the Dzwf data provided by Ishii et al. [9]. Each cursor (gene, protein, reaction and metabolite) were set on 10% of
highlighted differential data. The ‘‘extract subnetworks’’ option was then activated to select only the differentially expressed nodes and their first
neighbours (as in 5d). From the ‘‘up and down regulated’’ network, nodes were ranked according to their number of connections (degree). Among
the nine most connected elements, four are transcription factors. The selection of these transcription factors and their neighbours was reiterated. This
iterative process resulted in the presented subnetwork. The drawing was obtained using a force directed algorithm, manually adjusted to group
genes that are regulated by the same sets of transcription factors (e.g. the four genes in the centre are regulated by the four transcription factors).
doi:10.1371/journal.pone.0021318.g006
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layouts and representation conventions could be adopted for the

same biomolecular network. Whatever the focus, a generic layout

issue is the density of nodes and interactions to represent, which

increases with the network size. The first rule is to minimize the

distance between interacting nodes. However, some nodes – e.g.

pleiotropic regulators in the E. coli network - have multiple inter-

actions that spread over multiple sub-parts of the network. For

such highly connected nodes, the ‘proximity rule’ was by-passed

by creating ‘‘passageways’’ circling the zone of interaction. This

passageway solution was very efficient to clarify the representation

without loss of information or in data visualization capability. In

addition to the visualization aspects, the formalism introduced

here will be of interest to translate classical drawing conventions

into computation. The graph structure facilitates the application of

automatic mining methods (e.g. automatic search of highly con-

nected genes that can correspond to important regulators) and can

be exported to other bioinformatics software.

Cytoscape proved to be a highly versatile and flexible graphical

platform, and met expectations as regard to the diversity of bio-

logical entities and interactions to represent. This versatility may

be useful to users willing to extend the formalism introduced in this

work. In terms of time, it took a couple of months for a single

person to establish the E. coli network presented here. The exten-

sion to a different organism (the bacterium Clostridium acetobutylicum)

required only two weeks (data not shown). For such less studied

organisms, the graphical formalism could be adapted (using

specific colors, size, etc) to account for uncertain information or to

include data from close organisms. The proposed strategy is not

limited to metabolism but can be applied to other cellular pro-

cesses, e.g. signaling pathways, cellular cycle, stress responses, etc.

The main limitation was the representation and exploration of

multi-omic datasets, which was overcome by developing the

MODAM plugin. As shown from the examples provided in this

work, MODAM greatly facilitates data mapping (intuitive

graphical user interface and two display modes), allows multi-

omic data representation (application of independent scales) and

improves interpretation (automatic extraction of most significant

information). MODAM could highlight the transcriptional factors

involved in the metabolic reorganizations caused by the zwf

deletion, which is of special interest for further comprehensive

understanding of metabolic robustness. It allowed also the

detection of discrepancies between transcriptomics and proteomics

data in E. coli growing at different growth rates, rising the need for

further investigations to determine whether this was due to technical

issues or to the occurrence of post-transcriptional controls.

The application to the central carbon metabolism of E. coli

proved to be a valuable illustration of the potential of the proposed

visualization strategy, of its value for data assessment and mining,

and for the formulation of new working hypothesis. The com-

pilation work performed here can be freely exploited and trans-

posed to different format/applications. In spite of the biological

system complexity, the strategy does not require strong bioinfor-

matics background and is accessible and user-friendly to users

interested in omics data visualization and compilation of biological

knowledge. Finally, the richness of the information displayed on a

single figure as presented in this work is a first achievement and

demonstrates the possibility of the approach. Taken in conjunction

with current similar efforts, like the standardization of visual

languages [21;22], this initiative can be amplified and extended

from a sub-network scale to a whole-cell scale.

Supporting Information

Figure S1 Mapping of multi-omics data (fast growth
versus slow growth) using the ‘‘normal mode’’. Plot of a

full set of omics data extracted from Ishii et al. (2007), and

corresponding to the comparison of the growth of E. coli at two

growth rates (0.7 and 0.2 h21). Data are displayed as ratios relative

to the wild type. The color scale tends from green for a greater

value at the low growth rate to red for a greater value in the rapid

growing cells, through yellow for equivalent values. Grey shapes

are nodes with no associated values.

(EPS)

Figure S2 Automatic layout of the network using
cytoscape. Manual layout (a), cytoscape circular layout (b),

hierarchical layout (c), sugiyama layout (d), spring embedded (e)

and organic (f).

(EPS)

Figure S3 Mapping of multi-omics data (zwf) using the
‘‘Normal mode.’’ Plot of a full set of omics data extracted from

Ishii et al (2007), and corresponding to the comparison of the

growth of E. coli zwf mutant (encoding the first reaction of the

pentose phosphate pathway) versus its isogenic wild type control.

Data are displayed as ratios relative to the wild type. The color

scale tends from green for a greater value at the low growth rate to

red for a greater value in the rapid growing cells, through yellow

for equivalent values. Negative fluxes are represented by a blue

scale (deeper blue for stronger negative values). Grey shapes are

nodes with no associated values.

(EPS)

Figure S4 Mapping of multi-omics data (zwf) using the
‘‘Impact mode.’’ Plot of a full set of omics data extracted from

Ishii et al (2007), and corresponding to the comparison of the

growth of E. coli zwf mutant (encoding the first reaction of the

pentose phosphate pathway) versus its isogenic wild type control.

Data are displayed as ratios relative to the wild type. The color

scale tends from green for a greater value at the low growth rate to

red for a greater value in the rapid growing cells, through yellow

for equivalent values. Negative fluxes are represented by a blue

scale (deeper blue for stronger negative values). Grey shapes are

nodes with no associated values. Sizes of the gene, protein and

metabolite nodes are adjusted depending on the fold change.

(EPS)
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