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State-of-the-art algorithms of ab initio gene prediction for prokaryotic genomes were
shown to be sufficiently accurate. A pair of algorithms would agree on predictions of gene
3′ends. Nonetheless, predictions of gene starts would not match for 15–25% of genes in a
genome. This discrepancy is a serious issue that is difficult to be resolved due to the
absence of sufficiently large sets of genes with experimentally verified starts. We have
introduced StartLink that infers gene starts from conservation patterns revealed bymultiple
alignments of homologous nucleotide sequences. We also have introduced StartLink+
combining both ab initio and alignment-based methods. The ability of StartLink to predict
the start of a given gene is restricted by the availability of homologs in a database. We
observed that StartLink made predictions for 85% of genes per genome on average. The
StartLink+ accuracy was shown to be 98–99% on the sets of genes with experimentally
verified starts. In comparison with database annotations, we observed that the annotated
gene starts deviated from the StartLink+ predictions for ∼5% of genes in AT-rich genomes
and for 10–15% of genes in GC-rich genomes on average. The use of StartLink+ has a
potential to significantly improve gene start annotation in genomic databases.

Keywords: gene prediction, inference of translation initiation start, multiple sequence alignment, Kimura distance,
integration of omics features

1 INTRODUCTION

Accurate gene finding creates a solid foundation for downstream inference such as the construction
of the species proteome, functional annotation of proteins, and inference of cellular networks.
Besides providing a start of protein translation, it designates the edge of a gene upstream region
populated with signals regulating gene expression (Stormo et al., 1982; de Boer and Hui, 1990; Resch
et al., 1996; Laursen et al., 2005).

Gene starts could be experimentally determined by several methods, such as N-terminal protein
sequencing (Sazuka et al., 1999; Rudd, 2000; Yamazaki et al., 2006; Aivaliotis et al., 2007; Lew et al.,
2011; Zhou and Rudd 2013; de Groot et al., 2014), mass spectroscopy (Rison et al., 2007), and frame-
shift mutagenesis (Smollett et al., 2009). Application of these methods is time-consuming; hence, the
number of genes with experimentally verified starts is limited. Previous benchmarking studies of
gene-finding algorithms used only 2,443 start-validated genes (Hyatt et al., 2010) or 2,925 genes
(Lomsadze et al., 2018) known in up to 10 different species.

In a computational experiment with 5,488 representative prokaryotic genomes (Figure 1), we
have compared gene start predictions made by GeneMarkS-2 (Lomsadze et al., 2018), by Prodigal
(Hyatt et al., 2010), and by the PGAP pipeline (Tatusova et al., 2016) guided by alignments of
annotated starts of homologous genes. We observed that gene start predictions may differ from
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annotations on average for 7–22% of the genes in each genome,
with high GC genomes showing the larger difference.

Accurate ab initio gene start predictions are difficult to be
made due to the variability of sequence patterns in the gene
upstream regions. While the Shine-Dalgarno pattern (Shine and
Dalgarno 1974; Barrick et al., 1994) is dominant in ribosome
binding sites (RBSs) of many prokaryotic genomes, other patterns
are frequently present, such as non-canonical RBSs. GeneMarkS
(Besemer et al., 2001) and Prodigal (Hyatt et al., 2010) were
designed to infer RBS models with non-canonical patterns.
However, Prodigal’s parameters of the RBS model were
optimized for Escherichia coli genes with verified starts (Rudd,
2000); this tool is primarily oriented on searching for the
canonical Shine-Dalgarno (SD) RBSs. The RBSs located in
5′untranslated regions (5′ UTRs or leaders) are absent in
Archaea species leaderless mRNAs, first discovered in
Pyrobaculum aerophilum (Slupska et al., 2001). Since some
antibiotics inhibit translation initiation in leadered transcripts
and not in leaderless ones (Brandi et al., 2006; Schuwirth et al.,
2006; Kaberdina et al., 2009; Muller et al., 2016; Lange et al., 2017;
Sawyer et al., 2018), knowledge of genes with leaderless
transcription is instrumental for predicting drug effects on
pathogens. To improve gene start prediction in the genomes
with leaderless transcription, sequence patterns of promoter sites
could be useful. A majority of gene finders have not considered
the case when the leaderless and leader-generating transcription
could be present in the same genome.

Recently developed self-trained GeneMarkS-2 used multiple
models of sequence patterns in gene upstream regions within the

same genome. We have found that in 16.4% of archaeal and
61.5% of bacterial genomes (in the NCBI set of 5,007
representative prokaryotic genomes with 238 Archaea and
4,769 bacteria), translation initiation mechanisms have used
SD RBSs (Lomsadze et al., 2018). The remaining 83.6% of
archaeal species were predicted to frequently use leaderless
transcription (along with SD RBSs for some genes).
Computational predictions of gene starts in archaeal genomes
were supported by experimental observations, for example, for
Halobacterium salinarum, Haloferax volcanii, and Thermococcus
onnurineus (Koide et al., 2009; Babski et al., 2016; Cho et al.,
2017). On the other hand, out of the remaining 38.5% of bacterial
species, 10.4% were found to use a non-canonical (non-SD)-type
RBSs (e.g., Bacteroides (Wegmann et al., 2013)), 21.6% of
bacterial species were predicted to use leaderless transcription
in up to 40% of transcripts in a genome, for example,
Mycobacterium tuberculosis (Cortes et al., 2013; Shell et al.,
2015; Gualerzi and Pon, 2015; Nakagawa et al., 2017), and in
the remaining 6.5% of the bacterial species, the SD-RBS was
observed in a small fraction of genes, while the majority of genes
had an upstream signal with a very weak sequence pattern that
indicated an unknown mechanism of translation initiation, for
example, Cyanobacteria (Mutsuda and Sugiura, 2006).

A major part of this work was to develop a gene start
prediction algorithm, called StartLink, based on multiple
sequence alignment. We have not used existing gene-start
annotations as well as information on sequence patterns of
RBSs or promoter sites (Wall et al., 2011). We have used
multiple alignments of unannotated syntenic genomic

FIGURE 1 | Prodigal, GeneMarkS-2, and NCBI’s PGAP may disagree in gene start predictions. For the NCBI collection of 5,488 representative genomes split
between GC-content “bins,” we show the percentage of genes (per genome) with mismatching start such that at least one of the tools has a difference in gene start
prediction with the other(s) tool(s). The color of a cell in a graph indicates the number of genomes within the cell as a percentage of 5,488 genomes; the color-coding key
ranging from 0 to 1% is given by the bar on the right. The average percentage of genes (per genome) for which gene start predictions differ between the
computational tools is shown by solid lines as functions of GC content.
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sequences containing predicted coding regions extended to the
longest open-reading frames (LORFs). By design, StartLink is a
stand-alone predictor of gene starts for all the genes that have a
sufficient number of homologs. It is applicable for finding starts
of genes residing in short contigs (e.g., assembled from
metagenomic reads) for which GeneMarkS-2 (and other
whole-genome ab initio gene finders) may not perform well
due to insufficient volume of sequence data that could be used
for supervised or unsupervised training.

On the sets of genes with experimentally verified starts, we
have shown that when StartLink and GeneMarkS-2 gene start
predictions match each other, a chance of predicting the wrong
start is about 0.01. Therefore, we introduced StartLink+, a tool in
which output is defined for genes where independent StartLink
and GeneMarkS-2 predictions are the same. Genes that have only
ab initio predictions are missed in the StartLink+ set. We
observed that StartLink+ delivered gene start predictions for
73% of genes per genome on average. Comparisons with the
gene annotations in databases showed differences of the
StartLink+ predictions and annotation in up to 15% of genes
in a genome. We argue that the starts of such genes should be
reconsidered and, possibly, re-annotated.

2 MATERIALS

The five species, bacteria E. coli (Rudd, 2000; Zhou and Rudd,
2013), M. tuberculosis (Lew et al., 2011), and R. denitrificans
(Bland et al., 2014), as well as archaea H. salinarum and N.
pharaonis (Aivaliotis et al., 2007), listed in Table 1 had, as of
December 2019, the largest numbers of genes with starts verified
by N-terminal sequencing (Table 1). These sets of genes were
used for the prediction accuracy tests.

As of November 4, 2019, NCBI’s RefSeq database had over
183,689 annotated prokaryotic genomes. To reduce the time for
search for homologs, the search space could be limited to a clade
the query species belongs to (Table 1). Among genomes with the
same taxonomy ID, we selected the one with the most recent
annotation date. In the selected genomes, all longest open-
reading frames (LORFs) of annotated genes were extracted
and translated, and a BLASTp database was built.

We have conducted computational experiments with genomes
from four clades (with the numbers of randomly selected
genomes given in parenthesis): Archaea (97), Actinobacteria
(95), Enterobacterales (106), and FCB group (96). The clade
selection was guided by the study of patterns in gene

upstream regulatory regions (Lomsadze et al., 2018). Archaeal
genomes have large numbers of genes with leaderless
transcription. Clade Actinobacteria has predominantly high-
GC genomes with a significant number of genes with
leaderless transcription. The Enterobacterales clade has mostly
mid-GC genomes that carry genes with an RBS of the Shine-
Dalgarno type. Finally, the FCB group has low-to-mid-GC
genomes that carry genes with a “non-canonical” AT-rich
RBSs (Lomsadze et al., 2018).

The prokaryotic genome collection of the NCBI includes a
description of 5,488 genomes representative of the whole
database. We used this set to show the extent of differences in
prokaryotic gene start predictions made by the state-of-the-
art tools.

3 METHODS

3.1 Metrics for Gene Start Prediction
Performance
Given a test set of genes, setG, we consider its subset S for which a
particular algorithm predicts gene starts. We define the following
measures: accuracy, Acc(S, G); error rate, Err(S, G); and coverage,
Covr(S,G):

Acc(S,G) � 100p
M5(S,G)
M3(S,G),

Err(S,G) � 100 − Acc(S,G),
Covr(S,G) � 100p

M3(S,G)
|G| .

(1)

Here, M5(S,G) and M3(S,G) are the numbers of genes in S
that match genes in G by both 5′ and 3′ ends, and only by 3′
ends, respectively. With respect to commonly used measures
of sensitivity and specificity (e.g., Lomsadze et al., 2018), we
have to note that Acc(S, G) is measured for predictions of gene
starts. Correct prediction of prokaryotic gene starts is a
significantly more difficult problem than the prediction of
gene-reading frames and hence the positions of 3′ end.
Therefore, in comparison of two advanced gene-finding
tools 1 and 2, we could assume that sets M3(S1,G) and
M3(S2,G) are the same. Next, we observe that the number
of predictions made by a given tool i is equal to the number of
genes in set M3(Si,G). Therefore, Sni � 100*M5(Si,G)/M3(Si,G)
� Spi. Notably, an error in gene 5’ end prediction makes both
false negative and false positive at the same time. Thus, in our

TABLE 1 | Reference clades for the five query species and the sizes of the verified gene test sets (total of 2,841genes).

Species Clade # of genomes in
the clade

# of verified
genes in each

species

Escherichia coli Enterobacterales 6,311 769
Halobacterium salinarum Archaea 1,125 530
Natronomonas pharaonis Archaea 1,125 282
Mycobacterium tuberculosis Actinobacteria 8,097 701
Roseobacter denitrificans Alphaproteobacteria 4,720 526

Frontiers in Bioinformatics | www.frontiersin.org December 2021 | Volume 1 | Article 7041573

Gemayel et al. Prokaryotic Gene Start Prediction

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


case, the values of Sn and Sp are numerically equal to each
other and to those of Acc(S, G).

3.2 StartLink
The task is to identify the start codon of a prokaryotic gene within
its longest open-reading frame (LORF) embedded in a nucleotide
sequence Q (query). The StartLink algorithm identifies and uses
syntenic genomic sequences upon making the following three
steps (Figure 2):

Select a set of target genomic sequences defined by the search
for query Q.
Eliminate evolutionarily too close and too remote to Q target
sequences as well as the target sequences too close to each
other and construct a multiple sequence alignment (MSA).
Select gene start among possible candidates within the LORF
in query Q.

3.2.1 Step 1: Finding Homologs
A protein product of a gene predicted by GeneMarkS-2 in the
query sequence is used in the Diamond BLASTp (Buchfink et al.,
2015) to find a set of target proteins and genes (described in more
detail below) that have significant similarity to the query. We
remove any target whose pairwise protein alignment with the
query does not cover more than 80% of either the query or target
sequences. This step helps eliminate targets whose alignments
with query do not cover the areas close to the target gene start.

3.2.2 Step 2: Selection of Target Proteins and
Construction of a Multiple Sequence Alignment of
Syntenic Nucleotide Sequences
With the set of target proteins and their genes in place, we
proceed to build an informative MSA for gene-start inference.
Each target gene is extended to LORF and translated into the
amino acid sequence. The protein MSA is constructed by the
Clustal Omega algorithm (Sievers and Higgins, 2018) from 50
randomly selected translated LORFs along with the translated
LORF of the query. Next, the algorithm constructs pairwise
alignments of the LORF nucleotide sequences guided by
protein MSA within the gene regions. Based on the pairwise
alignments, the algorithm computes the query-to-target and

target-to-target evolutionary distances by using the Kimura 2-
parameter model (Kimura, 1980):

dAB � −1
2
ln[(1 − 2P − Q) ������

1 − 2Q
√ ], (2)

where P and Q are the fractions of positions in the alignment
with transition or transversion mutations, respectively. The
Kimura distance is usually computed for a global alignment of
two DNA sequences. We have observed that for closely related
genomic sequences, a local alignment (derived from the readily
available BLASTp output) could provide sufficiently accurate
distance value, thus saving the effort of realigning sequence
pairs (see Supplementary Note 6).

Aligned syntenic genomic sequences should carry conserved
patterns downstream from true gene starts. However, the
presence of distant from query sequences (dAB > 0.5) leads to
the insertion of many gaps in MSA downstream from the gene
starts, thus disrupting the pattern of conservation (see
Supplementary Materials). On the other hand, if two syntenic
sequences are too similar (dAB < 0.1), then one of them is
redundant and could be removed. Therefore, we select target
sequences that fall inside the dAB range [0.1, 0.5] with respect to
the distance to query.

FIGURE 2 | High-level schematic of the StartLink workflow (Figure 5 shows details of step 3).

FIGURE 3 | Average number of targets per query in the StartLink runs.
The average was computed per genome and shown for each of the four
clades (in the whole set of 443 query genomes).

Frontiers in Bioinformatics | www.frontiersin.org December 2021 | Volume 1 | Article 7041574

Gemayel et al. Prokaryotic Gene Start Prediction

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


The number of target sequences in the final MSA varies from
10 to 50, and the average number of MSA sequences is clade-
specific (Figure 3). We observed that MSAs with low numbers of
targets (e.g., about 10) still contain informative sequences.

Note that selection of reference target genes in StartLink is
gene-specific and takes into account that different genes evolve
with different speeds. This approach attempts to produce similar
distributions of Kimura distances despite variations in the gene-
specific and clade-specific speeds of evolution.

3.2.3 Step 3: Identification of the Gene Start in a Query
Sequence
The algorithm predicts the gene start by analyzing patterns of
conservation in the MSA at one of the three following steps.

1) Search for conserved blocks in protein MSA and the simplest
case of the gene-start identification.

Given a protein MSA constructed from the translated LORFs
of a query and its targets, the algorithm searches for the left-most
block with a high conservation score (see below). We assume that
the nucleotide sequences of the true genes in the corresponding
set of nucleotide sequences do not overlap with the upstream
genes. If a left-most protein block with a high score is detected
and there is only one gene start candidate in the nucleotide query
upstream of the block, this candidate is predicted to be the gene
start. Otherwise, the algorithm proceeds to (B). Note that the start
assignment in (A) does not require conservation of the start
candidate itself.

For a protein MSA block of length r (where r � 10aa not
including possible N-terminal), a conservation measure (identity)
score is computed by the formula:

Sblk(i, r) � 1

r × (N − 1)2 ∑
m≠n

∑
j∈J(i,r)

H(m, n, j), (3)

where J(i) is the set of r positions downstream of position i, with
no gap in the query;H(m, n, j) is 1 if and only if sequencesm and
n match each other at position j in the alignment; and N is the
total number of sequences in MSA. A block with Sblk(i, r) larger
than 0.5 is identified as conserved. This threshold corresponds to
the uninformed, majority-vote approach, which is a reasonable
option when limited ground-truth data are available.

2) Identification of the gene start in the presence of
overlapping genes

If a query LORF overlaps with the 3′ end of the upstream gene
(which is easy to be determined), such an overlap is likely to
appear in syntenic sequences (at a sufficiently close evolutionary
distance, see Figure 4). It was observed that ATG, GTG, or TTG
codons of a LORF situated near the 3′ end of the upstream gene
have elevated frequency of being true starts (Lukashin and
Borodovsky, 1998; Huber et al., 2019). It is plausible that the
ribosome can efficiently reassemble at such a gene start upon
completing the translation of the upstream gene. StartLink
attempts to identify a conserved gene-start candidate in the
MSA within 9 nt distance near the 3’ end of the upstream
gene. The conservation score for the candidate with MSA
position i is defined by the fraction of targets that have gene-
start candidates within 6nt distance from position i. Formally, the
identity score for position i is defined as

S5′(i, x) � 1
N

∑
N

j�1
(G(i, j, x) − P(i, j)), (4)

where

G(i, j, x) � I{∣∣∣∣{ATG, GTG, TTG} ∩ ​ Neigh(i, j, x)∣∣∣∣≥ 1}. (5)

Here, I{·} is the indicator function, | · | computes the size of a
set, and Neigh(i, j, x) is the set of codons within a distance of x
codons around position i in sequence j. Thus, G(i, j, x) is 1 if an
ATG, GTG, or TTG exists in the neighborhood, and 0 otherwise.
The term P(i, j) penalizes for the appearance of the codons being
synonymous to GTG, or TTG, but not serving as start codons;
P(i, j) � 1 if such a codon exists in position i of sequence j in the
MSA, and 0 otherwise. If S5’(i, x) > 0.5 the candidate is selected
as a predicted start; otherwise, the algorithm moves to (C).

For additional justification of step C, we introduced the
following consideration. In the analysis of a large set of query
genes and their homologs (targets), we found that if a query gene
was overlapped by the upstream gene (in the same strand) or if
the upstream intergenic region was very short (less than 10 nt),
then such a configuration was preserved for genes in genomes of
closely related species. Let us consider a query gene along with its
targets defined by similarity search and included in the MSA (N
sequences, N > 10); this set is called a component. LetD(n) be the
length of the intergenic region from the end of the upstream gene
to the start of the downstream gene, n, and let x be the most
frequent D(n) observed in the component (i.e., the mode). Then,
the measure of conservation of the intergenic region being x
nucleotides long is defined as

FIGURE 4 | Frequency histogram of the most frequent intergenic
distance x between same-strand genes in the MSA-defined components. The
x value is in the range from −10 to +10 nt.
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DC(x, f) � 1
N

∑
N

n�1
I {x − f≤D(n)≤x + f}, (6)

where I(·) is the indicator function and the margin f determines
the stringency of conservation. The DC value could be
interpreted as a probability that in any sequence that belongs
to the component, the upstream gene is located x ± f nt away,
where x is the most frequent distance in the component. The
distribution of the measure of the conservation was computed
and presented in the Results section (Supplementary
Figure S11).

3) Identification of the gene start in a general case

C-1: If multiple gene-start candidates are present in the query
LORF upstream to the left-most MSA block of conserved amino
acids, the S5’ scores of the candidates are computed and screened
from the LORF 5’ end downstream. If a candidate has S5’ > 0.5,
then the algorithm moves to C-2. Otherwise, it moves to the next
candidate. If all candidates have been exhausted, then the
algorithm quits without selecting any candidate as a predicted
gene start.

C-2: To avoidmissing a true start downstream of the candidate
selected in C-1, the algorithm searches for a candidate with a
highest S5’ score-S’5’ in the 30 nt region downstream. If S’5’ > 0.5
and if there is a conserved block (of any length up to 10 aa)
between the two candidates, then the upstream candidate is
selected; otherwise, the downstream candidate is identified as
the start (Figure 5).

3.3 StartLink+: A Pipeline Combining
StartLink and GeneMarkS-2
StartLink+ runs both GeneMarkS-2 and StartLink. Genes whose
starts are predicted in the same position by both tools are selected.
This set of starts is reported as the output of StartLink+. Since an
error of StartLink+ would occur in an event that two independent

tools would make the same erroneous prediction, the expected
error rate is proportional to a product of probabilities of an error
of each tool.

4 RESULTS

4.1 Accuracy Assessment on Genes With
Experimentally Verified Starts
In the set of genomes containing genes with verified starts, we
selected the genes with StartLink+ predictions. The coverage
values, that is, percentage of genes in each set for which a
particular method generates gene start predictions, are shown
in Table 2 for StartLink, GeneMarkS-2, and StartLink+.

The GeneMarkS-2 coverage deviated from 100% in a given set
when the gene finder did not predict one or more genes as a
whole. StartLink was missing genes where neither A or B or C
steps produced start predictions. In addition to genes missed by
either GeneMarkS-2 or StartLink, StartLink+ missed genes where
gene starts predicted by GeneMarkS-2 and StartLink do not
match. The lowest StartLink+ coverages ∼75% were observed
for M. tuberculosis and R. denitrificans.

The error rates of gene start prediction by StartLink,
GeneMarkS-2, and StartLink+ were computed by a
comparison of the predictions with the coordinates of verified
gene starts (Table 2). The error rates of StartLink+ were as low as
0.61% on average. The reduction of the error rates observed for
the two independent tools was significant. Particularly, for M.
tuberculosis, StartLink and GeneMarkS-2 error rates were ∼6.9
and ∼9.6%, respectively. The error rate of StartLink+ was ∼1.3%.

Gene start prediction in high GC genomes is known to be
challenging. Three genomes in Table 2 had high GC content: H.
salinarum (65%), N. pharaonis (63%), andM. tuberculosis (66%);
the StartLink+ error rate was 0.6, 0.0, and 1.32%, respectively.

The percentage of verified genes where predictions of
StartLink, StartLink+, GeneMarkS-2, and Prodigal deviate
from experimentally confirmed starts is shown in Table 2.

FIGURE 5 | Use of MSA to identify a start of a gene in the query sequence (top sequence in each MSA). Left panel: Step A: the left-most conserved block is
detected, with a single gene-start candidate located upstream. Right panel: Step C: Candidate start codons are screened to find those with conservation score S5’(i, x)
above the threshold t5’ � 0.5 (Supplementary Note 3).
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We ran StartLink+ on 443 prokaryotic genomes from the four
prokaryotic clades (Table 1). The StartLink+ error rate in
gene start predictions (albeit with the reduction in coverage)
was the lowest (Table 2). Therefore, StartLink+ is expected to
generate for a given genome a large set of genes with starts
reliably determined. Note that if we select a subset of genes
that is common for StartLink, GeneMark-S, and Prodigal in
terms of the same 3’ ends, with the elimination of 289 genes
out of 2,841, the results shown in the top row of Table 2 will
hold, with GeneMarkS-2 having the lowest error rate (data not
shown).

For comparison, we also show the percent of errors in gene
start prediction made by each of the three tools, StartLink,
GeneMarkS-2, and Prodigal, on a subset of experimentally
verified genes predicted by all three tools (Supplementary
Table S2). The accuracy pattern observed in Table 2 holds.

We compared the predicted gene starts with the PGAP
annotation. We observed that the average percentage of genes

with differences in gene-start positions between PGAP and
StartLink+ was non-uniformly distributed among the clades
(diff values in Figure 6). Particularly, in the Actinobacteria
genomes, that difference reached up to 15% of genes per
genome, with an average of around 10%. On the other hand,
the average difference dropped to about 4.5% in genomes of the
FCB group and to ∼3% in Enterobacterales genomes. Notably,
there were inter-clade differences in average genome GC
contents, for example, Actinobacteria (high GC) and
Enterobacterales (mid GC), as well as in clade-specific
abundance of leaderless transcription.

Of interest is how genome GC content affects the genome-
specific percentage of genes with differences in start positions
defined either by PGAP and StartLink+ or by Prodigal and
StartLink+ (Figure 7). In both cases, the percentage of In
Archaeal genes with differences was highest in mid-GC genomes
and decreased in high-GC and low-GC genomes. In Actinobacteria,
the percentage of genes per genome increased with GC increase for
both Prodigal and PGAP, but beyond 67% GC, it began decreasing
for Prodigal. The gene-start annotation in PGAP gives preference to
the location of gene starts that correspond to the conserved signature
inferred from annotated starts of known genes (Tatusova et al.,
2016). This method depends on earlier annotations and is prone to
transferring errors.

4.2 Gene Start Prediction Accuracy at Each
StartLink Step
As previously mentioned, StartLink output was generated at one
of the three possible steps, namely, A, B, or C, depending on the
gene-specific sequence alignment configuration. We used sets of
genes with verified starts to assess error rates of both StartLink and
StartLink+ at every three steps. We also computed the percentage
of gene-start differences between StartLink+ prediction and
PGAP annotation at each step.

TABLE 2 | Error rates in gene start predictions (%) and gene set coverage determined for StartLink, GeneMarkS-2, and Prodigal as well as for their combinations: StartLink
and GeneMarkS-2, that is, StartLink+, StartLink and Prodigal, and GeneMarkS-2 and Prodigal, on sets of genes with experimentally verified starts. The sizes of the sets
are shown in Table 1.

StartLink GeneMarkS-2 Prodigal

Error rate Coverage Error rate Coverage Error rate Coverage

E. coli 4.45 99.35 3 99.74 2.34 100
H. salinarum 2.73 89.81 1.32 100 2.84 99.81
M. tuberculosis 6.86 85.31 9.6 99.57 11.05 99.43
N. pharaonis 2.11 90.16 0.95 100 1.59 99.68
R. denitrificans 4.81 90.87 3.43 99.81 4.94 100
Average 4.19 91.1 3.66 99.82 4.55 99.78

StartLink+ StartLink and Prodigal GeneMarkS-2 and Prodigal

Error rate Coverage Error rate Coverage Error rate Coverage

E. coli 0.83 93.63 0.69 94.15 1.08 96.62
H. salinarum 0.43 87.17 0.44 85.66 0.39 96.79
M. tuberculosis 1.32 75.75 1.35 74.04 3.95 86.73
N. pharaonis 0 87.62 0 86.98 0.64 98.73
R. denitrificans 0.45 84.6 0.68 83.84 1.01 94.11
Average 0.61 85.75 0.63 84.93 1.41 94.6

FIGURE 6 | Percentage of genes per genome having differences in
PGAP and StartLink+ predictions of gene-start positions. Distributions of
average values per genome for prokaryotic clades (Table 1).
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At step A, the observed error rate for five species was
consistently low, close to zero (Figure 8, bottom left panel).
This result matched the logic of step A where the predictions
were made with strong evidence for a particular gene start;
ambiguous cases were delegated to the subsequent steps.
However, the error rates observed at step B were rather low
as well. Among the genes with verified starts, a very few genes
had a closely situated or overlapping upstream gene that
would require going through step B (Figure 8, top two

panels). Particularly, for N. pharaonis, step B was a final
step for only seven genes.

Gene start prediction in the three steps of StartLink+ had
lower error rates, as would be expected (Figure 8, bottom right
panel). Interestingly, the observed patterns of differences between
StartLink+ predictions and the PGAP annotation were similar
but not the same in the four prokaryotic clades (Supplementary
Figure S10). The differences were consistently smaller at step A
(in the range of 2–6%) than at steps B and C (5–12%). Similar

FIGURE 7 | Percentage of genes per genome where predicted start positions differ between PGAP and StartLink+ (left) and Prodigal and StartLink+ (right) as a
function of genome GC content. The analysis was done for 443 genomes from the four clades (Table 1).

FIGURE 8 | Left panels: The gene start prediction error rate of StartLink observed at each of the steps (A), (B), or (C) computed for the sets of genes with verified
starts in the five species (top), the percentages of the genes in a given genome predicted in StartLink by step (A) alone, by steps (A) and (B), and by all steps together
(middle), and the absolute numbers of the predicted genes depicted in the middle sub-panel (bottom). Right panels: Same data types as in the left panels computed for
StartLink+.
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patterns were found when comparing StartLink+ to Prodigal
(data not shown).

4.3 Conservation of Gene Overlaps in
Syntenic Regions
Computations with formula (9) did provide quantitative evidence
for the presence of conservation of the length x of gene overlaps
and short intergenic regions. The DC value was decreasing when
x was increasing (Supplementary Figure S11). Thus, we saw that
gene overlaps tend to be conserved within components.

To determine the percentage of components (per clade) that
fell for each value of x, we zoomed in into the range of x nt
between -10 and 10 (Figure 4). Most components within that
range had 4 nt gene overlap, followed by 1 nt overlap. This
tendency was particularly pronounced in Actinobacteria, where
more than 60% of components had 4 nt gene overlap. In the FCB
group, components with 4 nt gene overlap constituted only 20%
of all components. This decrease with respect to Actinobacteria
could be related to the presence of AT-rich non-canonical RBSs
in the gene upstream regions in genomes of the FCB group
(Lomsadze et al., 2018). Such AT-rich RBSs could have been
evolved and maintained in lower GC non-coding regions rather
than inside the upstream protein-coding gene with higher GC.
The observed preferences for both -4 and -1 overlaps were in
agreement with the previous works suggesting that gene-start
positions close to the 3’ ends of the upstream genes were favored
in evolution (Lukashin and Borodovsky, 1998; Huber et al., 2019).

4.4 Analysis of Distributions of the Kimura
Distances
StartLink infers gene-start position from analysis of patterns of
conservation in nucleotide sequences of syntenic LORFs. The
LORF sequences containing homologous genes are selected for a
query by the BLASTp search in the BLAST database precomputed
for the given clade. Multiple alignments of LORFs are analyzed to
detect changes of the positional frequency of nucleotides (the
conservation pattern) upon crossing the position of gene start
from the intergenic region to a gene or from a gene in one reading
frame to a gene in another frame in the same DNA strand (in a
gene overlap). The task of detection of the conservation pattern
change point may not be solved satisfactorily if the reference
LORFs are evolutionarily too close or too distant from the query
LORF. Therefore, we have analyzed the dependence of the
accuracy of StartLink on the range of evolutionary distances
between query and targets measured by the Kimura model, as
well as distances between targets.

The clade-specific accuracy of StartLink could depend on the
clade-specific organization of groups of homologous genes or
proteins. We analyzed distributions of the Kimura distances
between query genes and their targets across different clades
(in the distance range [0.1, 0.5]).

Regardless of the nature of the differences in the Kimura
distance distributions (caused by the variability of the speed of
evolution or inhomogeneity of the database sampling), the
similarity-based method, such as StartLink, had to be designed

to work in a non-uniform space of homologs (Supplementary
Note 2).

A set of orthologs found by similarity search for a given query
q was filtered prior to MSA construction. This set had minimum
and maximum values of the Kimura distances to the query. These
two values made a vector (min K(q), max K(q)), and the
frequency distribution of these vectors within the triangular
space was depicted by the contour plots (Supplementary
Figure S12). The plots show clear differences in the
distributions of the “minmax” vectors among queries in each
clade. For example, most query genes in Enterobacterales had the
“minmax” vectors of the Kimura distances close to the extreme
one [0.1, 0.5].

In Actinobacteria and in the FCB group, however, large
fractions of the query genes had the closest relatives at a
rather long distance with the minimum Kimura distance
varying from 0.1 to 0.4. Therefore, the average Kimura
distance per query was 0.38 for Actinobacteria and the FCB
group compared to 0.23 for Enterobacterales (Figure 9). We
observed that the homologs of genes of Enterobacterales species
span uniformly a broad range of the Kimura distances (from the
respective query genes). Such distributions produced a robust
performance of StartLink as well as high coverage of genes in a
query genome by the StartLink predictions.

For the set of genes with verified starts, we found error rates of
StartLink and especially StartLink+ are uniformly low regardless
of the Kimura distance range (see Supplementary Figures S2,
S3). We also observed that deviations of the StartLink+
predictions from the PGAP annotation were in the same range
regardless of variations in min and max values of the range of the
Kimura distance between queries and targets (Supplementary
Figure S5).

4.5 Variability of the BLAST Hit Distributions
Across Different Clades
Besides the variability in the Kimura distance distributions, the
four prokaryotic clades also showed clade-specific variability
among query genes with respect to the numbers of homologs
detected in similarity searches. A distribution of the number of
BLASTp hits (prior to any filtering) in each of the four clades is

FIGURE 9 | Distributions of the average Kimura distances from a query
to the homologs for the four clades. The y-axis shows the percentage of
queries having a particular average Kimura distance to their homologs.
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shown in Figure 10, while the percentages of query genes (per
genome) that had at leastN BLASTp hits where N varies from 0
to 5,000 hits are shown in Supplementary Figure S13.

Naturally, the number of hits per query was largely
proportional to the number of genomes within a clade
(Table 1; Figure 10). On the other hand, the cumulative

distributions (Supplementary Figure S13) increased very
quickly and plateau early on, first for Archaea (1,125
genomes) and then the FCB group (3,306 genomes). In
Enterobacterales (6,311 genomes) and Actinobacteria (8,097),
the cumulative distributions grew much more slowly. Still,
Actinobacteria’s distribution (which has more genomes) grew
significantly faster than that of Enterobacterales. For example, the
likelihood that a query in Enterobacterales got at least 1,000
BLAST hits was ≈ 83%, compared to only 60% in Actinobacteria.

4.6 Visualization of the StartLink Data
Analysis
The multiple sequence alignments used for the StartLink inference
could be of interest for visual inspection of the pattern of
conservation. For example, an MSA made for a gene adhE1
Rv0162c in M. tuberculosis showed a case where StartLink+
prediction was different from the annotated gene start (Figure 11).

The top row amino acid sequence (line 4) is the translated
query sequence, followed by the sequences of selected homologs.
Capital M, V, and L letters represent methionine, valine, and
leucine coded by ATG, GTG, and TTG, respectively. Lowercase v
and l represent valine and leucine coded by non-GTG or non-
TTG codons, respectively.

FIGURE 10 | Distribution of numbers of the BLASTp hits per query in the
four clades (Table 1) shown as box plots of the numbers of the BLASTp hits
per query.

FIGURE 11 | MSA for the gene adhE1 Rv0162c in M. tuberculosis, the Actinobacteria clade.
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Annotated start of this gene (“#ref”) was the GTG-coded
valine, while StartLink+ was predicted as start the downstream
methionine (“#selected”). We see that the prediction made by
StartLink+ had a high conservation of both the gene start and the
immediate downstream region. Conversely, the annotated start
was positioned in a highly non-conserved upstream region (more
MSA examples are shown in Supplementary Note 7).

5 DISCUSSION

5.1 Comparison of Gene Starts Predicted by
Different Tools
We used several existing sets of genes with experimentally verified
starts (Table 1) for benchmarking of error rates in gene start
prediction (Table 2). We saw that StartLink+ was the most
accurate tool for the genes where predictions were made.
Therefore, we used StartLink+ for analysis of larger genomic
sets where comparisons would indicate room for improvement of
the individual tools (Figure 7).

The genomic percentage of genes with differences in predicted
starts turned out to depend on genome GC content. This
dependence appeared to have the same pattern when we
compared either PGAP or Prodigal to StartLink+ (Figure 7).
Large differences with Prodigal were observed also for
Actinobacteria, Archaea, and FCB groups. Still, the difference
between StartLink+ and Prodigal for Actinobacteria had a peak at
67% GC (Figure 7). Note that the plots of the difference averaged
among all the genomic sets (the dashed lines) were computed by
using all the genomes rather than using just the data from the
colored graphs with equal weights. The average genomic
percentage of genes with gene-start differences between
StartLink+ and RefSeq annotation was determined for the set
of 5,488 representative genomes. This percentage also increased
with an increase in the genome GC content (Figure 1).

The frequency of making gene start prediction errors in
genomes with high GC could be elevated due to the longer
average LORFs. This factor should have a stronger influence
on ab initio gene finders. Another noise component is acting on
alignment-based methods. It could be related to variations in
distributions of database orthologs across Kimura distances
(Supplementary Figure S12). We showed that StartLink+
performed reliably across the range of Kimura distances
(Supplementary Note 2). Particularly, to account for the
gene-specific speed of gene sequence evolution, the selection of
targets was gene-specific rather than being genome-specific. This
approach implemented in StartLink could lead to differences in
the sets of target sequences used in PGAP. Still, this factor was
unlikely to make a concerted impact on the frequency of
differences that would depend on genome GC content.

In comparison of PGAP and StartLink+, we also considered
the frequency of differences in the groups of genes whose starts
were predicted at algorithmic steps A, B, and C (Supplementary
Figure S10). Lower frequencies of differences were observed at
step A as could be expected. In the genes of group A in a given
LORF, we had a single start candidate upstream to a conserved
region predicted to be protein-coding.

5.2 StartLink and StartLink+ Do Not Make
Start Predictions for Some Genes
The StartLink’s overall genomic coverage was 85% on average
(Figure 12A). The Enterobacterales average, 92% per genome,
was, however, significantly higher than 80–83% average observed
for the remaining three clades. The coverage per genome should
depend on a phylogenetic position of the species as well as the
pattern of selection of the evolutionarily close or distant species
for whole-genome sequencing. The percentage of genes produced
a certain number of significant BLASTp hits in similarity search
with their protein translation as queries provide an upper bound
for the genomic coverage. The genomic percentage of queries that
had at most n BLASTp hits, n ∈ [0, 40], is shown in
Supplementary Figure S14. We saw that on average, 10% of
genes in Archaea, 12% of genes in Actinobacteria, and 12% of
genes in the FCB group genomes had fewer than 10 BLASTp hits,
while only 3% of Enterobacterales genes had fewer than 10 hits.
These hits, however, might not land within the desired Kimura
distance intervals to the nucleotide query and to each other. We
see that a large part of the loss of coverage in each of the clades
could be traced back to the low number of the BLASTp hits.

We saw that StartLink+ predicted gene starts for 73% genes
(on average) in a genome (Figure 12B). The differences between
clades again reflect the difference in abundance of sequenced
genome, for example, between Enterobacterales and Archaea.
However, the ∼12% drop on average between StartLink and
StartLink+ corresponds to “mutual filtering” of false positive
by StartLink and GeneMarkS-2. The largest change across the
clades was in Actinobacteria’s coverage dropped by 16%.

5.3 Experiments With Different Types of
Integration of Gene Finding and Gene Start
Finding Tools
To investigate how the accuracy of gene start prediction depends
on the choice of gene finding tools for integration, we have
experimented with the integration of the following pairs:
StartLink and Prodigal, and GeneMarkS-2 and Prodigal. The
accuracy of the use of these integrated pairs was compared with
StartLink+ integrating StartLink and GeneMarkS-2. The
integrated predictions made by each pair of tools were
recorded only when predictions of both tools matched each
other. The results showed that the pairs integrated as
“independent streams” of information, multiple-alignment-
based, and ab initio-based delivered more accurate predictions
(Table 2). It was demonstrated that StartLink+ had the best
accuracy among the integrated pairs of tools.

5.4 Effects of Restrictions on the Number of
Targets per Gene
To reduce the running time of StartLink, we limited the
maximum number of allowed targets used in MSA (currently,
N � 50). We could select at most N target sequences and
continue with further selection within the MSA
(Supplementary Note 6). The average number of targets per
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query after a full StartLink run could differ significantly between
clades (Figure 3), especially when comparing Archaea and
Enterobacterales.

A possible reason for Enterobacterales genes to have a high
average number of selected targets was the larger spread of the
Kimura distances than other clades (Supplementary Figure S12).
The average number of targets within Archaea was frequently
reaching as low as 10 targets per query. This was partly due to a
small number of sequenced genomes in this clade, making it less
likely that we find enough sequences within the right
Kimura range.

We should note that for the set of genes with verified starts, the
observed differences in the number of targets per query did not
translate into a difference in the StartLink accuracy. For example,
when StartLink was run with N � 50, both Archaea (H.
salinarum and N. pharaonis) ended up with 20 targets per
query on average, compared to the E. coli 40 targets per query.
However, for H. salinarum and N. pharaonis, we observed gene-
start errors in 3 and 2% of genes, respectively, while for E. coli, it
was in 5% of genes.

To assess the StartLink performance on Archaea with a low
average number of target per query, we decreased N to 20. This
change produced 10 to 15 targets per query for both Archaea
species. As a result, we saw a slight increase in the percentage of
erroneous predictions for H. salinarum (by 0.6%) and a decrease
for N. pharaonis by 0.7%. For all the sets of genes with verified
starts, we saw 0.5% change (on average per genome) whenN was
changed. This outcome demonstrated that StartLink was robust
with respect to changes of N.

6 SUMMARY

Existing computational gene finders differ in gene start
predictions in 15–25% of genes in a prokaryotic genome while
making accurate predictions of protein-coding open-reading
frames (unambiguously defined by stop codons). Our task was
to improve gene start prediction. First, we developed StartLink
that infers gene starts from patterns of evolutionary conservation
derived from alignments of homologous genomic and protein
sequences. Next, we introduced StartLink+ that combined

predictions made independently by StartLink and an ab initio
gene finder GeneMarkS-2. We have shown that StartLink+
delivered low error rates in gene start predictions (∼1%) for a
sufficiently high percentage of genes in a genome (∼73% on
average). StartLink and StartLink+ could be used i) in studies on
improving prokaryotic genome annotations, ii) for more accurate
inference of sequence patterns around gene starts, and iii) in
studies of regulatory sequences selected in evolution near gene
starts to control diverse gene expression mechanisms.
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