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Fungi play essential roles in many ecological processes, and taxonomic classification is fundamental for microbial community
characterization and vital for the study and preservation of fungal biodiversity. To cope with massive fungal barcode data, tools
that can implement extensive volumes of barcode sequences, especially the internal transcribed spacer (ITS) region, are
necessary. However, high variation in the ITS region and computational requirements for processing high-dimensional features
remain challenging for existing predictors. In this study, we developed Its2vec, a bioinformatics tool for the classification of
fungal ITS barcodes to the species level. An ITS database covering more than 25,000 species in a broad range of fungal taxa was
assembled. For dimensionality reduction, a word embedding algorithm was used to represent an ITS sequence as a dense low-
dimensional vector. A random forest-based classifier was built for species identification. Benchmarking results showed that our
model achieved an accuracy comparable to that of several state-of-the-art predictors, and more importantly, it could implement
large datasets and greatly reduce dimensionality. We expect the Its2vec model to be helpful for fungal species identification and,
thus, for revealing microbial community structures and in deepening our understanding of their functional mechanisms.

1. Introduction

Metabarcoding is among the most promising approaches in
the study of microbial communities [1–3] and has provided
new insights into microbial impacts on crop yields [4],
human health [5], and ecology [6]. Fungi are immensely
diverse; the latest best estimate within this kingdom suggests
that their total species number is somewhere between 2.2 and
2.8 million [7]. To date, only 144,000 (less than 7%) fungal
species have been named and classified, while the vast major-
ity are currently unknown to science [7]. Fungi play essential
roles in many ecological processes as organic matter decom-
posers, mutualists with algae and plants [4, 8], plant patho-
gens, and components of the food chain [9–11]. Taxonomic
classification is fundamental for microbial community char-
acterization [12] and is vital for the study and preservation of
fungal biodiversity [13]. However, it is difficult to identify
specimens when their morphological characters are lacking
or incomplete [14]. Several rRNA genes have been success-

fully employed for fungal species identification, including
the small ribosomal subunit, the large ribosomal subunit,
the RNA polymerase II binding protein, and the internal
transcribed spacer (ITS). Among these, the ITS (including
ITS1 and ITS2 separated by the 5.8S genic region) has been
widely adopted as a marker for fungal identification and
diversity exploration [15–19] because this region is ubiqui-
tous and shows great variation in sequence and length [9].

Several ITS reference databases for fungal species identi-
fication have been developed. The UNITE database [20] and
Warcup training set [9] are the most commonly used. The
UNITE database (https://unite.ut.ee/) was first released in
2003 and focused on ectomycorrhizal fungi in north Europe
[21], and it has been under successive development since
then. UNITE aims to collect and disseminate all fungal ITS
metadata from all geographical regions [20]. The latest
version of the UNITE database (version 8.0) comprises
approximately 1,000,000 public fungal ITS sequences
(~459,000 species) for reference and provides valuable data
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for metabarcoding software pipelines [14]. The Warcup
training set was developed from the UNITE database and
includes only sequences with authoritative taxonomic or lin-
eage information [9]. In addition, ITS barcodes in the BOLD
database (http://www.boldsystems.org/) [22] and the ITS1
database comprising sequences of NCBI GenBank (http://
www.ncbi.nlm.nih.gov/) have been used for fungal species
identification [10, 15]. DNA barcode-based taxonomic
assignment can be achieved by using similarity-based or
prediction-based (alignment-free) methods. Similarity-
based methods (e.g., BLAST) align the query sequence with
all sequences in the reference database, which is time-
consuming and inefficient when compared to alignment-
free methods [1, 10]. Several prediction-based methods for
fungal species prediction, including RDP classifier [9, 23],
SINTAX [12], Mycofier [10], Mothur [24], and funbarRF
[15], using various machine learning algorithms, have been
developed in the past few years. To generate feature vectors,
k-mer and its derivative, spaced k-mer, have been used for
sequence encoding. The RDP classifier, which implements a
naïve Bayes algorithm for taxonomy assignment, uses 8-
mers as features [9]. SINTAX and Mothur, which use a
non-Bayesian [12] and the k-nearest neighbor (kNN) algo-
rithm [24], respectively, also use 8-mers. The naïve Bayes
classifier Mycofier uses 5-mer features [10]. The random for-
est- (RF-) based predictor funbarRF uses spaced k-mer fea-
tures for taxonomy classification [15].

Although great progress has been made in fungal species
identification using machine learning algorithms, there still is
room for further improvement. First, the species in the
abovementioned datasets are only a small fraction of the spe-
cies that have been named and classified. For example, the
Warcup training set (version 2) covers 8,551 species of 1,461
genera [9], the ITS database of BOLD includes 3,674 species
of 777 genera [15], and the ITS1 database of NCBI comprises
1,794 species of 510 genera [10]. A larger dataset that covers a
broad range of fungal taxa would provide more valuable
insights into microbial community compositions. Second,
the k-mer-based representation method counts the frequency
of all possible subsequences of length k of a sequence, which
usually yields high-dimensional (i.e., 48 for RDP classifier)
and sparse vectors [25]. To address this issue, a representation
method that can reduce dimensionality and encode each
sequence into a dense, numeric vector is required.

Feature extraction is very important for constructing a
computational predictor [4, 26–40]. Recently, a new efficient
method for nucleotide sequence representation was proposed
using a word embedding algorithm [41], such as word2vec
[42]. Word embedding was originally developed for natural
language processing [41]. In this model, each word is charac-
terized by its context, i.e., neighboring words, and embedded
in a predefined n-dimensional vector, where similar words
have close vectors. This word representation method has
been successfully employed to generate features from biolog-
ical sequences. Asgari and Mofrad [43] applied the word2vec
framework to represent and extract features of DNA
sequences and protein families and achieved an average clas-
sification accuracy of 93% based on the classification of 7,027
protein families. Subsequently, a number of studies using this

approach for the distributed representation of biological
sequences were reported, including analyses of DNA [44–
46], non-coding RNA [47], long non-coding RNA [48–50],
and 16S rRNA [25].

The aim of this work was to develop a machine learning-
based classifier for classifying fungal DNA barcodes. The fil-
tered UNITE database covering broad range of fungal taxa
was constructed, and a word embedding algorithm was
employed to represent ITS sequences as dense, low-
dimensional vectors. We demonstrate that this novel tool
name “Its2vec” achieved an accuracy comparable to that of
state-of-the-art predictors. We expect that Its2vec can aid
in the computational classification of fungal species.

2. Materials and Methods

2.1. ITS Database and Preprocessing. One of our goals was to
gain a deeper insight into microbial community structures by
developing a database that contains as much representative
fungal species as possible. The UNITE_public database con-
tains fungal ITS sequences from both the International Nucle-
otide Sequence Database Collaboration (INSDC) and UNITE
dataset [16, 51]; the latest UNITE_public (INSDC+UNITE)
v8.0 includes 887,397 sequences. The dataset was clustered at
several similarity thresholds to obtain species-level operational
taxonomic units, referred to as species hypotheses (SHs); for
each SH, if two or more ITS sequences are available, a repre-
sentative sequence was chosen randomly to represent the SH
[16], which resulted in the sh_general database, including
35,667 sequences (https://unite.ut.ee/repository.php) [20].

In this study, an ITS database was developed starting from
the sh_general database. Sequences assigned a SH in the
UNITE_public were extracted using sequences in sh_general
as a query, resulting in a dataset with 513,953 sequences
belonging to 32,523 SHs (at least 2 representative sequences
for each SH). Then, any sequences without clear taxonomic
information at the genus and species levels (i.e., g__unidenti-
fied; s__uncultured) were discarded. Thus, 429,494 sequences
confined to 27,520 SHs were obtained (Figure 1(a)). As some
SHs were represented by hundreds of sequences, to reduce
the heterogeneity in sequence numbers, 10 sequences were
randomly selected for SH that contained more than 10
sequences. Finally, 126,388 sequences belonging to 27,520
SHs were retained for analysis.

2.2. Distributed Representation of ITS Sequences. A distrib-
uted representation of the ITS sequence was generated in
two major steps. First, the ITS sequences were lexically repre-
sented as a large set of k-mers (Figure 1(c)). For a sequence of
lengthN,N − k + 1 k −merswere generated by moving a win-
dow of size k along the sequence. These k-mers [52] are similar
to the words belonging to a corpus in natural language pro-
cessing. Ten datasets with k-mer lengths ranging from 3 to
12 were evaluated. Given this k-mer set, the second step was
to train the distributed representation. k-mer embedding
training was processed using the skip-gram model of word2-
vec [41, 53, 54] implemented in Gensim 3.40 (https://
radimrehurek.com/gensim/apiref.html) (Figure 1(b)). Wet
setmin count = 1, epochs = 5, and the window size was varied
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TAGACG......AACATGSH1_2

SH2_2

SH2_1 CCGAGT......TGGCTC

CGGAGT......TGTCTC

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TAG AGA GAG......ACA CAA AAG

TAG AGA GAC......ACA CAT ATG

SH1_1

SH1_2

SH2_1 CCG CGA GAG......GGC GCT CTC

SH2_2 CGG GGA GAG......GTC TCT CTC

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SH1_1 [0.050, -0.017, 0.391, 0.163, 0.273.......]
SH1_2 [0.050, -0.018, 0.391, 0.145, 0.273.......]
. . . . . . . . . . . . . . . . . . . . . . . . . .
SH2_1 [0.004, 0.057, -0.016, 0.015, 0.024 .......] 
SH2_2 [0.004, 0.057, -0.033, 0.015, 0.024 .......]

SH2_1

SH1_1
TAG [0.041, 0.158, 0.219, 0.056, 0.090 .......]
AGG [-0.081, 0.126, 0.007, 0.000, 0.002 .......]
GAG [0.046, -0.122, 0.057, 0.050, 0.038 .......]
. . . . . . . . . . . . . . . . . . . . . . . . . .
ACA [-0.122, 0.057, -.050, 0.103, 0.108 .......]
CAA [0.021, 0.158, 0.247, -0.008. 0.213 .......]
AAG [0.859, 0.024, -0,002, 0.021, 0.010 .......]

SH1_2

SH2_2

CCG [0.137, 0.031, 0.183, -0.105, 0.169 .......]

TAG [0.041, 0.158, 0.219, 0.056, 0.090 .......]

CGG [0.137, 0.034, 0.183, -0.115, 0.169 .......]

SH1_2

SH2_1

SH2_2

SH1_1

(c)

Figure 1: Continued.
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from 2 to 9; other parameters were set to their default value.
Thus, each k-mer was presented as a numeric vector of size
100, and each sequence (length k) was represented by the aver-
age of all vectors of N − k + 1 k −mers, which also is a vector
of size 100 (Figure 1(a)).

2.3. Classifier and Dataset for Training and Validation.
Several supervised learning techniques, such as naïve Bayes
[9, 10, 12, 55], kNN [24], and RF [15, 35, 56–61], have been
used for predicting ITS sequences. In this study, RF was
selected for the modeling of ITS sequences because it is a
powerful machine-learning algorithm that is nonparametric,
robust to noise, and suitable for large datasets [62]
(Figure 1(d)). For each SH, the class label was assigned to
an integer and the number of classes was equal to the number
of SHs, namely, 25,720.

The filtered database contained more than 25,000 SHs,
and each SH was represented by at least 2 sequences. Given
the extensive dataset (including more than 120,000
sequences) and the heterogeneity in sequence numbers
among species, training and validation on the whole dataset
would be arduous. Therefore, the ITS dataset was divided
into 9 subdatasets, termed ITSset_2 to ITSset_10. Each sub-
dataset contained species represented by a specific number
of sequences, i.e., ITSset_2 contained species with 2 represen-
tative sequences. Detailed information on sequences and spe-
cies in each subdataset is presented in Table 1. For the ITSset
with k (k ≥ 2) sequences per SH, k-fold cross validation (CV)
was employed for model evaluation. The ITSset was split into

k smaller subsets, and a model was first trained by k-1 subsets
and then validated on the remaining subset. Note that the
ITSser_9 contains 5,374 SHs (10 representative sequences
per SH); thus, training on this subset on RF is challenging
and therefore, 5 sequences were randomly selected for each
SH of ITSset_9. Hence, for ITSset_9, the model was evaluated
on 26,870 sequences of 5,374 SHs (5 representative sequences
per SH).

We introduced 4 standard metrics, Accuracy, Recall, Pre-
cision and Mathew’s correlation coefficient (MCC) [31, 50,
63–77], to evaluate the performance of the proposed models:

Accuracy = TP + TN
TP + TN + FP + FN

,

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

MCC =
TP × TN − FP × FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp
,

ð1Þ

where TP is true positive, FP is false positive, FN is false neg-
ative, and TN is true negative.

2.4. Comparison with Other Fungal Classification Methods.
The performance of the Its2vec model was compared with

Training
data

Model training

Testing x

k1 k2 k3
so� voting

k

(d)

Figure 1: Schematic view of Its2vec. (a) Pipeline scheme of ITS dataset construction. (b) The skip-gram architecture of word2vec, which
predicts surrounding k-mers (GAA, AGG, AAG, and ACA) based on a given center word (GAA). (c) Pipeline scheme of distributed
representation of ITS sequences. For example, the ITS sequence SH1_1 (length N) was first represented by an N-2 3-mer set (TAG, AGA,
GAG,…, AAG). Then, for each k-mer, we generated a distributed vector representation based on the skip-gram model with a vector of
size 100, i.e., TAG [0.041, 0.158, 0.219…]. Thus, sequence SH1_1 was represented by the average of all n-2 k-mers, which also is a vector
of size 100, i.e., SH1_1 [0.050, –0.017, 0.391…]. Similar words have close vectors; in this figure, SH1_1 and SH2_1 are close to SH1_2 and
SH2_2, respectively. (d) Flow diagram showing model training and testing using the RF classifier.
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that of 3 other predictors, namely, RDP classifier, funbarRF,
and Mothur. The executable source codes of RDP classifier
(https://sourceforge.net/projects/rdp-classifier/), funbarRF
(https://cran.r-project.org/web/packages/funbarRF/) and
Mothur (https://github.com/mothur/mothur/releases/tag/
v1.40.5) were downloaded to a local machine and applied
to 2 fungal datasets. The performance of the 4 methods
was first evaluated on the ITSset_5, which contained 1,684
SHs (5 sequences per SH). The training datasets Warcup
of RDP and ITSset_5 were extracted from the UNITE data-
base. Sequences in the datasets of funbarRF and the Warcup
training set were approximately 97% nonredundant. Hence,
the second dataset Fold-10, containing 1,084 species (10
sequences per species) after removing the 5.8S sequences
and ITS1 sequences of the original dataset of funbarRF,
was further used for model evaluation in this study as rec-
ommended by Meher et al. [15]. Accuracies were calculated
over 5-fold CV for ITSset_5 and 10-fold CV for dataset
Fold-10.

3. Results

3.1. Evaluation of Sequence Embedding on Fungal ITS. We
first evaluated the performance of sequence embedding. All
126,388 sequences were represented by a k-mer corpus.
Then, the k-mer embedding space was obtained by training
a skip-gram model of word2vec on the corpus. Thus, each
ITS sequence was represented as a numeric vector of size
100. In this process, two parameters, the length k of the k

-mer and the window size w of the skip-gram model, were
optimized. The accuracy of models constructed with different
k is shown in Table 2. The classification accuracy improved
by 1–3% when k ranged from 3 to 12 (Table 2). It can be seen
that the accuracy was the highest when k was near to 9; i.e.,
the accuracy reached a maximum at 9-mer for 7 subsets
and at 8-mer and 10-mer for the remaining 2 (Table 2). Sub-
sets with a larger number of sequences per SH (species)
yielded a higher accuracy, ranging from 68% for 2 sequences
per SH to 97% for 9 sequences per SH. Similar results were
obtained for the others 3 metrics, recall, precision, and
MCC, where the maximum value was obtained at 9-mer for
most subsets. Detailed results are provided in Supplementary
Tables S1, S2, and S3. The optimum value of k was set as 9 in
following experiments.

The window size w of the skip-gram model was varied
from 1 to 7, and the classification accuracy was higher when
w was near to 4 for datasets having a rather low number
(2–4) of sequences per SH, whereas a higher accuracy
was obtained at w = 2 for subsets containing more than
5 sequences per species (Table 3). For w larger than the above
thresholds, the accuracy slightly decreased or stabilized. The
accuracy score was 71.65% for ITSset_2 (2 sequences per
SH), and it gradually increased with the number of representa-
tive sequences for each SH and reached 97.02% in ITSset_9 (9
sequences per SH) (Table 3). For other metrics (precision,
recall, and MCC), findings were similar; detailed results are
provided in Supplementary Tables S4, S5, and S6.
Considering the improvement in the accuracy for SHs

Table 1: Taxonomic coverage of the ITS database established in this study.

Taxonomy level
ITS subsets

Number of taxa
ITSset_2 ITSset_3 ITSset_4 ITSset_5 ITSset_6 ITSset_7 ITSset_8 ITSset_9 ITSset_10

Phyla 15 13 9 8 7 8 8 7 10 18

Classes 58 46 41 34 31 32 28 30 43 63

Order 165 142 128 106 97 98 78 78 133 187

Family 516 424 381 317 280 263 220 201 418 626

Genus 2073 1432 1116 875 693 633 497 404 1598 3385

Species 8586 4141 2503 1684 1236 929 701 566 5374 25720

Sequences 17172 12423 10012 8420 7416 6503 5608 5094 53740 126388

Table 2: Accuracy of the models constructed with different k-mers and subsets.

ITSset 3-mer 4-mer 5-mer 6-mer 7-mer 8-mer 9-mer 10-mer 11-mer 12-mer

ITSset_2 70.04 68.08 68.32 69.23 69.64 70.37 71.37 71.23 70.53 69.34

ITSset_3 83.96 82.70 83.53 83.88 83.71 83.94 84.71 84.22 83.41 82.64

ITSset_4 89.15 89.13 89.538 89.63 89.79 89.85 90.40 90.12 89.07 87.95

ITSset_5 92.36 92.71 93.17 93.02 92.84 92.96 93.37 93.15 92.47 91.78

ITSset_6 93.34 93.68 93.99 94.22 93.82 94.05 94.12 94.39 93.31 92.97

ITSset_7 94.99 95.40 95.92 95.73 95.76 96.02 96.03 95.77 94.99 94.88

ITSset_8 96.09 96.20 96.47 96.45 96.34 96.31 96.43 96.36 96.31 95.74

ITSset_9 95.84 96.47 96.54 96.78 96.62 96.58 96.51 96.37 95.90 95.78

ITSset_10 84.37 84.57 85.78 86.37 86.36 87.19 87.96 86.26 86.06 84.93
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represented by low number of sequences,wwas set to 4. As the
4 evaluation metrics showed similar variation tendencies in
the 9 subsets, subsequent experiments were conducted using
ITSset_5 and ITSset_7, for simplicity.

3.2. RF Classifier. Random forest (RF) was widely employed
in the bioinformatics researches [78–81]. Two key parame-
ters of the RF classifier were optimized, namely, the number
of features considered for splitting at each leaf node (max_
features) and the number of trees in the forest (n_esti-
mators). By default, max_features and n_estimators were
set to 10 (square root of features) and 100, respectively.
We varied the two parameters to generate 90 models,
where max_features was varied from 2 to10 in intervals
of 1 and the n_estimators was varied from 50 to 500 in

intervals of 50. Figure 2 shows heat maps of accuracy,
recall, MCC, and precision across the parameter combina-
tions. In the accuracy heat map of ITSset_7 shown in
Figure 2(e), it can be observed that the values gradually
increase from the right upper region to the lower left
region of the heat map, where the number of estimators
linearly increased and the number of features decreased.
Maximum values were obtained for the model based on 2 fea-
tures and 500 estimators. The recall, MCC, and precision
values are shown in Figures 2(f)–2(h); regions with more
intense color in the three panels largely correspond to those
in Figure 2(e). The evaluation results for ITSset_5 are shown
in Figures 2(a)–2(d). It can be noted that higher values in
the heat maps are observed in the similar regions of heat maps
for ITSset_7. The values of the 4 metrics obtained for the

Table 3: Accuracy of the models constructed with different window sizes and subsets.

ITSset Size = 1 Size = 2 Size = 3 Size = 4 Size = 5 Size = 6 Size = 7
ITSset_2 66.96 70.60 71.19 71.65 71.30 70.75 70.84

ITSset_3 81.26 84.10 84.73 85.20 84.88 84.47 84.15

ITSset_4 87.74 90.26 90.14 90.32 90.39 89.92 89.87

ITSset_5 91.50 93.47 93.69 93.30 93.33 93.10 93.17

ITSset_6 93.03 94.62 94.62 94.30 94.27 94.39 94.30

ITSset_7 95.42 96.28 95.99 95.96 95.85 95.77 95.71

ITSset_8 96.06 97.02 96.63 96.50 96.63 96.67 96.54

ITSset_9 96.43 97.02 96.90 96.84 96.76 96.60 97.02

ITSset_10 85.62 88.00 87.73 87.71 88.06 87.42 96.91

50 estimators

100 estimators

150 estimators

200 estimators

250 estimators

300 estimators

350 estimators

400 estimators

450 estimators

500 estimators

Accuracy

2 3 4 5 6 7 8
(a)

9 10
(b)

Precision

50 estimators

100 estimators

150 estimators

200 estimators

250 estimators

300 estimators

350 estimators

400 estimators

450 estimators

500 estimators

2 3 4 5 6 7 8 9 10

(c)

Recall

50 estimators

100 estimators

150 estimators

200 estimators

250 estimators

300 estimators

350 estimators

400 estimators

450 estimators

500 estimators

2 3 4 5 6 7 8 9 10
(d)

MCC

50 estimators

100 estimators

150 estimators

200 estimators

250 estimators

300 estimators

350 estimators

400 estimators

450 estimators

500 estimators

2 3 4 5 6 7 8 9 10

(e)

Accuracy

50 estimators

100 estimators

150 estimators

200 estimators

250 estimators

300 estimators

350 estimators

400 estimators

450 estimators

500 estimators

2 3 4 5 6 7 8 9 10

(f)

Precision

50 estimators

100 estimators

150 estimators

200 estimators

250 estimators

300 estimators

350 estimators

400 estimators

450 estimators

500 estimators

2 3 4 5 6 7 8 9 10

(g)

Recall
50 estimators

100 estimators

150 estimators

200 estimators

250 estimators

300 estimators

350 estimators

400 estimators

450 estimators

500 estimators

2 3 4 5 6 7 8 9 10

(h)

MCC

50 estimators

100 estimators

150 estimators

200 estimators

250 estimators

300 estimators

350 estimators

400 estimators

450 estimators

500 estimators

2 3 4 5 6 7 8 9 10

Figure 2: Accuracy, precision, recall, and MCC values of the RF model constructed using different numbers of features and estimators. (a–d)
represent evaluation results of ITSset_5; (e–h) represent the evaluation results of ITSset_7.
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model based on 2 features and 100 estimators were very close
to the maximum values in the lower left region. Thus, consid-
ering the computational resources and the extensive dataset in
this study, max_features was set to 2 and n_estimators was set
to 100.

3.3. Performance Analysis Based on Optimized Parameters
and Comparison with Other Predictors. The performance of
the classifier was evaluated on all 9 subsets based on the opti-
mized parameters (k = 9, window = 4, max features = 2, and
n estimators = 100). Table 4 shows the values of accuracy,
precision, recall, and MCC for the datasets. The accuracy
was 78.62% for ITSset2, which contains only 2 sequences
per SH. With an increasing number of sequences in the
SHs, the accuracy increased, and it reached a maximum value
of 97.53% for ITSset_9. The precision, recall, and MCC
showed similar trends, reaching maximum values of
96.37%, 97.53%, and 0.98 on ITSset_9, respectively.

The predictive power of Its2vec was compared with that
of three state-of-the-art predictors, using two benchmark
datasets. The results are presented in Table 5. The accuracy
of Its2vec (95.51%), Mothur (97.80%), and RDP (98.68%)
was significantly higher than that of funbarRF (91.0%) for
dataset ITSset_5. For the Fold-10 dataset, Its2vec achieved a
better performance than the other approaches; its accuracy
was 0.54%, 4.26%, and 4.86% higher than that of RDP,
Mothur, and funbarRF, respectively. Thus, Its2vec had an
accuracy comparable to that of RDP and Mothur for ITS-
set_5 of the UNITE database and outperformed the other 3
predictors when applied to the Fold-10 dataset of BOLD.

4. Discussion

Fungi play essential roles in many ecological processes. Tax-
onomic classification is fundamental in functional investiga-
tions and endangered species conservation. The ITS region
has been widely used as a DNA barcode for fungal species
classification as it has a high PCR amplification success rate
and species discriminatory power within the fungal kingdom
[10]. Commonly used alignment-based methods often assign
unidentified barcodes to species based on information on the
cluster they are of in the barcode tree [82]. However,
sequence alignment may be difficult for distantly related spe-

cies due to the variability in nucleic acid base pairs and
sequence length. Further, alignment-based methods are
not suitable for metabarcoding analysis. In this study, we
developed a new fungal ITS classification approach that
uses a distributed representation technique to generate fea-
tures of ITS sequences and applies RF for species
identification.

Previously assembled fungal datasets are rather small;
with 8,551 species of 1,461 genera, the Warcup training set
currently is the largest. The latest version of the UNITE data-
base (version 8.0) covers ~459,000 species and thus provides
valuable data for metabarcoding software pipelines [20]. One
of the main aims of this study was to develop an ITS database
that covers a broad range of fungal taxa. After data filtering,
126,388 sequences belonging to 27,520 SHs (species)—which
is three times the number in the Warcup training set—were
retained for analysis. Generally, the sequence identities in a
dataset are kept <80% to avoid overestimation. However, as
the number of sequences for each SH is very small (2–9)
and the numbers of classes are rather large (more than
250,000), this preprocessing step was not feasible in this
study. To the best of our knowledge, none of the existing spe-
cies identification studies using DNA barcodes [1, 9, 10, 12,
15, 24] have reported such a preprocessing step. When
applied to large datasets, classifiers directly using k-mer-
based features (commonly, 8-mer, 48 features) are con-
strained by computational power. A word embedding algo-
rithm was employed to represent each ITS barcode
sequence as a dense, 100-dimensional vector.

To optimize the distributed representation of the ITS
sequence, the length k of k-mer was optimized. We found
that 8- and 9-mers resulted in the best performance. This
implied that a k near 9 might be more informative, whereas
a k larger than 10 may result in redundancy as evidenced
by our results (Table 2). Similarly, RDP [9], SINTAX [12],
and MOTHUR [24] use 8-mers. As for the window size of
the skip-gram model, we noticed that a smaller window
resulted in a higher accuracy, especially for SHs represented
by more than 5 sequences (w = 2), which suggests that num-
bers of neighboring words predicted by the input (center)
word are related to sequence abundance. Concerning RF

Table 4: Performance of the Its2vec model on 9 ITSsets based on
optimized parameters.

ITSset Accuracy Precision Recall MCC

ITSset_2 78.62 72.10 78.62 0.79

ITSset_3 89.70 85.96 89.70 0.90

ITSset_4 93.36 90.69 93.36 0.96

ITSset_5 95.51 93.58 95.51 0.96

ITSset_6 95.95 94.09 95.95 0.96

ITSset_7 96.96 95.62 96.96 0.97

ITSset_8 97.50 96.37 97.50 0.98

ITSset_9 97.53 96.37 97.53 0.98

ITSset_10 90.23 86.48 90.23 0.90

Table 5: Comparison of the accuracy of the Its2vec and other
existing predictors.

ITS dataset Classifier Accuracy Significance

ITSset_5

Its2vec 95:51 ± 1:55 a∗

RDP 98:68 ± 0:55 b

Mothur 97:97 ± 0:62 Bc

funbarRF 91:00 ± 2:656 c

Fold-10

Its2vec 89:80 ± 1:92 a

RDP 89:36 ± 2:21 a

Mothur 85:54 ± 2:54 b

funbarRF 84:94 ± 4:65 b
∗Different letters indicate significant differences among the methods
according to Tukey’s HST test at P < 0:05.
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classifiers, more trees always lead to a better performance and
a more robust model, as shown in Figure 2, but can be asso-
ciated with an excessively long training time and high com-
puter memory demands. In our study, the computational
capacity was exceeded when the model was applied to the
ITSset_3 (12,423 sequences) with n estimators = 450. Two
parameters, max_features and n_estimators, were varied to
determine the best split of the tree. Larger features will
decrease the accuracy (Figure 2), indicating that a higher
accuracy is obtained when the trees in the RF show more dif-
ferences. Further, large features also need more computa-
tional power. Therefore, considering the large dataset, max_
features was set to 2, and n_estimators was set to 100 for
the RF classifier, which resulted in an accuracy close to that
of the model constructed with 500 estimators (0.43–0.81
smaller) (Figure 2).

The Its2vec model was compared with other three pre-
dictors in terms of performance. Although the classifica-
tion accuracy of our model was ~3% lower than that of
RDP and Mothur for ITSset_5, it should be noted that
the number of features in RDP and Mothur are larger
than that in Its2vec. For instance, RDP and Mothur take
8-mer frequency as input, generating 65,536 features,
whereas the average number of features used by Its2vec
was 700 (the average length of ITS sequences was 693 in
this study), which was further reduced to 100 after distrib-
uted representation by the word embedding method.
Because of this dimensionality reduction, Its2vec can be
applied to large databases, while RDP is not suitable for
such large datasets because of the computational power
requirement. In the Fold-10 dataset, Its2vec showed the
best performance. The funbarRF predictor uses g-spaced
features as input; the number of features of the model
was 90 (g = 1 + 2 + 3 + 4 + 5), which is close to the number
of features generated by word2vec. However, our model
achieved significantly higher accuracy than funbarRF in
both the ITSset_5 and Fold-10 datasets (Table 5). It
should be pointed out that the accuracy might be further
improved in several ways, i.e. taking the pseudo compo-
nents and tertiary structure of the ITS into consideration.

5. Conclusion

We presented Its2vec, a bioinformatics tool for the classifica-
tion of fungal ITS barcodes to the species level. To cover a
broad range of fungal taxa, an ITS database covering
more than 25,000 species was constructed. For dimen-
sionality reduction, the word embedding algorithm was
used to represent the fungal DNA barcode sequences as
a dense, 100-dimensional vector. Its2vec achieved an
accuracy comparable to those of state-of-the-art predic-
tors. We expect that the Its2vec model will be helpful
for the identification of fungal species and, thus, for fur-
thering our understanding of their functional mechanisms
and guiding their application in agriculture. Also, compu-
tational intelligence such as neural networks [83–85], evo-
lutionary algorithms [86, 87], and unsupervised learning
[2, 88, 89] can be applied in this field.
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