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Aberrant 5-methylcytidine (m5C) modification plays an essential role in the progression of different cancers. More and more
researchers are focusing on developing a lncRNA-based riskmodel to assess the clinical prognosis of cancer patients. However, the
impact of m5C-related lncRNAs on the prognosis of patients with uterine corpus endometrial carcinoma (UCEC), as well as the
immune microenvironment of UCEC, remains unclear. Here, we comprehensively analyzed the predictive value of m5C-as-
sociated lncRNAs in UCEC and their association with the tumor immune microenvironment, according to the information
extracted from the TCGA-UCEC dataset. We identified a total of 32 m5C-associated lncRNAs that were significantly correlated
with the prognosis of UCEC patients. Twomolecular subtypes were determined by consensus clustering analysis of these 32 m5C-
associated prognostic lncRNAs. Further data showed that cluster 1 was associated with poor clinical prognosis, advanced tumor
grade, higher PD-L1 expression levels, higher ESTIMATEScore, and higher immuneScore, as well as the immune cell infiltration.
/en, 17 m5C-associated lncRNAs with prognostic values were obtained using LASSO regression analysis. And a risk model was
constructed based on these 17 lncRNAs. It was revealed that the risk model could be used as an independent factor for UCEC
prognosis. In addition, patients with UCEC in the high-risk group had higher tumor grades and immune scores. /e risk model
based on m5C-related lncRNAs was also closely associated with infiltrating immune cells. In conclusion, our study elucidated the
crucial roles of the identified m5C-related lncRNAs in the UCEC patients’ prognoses, as well as in the immune microenvironment
in UCEC. /e results suggest that the components of risk models based on the m5C-related lncRNAs may serve as important
mediators of the immune microenvironment in UCEC.

1. Introduction

Uterine corpus endometrial carcinoma (UCEC) is one of the
most common gynecologic tumors [1]. More than 50,000
women worldwide die from UCEC each year [2]. Currently,
surgery combined with radiotherapy and/or chemotherapy
is the standard clinical treatment option for patients with
UCEC [3]. Despite the rapid development of modern
medicine, the mortality rate of UCEC has continued to
increase during recent years, and the prognosis of UCEC
patients varies [4]. Several clinical features of UCEC patients
and some molecular biomarkers have been used to predict
the clinical prognosis, but these methods have limitations.
/erefore, there is a need to construct a new predictive risk

model to predict the prognosis of patients with UCEC and to
identify new prognostic markers for UCEC.

5-Methylcytidine (m5C) is a modification that occurs on
DNA and RNA [5], and it plays a nonnegligible role in various
biological processes [6]. With the development of technol-
ogies such as high-throughput sequencing, it has become less
challenging to identify and quantify m5C modifications in
low-abundance RNA species, such as those on mRNAs and
long noncoding RNAs (lncRNAs) [7]. A recent study specifies
that m5C sites are predominantly enriched in the CG of
mRNAs, reflecting the tissue-specific and dynamic nature of
m5C in the mammalian transcriptome [8]. So far, researchers
have explored the distribution and function of m5C modi-
fications in a number of different types of RNAs [9, 10].
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However, studies on the prevalence and distribution of m5C
in lncRNAs are still very few.

LncRNAs are a class of RNAmolecules that contain over
200 nucleotides in length, and they are mainly derived from
the noncoding regions of the genome [11, 12]. In recent
years, lncRNAs have gained widespread attention as key
regulators in various physiological and pathological pro-
cesses [13]. And epigenetic regulation of lncRNAs is one of
the mainmechanisms controlling their expression and tissue
specificity. RNA methylation, as one of the important epi-
genetic modifications, has been identified as an important
marker of tumorigenesis [14, 15]. In addition, studies have
shown that m5C modifications are also closely associated
with immune cell infiltration [6]. However, the functions
and mechanisms of m5C-associated lncRNAs in cancer
remain enigmatic./erefore, it is important to explore m5C-
associated lncRNAs and clarify biomarkers of prognostic
value in these lncRNAs.

/e programmed death-ligand 1 (PD-L1) has been re-
ported upregulated in various tumors [16]. Programmed cell
death protein 1 (PD-1), the receptor for PD-L1, regulates the
effector Tcell responses in vivo, which is closely related to the
immune suppression in tumors [17]. As a result, PD-1 and its
ligand, PD-L1, are members of the immune checkpoint
pathway. Also, inhibitors of PD-1 and PD-L1 may lead to
long-term remission in a variety of end-stage malignancies
[18]. Immune checkpoint inhibitors have already been the
breakthroughs of cancer immunotherapy [19]. Hence, it is
thought that inhibiting PD-L1 expression in the tumor mi-
croenvironment might have therapeutic implications.

In this study, we sought to gain insight into the level of
m5C methylation modifications of lncRNAs in UCEC. To
this end, we performed global mapping of m5C modifica-
tions in human UCEC tissues and control tissues using RNA
MeRIP-seq to understand their distribution and expression.
We found a significantly higher level of m5Cmodification in
UCEC compared to normal controls. /is difference could
be expressed as intratissue consistency and intertissue
variation. Our findings may provide new insights into the
epigenetic regulation of m5C of lncRNAs in UCEC and offer
directions to the development of new therapeutic ap-
proaches for UCEC.

2. Methods

2.1. Collection of Data. /e RNA sequencing (RNAseq)
fragments per kilobase million (FPKM) data of UCEC
samples were downloaded from /e Cancer Genome Atlas
(TCGA) database, which were further converted to log2
values. We obtained a total of 552 UCEC tissues and 23
control tissues. Also, clinical characteristics of UCEC pa-
tients, which included age, tumor grade, and clinical survival
status, were also obtained from the same online database.

2.2. Identification of m5C-Associated LncRNAs. Based on
previous articles, we summarized a total of 17 regulatory
factors associated with m5C RNA methylation (Table 1)
[20, 21]. To obtain the expression levels of lncRNAs and 17

m5C methylation regulators in TCGA-UCEC mRNA ex-
pression profiles, we used the “igraph” package in the R
program to construct a coexpression network. /e lncRNAs
in this coexpression network were significantly correlated
with the m5C methylation regulators and were therefore
defined as m5C-associated lncRNAs.

2.3. Identification of m5C-Associated LncRNAs with
Prognostic Value. We then explored the prognostic value of
these obtained m5C-associated lncRNAs using the “sur-
vival” package in the R program. Based on the results from
the univariate Cox analysis, we generated a forest plot using
the R program. In addition, by using the “pheatmap”
package, we constructed a heat map which adequately
presented the expression levels of those 32 lncRNAs with
significant prognostic value.

2.4. Bioinformatics Analysis. We used the “Consensu-
sClusterPlus” package to classify 552 UCEC patients into
different subtypes. /en, we evaluated and visualized the
gene expression patterns using the “pheatmap” package.
Using the ESTIMATE algorithm, we calculated the
immuneScore, stromalScore and ESTIMATESScore for each
UCEC patient. /e infiltration abundance of 22 types of
immune cells in eachUCEC subtype was visualized using the
“vioplot” package. A risk model with prognostic value based
on m5C-associated lncRNAs was developed by LASSO re-
gression analysis. Risk scores for all UCEC patients were
calculated in the TCGA training and testing sets. Subse-
quently, the median score of UCEC patients in the TCGA
training set was set as the cut-off point, based on which
patients in each set were divided into high-risk and low-risk
groups. In addition, we analyzed the correlation between
risk scores and immune cell abundance.

2.5. Statistical Analysis. All statistical tests were performed
with R version 4.0.1. Student’s t-test was also used to assess

Table 1: Details of m5C RNA methylation regulators.

Gene Type
DOP2 Writers
NSUN2 Writers
NSUN3 Writers
NSUN4 Writers
NSUN5 Writers
NSUN6 Writers
NSUN7 Writers
DNMT1 Writers
TRDMT1 Writers
DNMT3A Writers
DNMT3B Writers
ALYREF Readers
YBX1 Readers
TET1 Erasers
TET2 Erasers
TET3 Erasers
ALKBH1 Erasers
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the differences between subgroups. And, the Mann-Whitney
U test was used to investigate mRNA expression levels of
lncRNAs related to m5C.While a chi-square test was used to
compare categorical variables in the TCGA training and
testing sets. Using Pearson correlation tests, we explored
correlations between subtypes, clinicopathological charac-
teristics, risk scores, and immune infiltration levels. P< 0.05
indicates statistical significance.

3. Results

3.1. Identification of LncRNAs Related to m5C in UCEC
Patients. To assess the biological functions of m5C-asso-
ciated lncRNAs in UCEC, we downloaded the expression
profile information from the TCGA-UCEC dataset con-
taining a total of 575 samples and extracted expression
matrices for 17m5C regulators. We defined lncRNAs, whose
expression values correlated with one or more of the 17 m5C
regulators, as m5C-associated lncRNAs. Using Pearson
correlation analysis, we obtained a total of 844 lncRNAs
significantly associated with m5C regulators. Combined
with UCEC clinical characteristics, we screened m5C-as-
sociated lncRNAs from these 844 selected lncRNAs by
univariate Cox regression analysis (P< 0.01). Finally, we
found that 32 lncRNAs were significantly correlated with
overall survival (OS) of patients with UCEC. /e differences
in the 32 prognostic m5C-associated lncRNAs levels be-
tween UCEC and normal tissues were significant
(Figures 1(a) and 1(b)). /e univariate Cox analysis results
and the coexpression network of the 32 selected lncRNAs
and m5C regulators were shown in Figures 1(c) and 1(d). All
these results suggested that m5C-related lncRNAs played
important roles in patients with UCEC.

3.2. Correlation of Consensus Clustering of m5C-Associated
LncRNAs with Clinical Characteristics and Survival of UCEC
Patients. Based on the expression levels of 32 m5C-related
lncRNAs, we carried out consensus clustering to divide the
552 samples in TCGA-UCEC into different subgroups and
determined the optimal clustering stability with k� 2. As
shown in Figure 2(a), the 552 UCEC samples were divided
into cluster 1 and cluster 2. It was obvious that the ex-
pression levels of m5C-related lncRNAs were lower in
cluster 1 than in cluster 2. Also, the OS of UCEC patients in
cluster 1 was longer than that in cluster 2 (Figure 2(b),
P � 0.007). In addition, the heatmap of the two clusters in
UCEC along with clinical characteristics was shown in
Figure 2(c).

3.3. Relationship between the Expression Levels of PD-L1 and
m5C-Related LncRNAs. To clarify the relationship between
PD-L1 and lncRNAs related to m5C, we compared the
differences in PD-L1 expression levels between UCEC and
controls (Figure 3(a)) and between the two clusters
(Figure 3(b)). /e results showed that PD-L1 levels were
significantly elevated in the UCEC tissues (P< 0.001). As
shown in Figure 3(c), the expression level of PD-L1 was
closely associated with the expression level of 14 of the 32

identified lncRNAs. In addition, the selected prognostic
m5C-related lncRNAs were positively correlated with each
other.

3.4. Relationship of Immune Cell Infiltration and Consensus
Clustering in UCEC. To explore the roles of m5C-associated
lncRNAs in the immune microenvironment of UCEC tu-
mors, we analyzed the differences in immune scores and
immune cell infiltration levels between the two clusters. Both
ESTIMATEScore (Figure 4(a)) and immuneScore
(Figure 4(b)) in cluster 1 were lower than those in cluster 2.
Figure 4(c) showed the infiltration abundance of 22 immune
cell types in both clusters. Compared with cluster 2, as
shown in Figures 4(d)–4(i), cluster 1 had higher infiltration
abundance of macrophages M1, activated mast cells, and
T-cell follicular helper cells and lower abundance of resting
dendritic cells, neutrophils, and activated NK cells.

3.5. Construction and Validation of Prognostic Risk Model
Based on m5C-Related LncRNAs. A total of 552 TCGA-
UCEC patients were randomly grouped into two sets, a
training set and a testing set. We carried out LASSO Cox
analysis of the identified 32 m5C-related lncRNAs with
prognostic value using information extracted from the
training set. /e results and partial likelihood deviations of
the prognostic risk model were shown in Figures 5(a) and
5(b), while corresponding coefficients of the lncRNAs were
shown in Table 2. /e risk score for each UCEC patient was
calculated using the constructed signature: score-
� 􏽐n

i�1 coef(i)∗ exp(i). /e UCEC samples in both sets
were then divided into high-risk group or low-risk group
based on the median score of the training set. And the OS
curves showed that patients with UCEC in the high-risk
group had worse prognosis in both the training set
(Figure 5(c)) and the testing set (Figure 5(e)). As shown in
Figure 5(d), the AUC was, respectively, 0.851, 0.821, and
0.838 at 1, 3, and 5 years, indicating good performance of
this risk model in predicting the clinical prognosis of UCEC
patients in training set. Data from the testing set further
confirmed the predictive value of the m5C-related risk
signature (Figure 5(f)).

Figures 6(a)–6(d) showed the distribution of risk scores
and survival status of patients with UCEC in the training and
testing sets. /e mRNA expression levels of lncRNAs in-
cluding NBAT1, NRAV, TTLL11-IT1, FMR1-IT1, YEATS2-
AS1, RAB11B-AS1, and CERNA1 were lower in the UCEC
samples with higher risk scores, while the other 10 m5C-
related lncRNAs were lower in the low-risk group
(Figures 6(e) and 6(f )).

3.6. Relationship of Prognostic Risk Score with Clustering
Subtypes and Clinical Factors. To further validate the
prognostic value of the risk model in UCEC, we carried out
univariate and multivariate Cox regression analyses on risk
scores and clinical information of UCEC patients. /e re-
sults showed that both tumor grade and risk model were
significantly associated with the clinical prognosis of patients
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with UCEC in the training set (Figure 7(a)). /e results of
multivariate Cox regression analysis further indicated that the
risk model was an independent factor with predictive value
affecting the clinical outcome of UCEC patients (Figure 7(b)).
Similarly, the results of univariate and multivariate Cox re-
gression analyses in the testing set were consistent with those
in the training set (Figures 7(c) and 7(d)).

/e heatmap in Figure 8(a) showed themRNA expression
levels of the 17 lncRNAs, which were used to establish the risk
model, in the two risk groups in the entire TCGA-UCEC
dataset. /e heatmap also showed the differences between
high- and low-risk groups in terms of tumor grade, age,
immune score, and cluster subtypes. More specifically, risk
scores were lower in the low-grade (grades I and II) UCEC
group compared with the high-grade (grade III) group
(Figure 8(b)). Similarly, the risk score was higher when the
age of the UCEC patients increased (age >65) (Figure 8(d)).
/e results also showed that the risk scores differed between

the two clusters (Figure 8(c))./e risk scores were statistically
different between the two risk groups (Figure 8(e)).

3.7. Linkage between m5C-Associated LncRNAs and Immune
Cells. To explore the impact of risk models constructed
based on m5C-related lncRNAs on the immune microen-
vironment of UCEC, we explored the potential relationship
between the risk scores and the immune cell infiltration in
UCEC patients. /e results showed a significant negative
correlation between risk score and the infiltration levels of
activated NK cells (Figure 9(a)), neutrophils (Figure 9(b)),
resting dendritic cells (Figure 9(d)), and regulatory T cells
(Figure 9(f)). In contrast, the risk scores were positively
related to the infiltration levels of M1 macrophages
(Figure 9(c)) and activated dendritic cells (Figure 9(e)). All
these results confirmed that this risk model was closely
related to the immune microenvironment of UCEC.
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Figure 1: Identification of lncRNAs related to m5C in UCEC patients. /e heatmap (a) of 32 m5C-related prognostic lncRNAs and their
expression levels (b) in TCGA-UCEC dataset. (c) /e univariate Cox regression analysis results on the 32 prognostic lncRNAs. (d) /e
coexpression network of m5C regulators and 32 identified m5C-related lncRNAs.
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4. Discussion

Several recent studies have shown that m5C regulators play
important roles in tumor progression by regulating the
expression and function of lncRNAs [22, 23]. For example,

the m5C reader, NSUN2, promotes hepatocellular carci-
nogenesis and progression by regulating the m5C modifi-
cation of lncRNA H19 [24]. However, there are no studies
that have adequately explored the role of m5C-related
lncRNAs in the clinical prognosis and immune
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Figure 4: Continued.
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microenvironment of UCEC. In this study, we compre-
hensively explored the expression levels and the prognostic
values of m5C-associated lncRNAs in UCEC and their ef-
fects on the immune microenvironment. First, we identified
m5C-related lncRNAs by constructing a coexpression net-
work along with the survival status of UCEC patients. As a
result, 32 m5C-related lncRNAs were found significantly
associated with survival outcomes in UCEC patients com-
pared with normal tissues. /e expression levels of all these
lncRNAs were up- or downregulated in UCEC tissues.
Consensus clustering analysis of these 32 m5C-associated
lncRNAs with prognostic value identified two subtypes of
UCEC. It was obvious that the stratification of two cluster
subtypes showed a significant correlation with clinical
outcome, age, and tumor grade in UCEC patients. PD-L1 is
often upregulated in various cancers. Compared with nor-
mal tissue, PD-L1 expression was significantly increased in
UCEC, but no significant difference was detected between
two clusters. We calculated the immuneScore and ESTI-
MATEScore of the UCEC samples and found that both of
them in cluster 2 were significantly higher than those in
cluster 1. /ese results were consistent with previous
findings that UCEC patients with high immuneScores and
ESTIMATEScores have lower overall survival rates [25].

LASSO Cox analysis was carried out on 32 m5C-asso-
ciated lncRNAs with prognostic value, which finally

identified 17 m5C-associated lncRNAs. CDKN2B-AS1 is a
potential lncRNA that has been shown to be aberrantly
expressed in various malignancies and involved in the
processes of tumor cells proliferation, migration, invasion,
and inhibition of tumor cells apoptosis [26–28]. NBAT1
could suppress metastasis [29] and control tumor pro-
gression by regulating cell proliferation and neuronal dif-
ferentiation [30]. NRAV modulates antiviral responses
through suppression of interferon-stimulated gene tran-
scription [31]. /e downexpression of FMR1-IT1 has been
found related to synaptogenesis, intracellular trafficking, and
cellular stability [32]. /e other identified m5C-related
lncRNAs are also reported related with oncogenesis and
progression of tumors [33–39]. However, so far, little re-
search is carried out on AL078644.2, EMSLR, AC092953.2,
and AP001347.1. Future research should focus on such
lncRNAs and their roles within UCEC. /en, a risk model
was constructed based on the coefficients and the expression
levels of the 17 lncRNAs. Based on the calculation results of
the risk model, the UCEC samples were divided into high-
risk group or low-risk group. We then found that UCEC
samples in the group with high risks had poorer prognosis,
indicating that this risk model based on m5C-associated
lncRNAs had a good performance in predicting the clinical
prognosis of patients with UCEC. Moreover, results of
univariate and multivariate Cox regression analyses showed
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Figure 4: /e relationship of immune cell infiltration and consensus clustering in UCEC. (a, b) ImmuneScore and ESTIMATEScore in
clusters in UCEC. (c)/e infiltrating levels of 22 immune cell types in two clusters in TCGA-UCEC. (d–i)/e infiltrating levels of the resting
dendritic cells (d), neutrophils (e), macrophages M1 (f), activated NK cells (g), activated mast cells (h), and Tcells follicular helper (i) in two
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Figure 5: Construction of the risk model according to the identified m5C-related lncRNAs in UCEC. (a, b) LASSO regression and
corresponding cross-validation of 32 m5C-related lncRNAs with prognostic value in UCEC. (c–f) OS analysis for UCEC patients and the
ROC curve for measuring the corresponding predictive values in TCGA training set (c, d) and TCGA testing set (e, f ).
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Figure 6: Validation of the constructed risk model based on the m5C-related lncRNAs in UCEC. (a and b) Distribution of risk scores of
UCEC samples in TCGA training set (a) and TCGA testing set (b). (c, d) Survival status of samples in two sets. (e, f ) Heatmaps of the m5C-
related lncRNAs expression levels in two TCGA sets.

Table 2: Results of LASSO Cox analysis on the 32 identified m5C-related lncRNAs.

Gene Coef
CDKN2B-AS1 0.469698
NBAT1 −0.01305
NRAV −0.02457
HM13-IT1 0.321693
AL078644.2 0.03965
TTLL11-IT1 −2.32991
FMR1-IT1 −0.18714
NNT-AS1 0.101763
EMSLR 0.049661
AC092953.2 0.308109
YEATS2-AS1 −0.9855
LINC02474 0.10311
AP001347.1 0.00306
RAB11B-AS1 −0.04677
BX322234.1 0.38926
CERNA1 −0.24199
AL645568.1 0.85146
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that this risk model could serve as an independent predictive
factor in UCEC. We further explored the association be-
tween the prognostic risk model and the clinical features of
UCEC patients. In addition, UCEC patients with grade III
had a higher risk score compared with others with grade I or
II. Interestingly, the risk scores were significantly higher in
the group with high immune scores than in the other group,
which was consistent with previous findings that UCEC
patients with high immune scores had lower OS [40].

It is well known that the tumor immune microenvi-
ronment often plays an important role during the devel-
opment and progression of cancers [41, 42]. Heterogeneity
of the immune microenvironment can influence a variety of
factors, including patient response to therapy and clinical
prognosis [43, 44]. Previous findings suggest that immune
cell infiltration can regulate the progression and metastasis
in patients with cancers [45, 46]. Another important finding
of this study was that the constructed risk score was closely
related to the level of immune cell infiltration, which mainly
included activated NK cells, neutrophils, resting dendritic

cells, regulatory T cells, M1 macrophages, and activated
dendritic cells. Notably, there was a significantly negative
association between the risk score and the levels of regu-
latory T-cell infiltration.

/is study also has several limitations. First, our results
were obtained by analyzing data from TCGA. Other data-
bases such as GEO are needed to further validate the validity
of this risk model. Meanwhile, we need to conduct clinical
and basic experiments to further validate the predictive value
of the constructed risk model. Second, the potential
mechanisms of the regulation of these m5C-related lncRNAs
in UCEC deserve further investigation.

In conclusion, our study systematically explored the
prognostic value of m5C-related lncRNAs and their effects
on the immune microenvironment and clinical outcomes in
UCEC via consensus clustering of them and constructing a
risk model with predictive value. /e results in this study
suggest that m5C-related lncRNA-based risk models may
serve as an important mediator of the immune microen-
vironment in UCEC. Our findings provide a potential
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Figure 7: Independent validation of m5C-related lncRNAs-based risk model along with clinical features. Univariate and multivariate Cox
regression analyses considering riskScore and clinical features in the training set (a, b) and the testing set (c, d).
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theoretical basis for future clinical studies that use the m5C-
related lncRNAs as promising therapeutic targets for UCEC.
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