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Abstract 

Aim:  HIV prevention measures in sub-Saharan Africa are still short of attaining the UNAIDS 90–90-90 fast track targets 
set in 2014. Identifying predictors for HIV status may facilitate targeted screening interventions that improve health 
care. We aimed at identifying HIV predictors as well as predicting persons at high risk of the infection.

Method:  We applied machine learning approaches for building models using population-based HIV Impact Assess-
ment (PHIA) data for 41,939 male and 45,105 female respondents with 30 and 40 variables respectively from four 
countries in sub-Saharan countries. We trained and validated the algorithms on 80% of the data and tested on the 
remaining 20% where we rotated around the left-out country. An algorithm with the best mean f1 score was retained 
and trained on the most predictive variables. We used the model to identify people living with HIV and individuals 
with a higher likelihood of contracting the disease.

Results:  Application of XGBoost algorithm appeared to significantly improve identification of HIV positivity over the 
other five algorithms by f1 scoring mean of 90% and 92% for males and females respectively. Amongst the eight most 
predictor features in both sexes were: age, relationship with family head, the highest level of education, highest grade 
at that school level, work for payment, avoiding pregnancy, age at the first experience of sex, and wealth quintile. 
Model performance using these variables increased significantly compared to having all the variables included. We 
identified five males and 19 females individuals that would require testing to find one HIV positive individual. We also 
predicted that 4·14% of males and 10.81% of females are at high risk of infection.

Conclusion:  Our findings provide a potential use of the XGBoost algorithm with socio-behavioural-driven data at 
substantially identifying HIV predictors and predicting individuals at high risk of infection for targeted screening.
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Background literature
HIV continues to be significantly the most threatening 
infectious disease and a burden to public health glob-
ally. In the year 2019, global estimates show that 38 mil-
lion people are living with HIV while 1.7 million and 
690,000 thousand are reported new cases and deaths 

respectively, despite the remarkable progress in diagno-
sis and access to antiretroviral therapy (ART) [1]. More 
than half of people living with HIV, 42.9% of new infec-
tions, and 43.5% of deaths due to AIDS are concentrated 
in East and Southern Africa [1]. In 2018, 1.6 million, 1 
million, 210,000 thousands and 1.2 million people were 
living with HIV, 72,000, 38,000, 7,800 and 48,000 were 
newly infected people and 24,000, 13,000, 2,400 and 
17,000 deaths were from AIDS-related illness in Tanza-
nia, Malawi, Eswatini and Zambia respectively [2]. The 
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Joint United Nations Programme (UNAIDS) had set 
goals towards stopping AIDS as a public health threat by 
2030 [3, 4]. However, the COVID-19 pandemic is already 
thwarting the progress made, and it can adversely lead to 
additional AIDS-related deaths in sub-Saharan Africa by 
the end of 2021 [5, 6].

Despite universal HIV intervention efforts in East and 
Southern Africa, the geographical distribution of the HIV 
epidemic is still widely varied [7, 8]. The region being a 
resource constraint can not have every intervention for 
everyone and everywhere. Granular information con-
cerning the HIV epidemic needs tailor-made solutions 
to address and help protect specific individuals [9]. To 
identify the most vulnerable individuals for the infection 
globally, strategies are geared towards optimal allocation 
of resources and thus higher impact and efficiency con-
trary to a homogeneous distribution of resources [10, 11]. 
Behavioural and social-demographic factors are among 
significant contributions of HIV transmission and require 
investigation on the nature of the impact on the HIV 
epidemic in a particular population [12]. Despite HIV 
screening being an effective method of identifying indi-
vidual status, it has challenges and constraints [13]. Com-
munity-based HIV screening has successfully improved 
the identification of people living with HIV [14]. One of 
the ways of diagnosing people living with HIV is through 
universal screening of individuals attending health care 
facilities, but this can be costly for the low-risk popula-
tion compared to selective testing of those at high risk 
[15]. Including social-demographic factors in the analysis 
may extensively improve the potential of predicting those 
at higher risk of the infection, enhancing optimal choices 
in the screening process, and helping to facilitate testing 
and counselling for HIV [16]. This may also disclose indi-
viduals who may need PrEP, among other necessary early 
interventions [17, 18].

Machine learning entails the utilisation of com-
putational and statistical algorithms to determine 
hidden associations of data that might increase pre-
dictions through relaxation of the modelling postu-
lates advanced by standard approaches [19]. Among 
the recent advances in prediction tools and identi-
fication techniques in HIV statistical data [20–22], 
machine learning offers greater capability in process-
ing huge amounts of data. Its recent application in 
the identification of potential candidates for preex-
posure prophylaxis (PrEP) in the USA and Denmark 
and a population-based research setting in Eastern 
Africa highlights some of its capabilities [23]. Klon 
et  al. used Laplacian-modified naïve Bayesian to iden-
tify active inhibitor compounds from a target database 
[24]. Another example is the use of electronic health 
record data in developing HIV prediction models for 

identifying PrEP candidates in an extensive healthcare 
system [25]. A machine learning algorithm has been 
developed that can automatically select important HIV 
risk-related variables using patients’ demographic and 
clinical data [26].

A review of the use of machine learning approaches 
in studying HIV/AIDS infection was previously pub-
lished [27]. The paper by Lee et al. used machine learn-
ing approaches in classifying patients with and without 
the toxicity of biomarkers of mitochondrial in HIV [28]. 
Recently, Orel et al. used machine learning techniques on 
the Demographic Health Survey of 10 countries to iden-
tify HIV Positive individuals [29].

This paper aims at using machine learning algorithms 
to identify the HIV predictors of persons using socio-
behavioural features and predict those at increased risk 
of infection in the East and Southern African countries.

Methods
Data
We used the Population-based HIV Impact Assessment 
(PHIA) project that consists of cross-sectional house-
hold-based surveys designed to assess HIV-related key 
health indicators [30]. ICAP, based in Columbia Uni-
versity in collaboration with the US Centers for Disease 
Control and Prevention (CDC) and the ministries of 
Health, manages and implements the PHIA project. The 
PHIA project is assessing programs of HIV in countries 
supported by the President’s Emergency Plan for AIDS 
Relief (PEPFAR) by national household surveys.

It was established in 2015 and geared towards docu-
menting the achievements of HIV programs in participat-
ing countries as well as ensuring a better understanding 
of the regional burden trends of the disease in developing 
countries. PHIA conducts surveys in 14 countries: Côte 
d’Ivoire, Cameroon, Ethiopia, Eswatini, Haiti, Kenya, 
Lesotho, Zimbabwe, Malawi, Namibia, Rwanda, Tanza-
nia, Uganda and Zambia. More details on the PHIA sur-
vey have been reported elsewhere [31].

We only included individuals tested for HIV in our 
analysis from the recently released PHIA survey data for 
Tanzania (2016–2017), Zambia (2016), Malawi (2015–
2016) and Eswatini (2016–2017). Countries whose data 
were not yet released were excluded from the study. We 
merged adult datasets and HIV test results from the four 
countries to obtain two sets of data, comprising 41,939 
male and 45,105 female respondents with 8.5% and 13.3% 
HIV positive cases respectively, Table  1. Background 
characteristics of the dataset are displayed in table A3. 
We considered two HIV test outcomes for respondents, 
positive and negative, thereby requiring the construction 
of a binary classifier using machine learning.
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Data pre‑processing
We pooled datasets from the four countries and merged 
HIV test results with the adult interview datasets. We 
then resampled the data utilising sample weights of HIV 
test outcomes per country thus compensating for non-
coverage, non-response and population total adjustment 
weights. Then, we joined the data sets from the four 
countries into one data frame with 238 variables each for 
both sexes. We removed variables with more than 30% 
missing values, those with no variance, non-unique col-
umns, above 80% correlated features, indeterminate and 
non-informative features such as household-id, person-
id, line-number and others, Table A1. We also encoded 
both the nominal and ordinal variables using the label-
code and one-hot encode methods appropriately based 
on the information from the survey [32]. Multiple impu-
tations with chained equations (MICE) [33] was utilized 
in imputing the missing values in each of these catego-
ries. Finally, we further harmonised and scaled the data 
by standardizing to ensure a fair penalisation of the 
scheme used for all the regressors, Fig.  1, step 1. This 
resulted in 41,939 males and 45,105 females in the final 
dataset corresponding to 26 and 36 variables respectively 
as shown in, Table A2. From this final dataset, 25 vari-
ables of the total variables were similar for both sexes.

Model validation
In this study, our machine learning task was structured to 
solve a binary classification problem.

Our dataset comprises healthy individuals labelled 
negative in one class while the infected individuals are 
labelled positive in the other class.

We left out one country for later testing and this was 
rotated around for testing the generalisation of the mod-
els separately for males and females. 80% of the datasets 
were selected for training while 20% were used as test 
samples, Fig.  1, step 1. We chose an 80:20 ratio for our 
study and it has been shown to achieve the best results 
among other ratios elsewhere [34]. We randomly picked 

from a grid 50 sets of control values of the learning pro-
cess (hyperparameters), and these were used in training 
and validation of data using each of Elastic Net (EN) [35], 
k-Nearest Neighbors (KNN) [36], RandomForest (RF) 
[37], Support Vector Machine (SVM) [38], XGBoost [39] 
and Light Gradient Boosting (LGBT) [40] algorithms, 
(Fig. 1, step 2 and 3).

We determined the average scores of f1 for each of 
these 50 sets with a five-fold cross-validation plan over 
the validated samples and the most powerful set of 
hyperparameters were picked, Fig.  1, step 2. f1 score is 
a metric that is the most-used member of the paramet-
ric family of the f-measures, named after the parameter 
value β = 1, where beta is a factor of recall importance 
than precision [41]. It is defined as the harmonic mean of 
precision and recall.

Precision is the ratio of correctly predicted positive 
observations to the total predicted positive observations 
and recall (sensitivity) is the ratio of correctly predicted 
positive observations to all observations in the actual 
class. It accounts for both false positives and false nega-
tives and it cannot be influenced by the uneven class 
distribution and therefore preferred over the accuracy 
metric [42]. Importantly, the metric used was very sensi-
tive and high yielding in predicting the number of HIV 
positive persons (precision). We computed the Preci-
sion-Recall for our preferred model per sex, displaying 
the precision for different sensitivities. This curve is not 
affected by imbalanced datasets and hence preferred over 
the ROC curve [43].

Model and variable selection with the direction 
of the association
The algorithm with the best f1 score was used in the sub-
sequent analysis where all countries were included. We 
used the algorithm along with 250 sets of parameters 
random search in training and validation with a five-fold 
cross-validation plan. First, we estimated and compared 
sensitivity, f1 score and positive predictive value results 
on all the variables. We then conducted a sequential for-
ward floating selection (SFFS) procedure in determining 
the saturation point of variables based on f1 scoring with 
80% training samples and variables whose f1 scores pla-
teaued from the saturated point were selected. We also 
evaluated the association of the selected features with the 
probability of being HIV positive using SHapley Additive 
exPlanations (SHAP) [44].

SHAP is an important technique that is used in explain-
ing the contribution of each feature in prediction.

f1 score = 2 ∗ (Recall ∗ Precision) / (Recall + Precision)

Table 1  Summary of Phia dataset

Characteristics Levels Overall HIV Positive HIV Negative

n (Total number of individu-
als,%)

87,044 9,533 (11.0) 77,511 (89.0)

Gender, n (%) Males 41,939 3,552 (8.5) 38,387 (91.5)

Females 45,105 5,981 (13.3) 39,124 (86.7)

Country, n (%) Malawi 19,829 2,100 (10.6) 17,729 (89.4)

Eswatini 11,875 3,230 (27.2) 8,645 (72.8)

Zambia 21,280 2,569 (12.1) 18,711 (87.9)

Tanzania 34,060 1,634 (4.8) 32,426 (95.2)
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To determine a 95% sensitivity of individuals liv-
ing with HIV knowing their status and a 95% or 
more probability of individuals being HIV positive 
we utilized our preferred model to calibrate the 
given two situations. First, a 95% sensitivity was set 
equivalent to 95% of persons knowing their status 
and chose a threshold that corresponds to this sen-
sitivity, reporting precision and number of individ-
uals to be tested. Secondly, a population for which 
the predicted probability of being HIV positive was 
95% or higher was identified. These individuals 
were considered as either positive targets for test-
ing strategies or HIV negative individuals for pre-
vention aid.

Results
Overall, there was a varied HIV prevalence ranging 
from 4·8% in Tanzania to 27·3% in Eswatini. The overall 
HIV positivity was 8·5% for male and 13·3% for females, 
Table  1. Persons aged 35  years and above displayed a 
higher HIV prevalence than the younger population in 
both sexes. In urban regions, 51.1% of females have HIV, 
compared to 48.8% who do not. Similarly, 49.2% of males 
in urban areas have HIV, compared to 47.0% who do 
not. In the wealth quintiles of males, 32.3% of the more 
wealthy persons have HIV, compared to 30.75% of those 
who do not. In the wealth quintiles of females, 29.8% of 
more wealthy individuals have HIV, compared to 30.9% 
of those who do not. 51.0% of males with the lowest level 

Fig. 1  Diagram explaining the method process
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of education have HIV, compared to 549% who do not. 
Again, 61.4% of females with the lowest education level 
have HIV, compared to 59.9% who do not, Table A3.

Algorithms results in test samples
Figure 2, shows that the XGBoost algorithm achieved the 
highest f1 score of 90% and 92% for males and females 
respectively, among the six algorithms that were used on 
all 8 (4 per sex) test samples. This was followed closely by 
the RF algorithm with a score of 87% for males and 93% 
for females. EN algorithm performance was 84% and 90% 
for males and females respectively. SVM performance 
was 87% for males and 89% for females. The LGBM f1 

score was 86% for males and 88% for females while KNN 
performed dismally with an f1 score of 85% for males and 
88% for females, Table 2.

Algorithms results in left‑out samples
Similarly, the six algorithms were trained on all four left-
out samples. The f1 scores between males and females 
substantially varied all the algorithms, Fig.  3. However, 
the XGBoost algorithm got the highest f1 score of 83% 
and 85% for males and females respectively, among the 
six algorithms. This was followed closely by the LGBM 
algorithm with a score of 81% for males and 87% for 
females. SVM algorithm performance was 79% and 86% 

Fig. 2  f1 scores Boxplot on methods used on test samples per sex

Table 2  F1 score for Algorithms on the test, left-out and train samples

samples XGBoost KNN SVM RF EN LGBM

males test 0.90 0.85 0.87 0.87 0.84 0.86

females test 0.92 0.88 0.89 0.89 0.90 0.88

males left-out 0.83 0.81 0.79 0.79 0.72 0.81

females left-out 0.85 0.85 0.86 0.86 0.76 0.87

males train 0.90 0.85 0.86 0.91 0.83 0.86

females train 0.91 0.87 0.89 0.92 0.88 0.88
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for males and females respectively. KNN secured a score 
of 85% for females and a low score of 81% for males. RF 
scored 86% for females and 81% for males while EN was 
the worst-performing algorithm with an f1 score of 76% 
for females and 72% for males, Table 2.

Variable selection and direction of associations
SFFS procedure was used in determining the saturation 
limit, selecting variables based on f1 scoring. As a result, 
15 and 12 most influential features of males and females 
were selected respectively, Fig.  4 and 5. To understand 
how a feature contributes to the output of the model, 
we plot SHAP values, Fig. 6 and 7 for males and females 
respectively. These variables are displayed after rank-
ing in descending order, bearing the highest average or 
median values of Shapley at the top.

Here, all the values on the left represent the obser-
vations that shift the predicted value in the nega-
tive direction while the points on the right contribute 
to shifting the prediction in a positive direction. The 
graph summarises the impact of explanatory features 
on the model output. Features that increase or decrease 
the risk of HIV infection are coded in red and blue 
respectively. Being older, never attending school, at the 

highest level of education, at the highest grade a school 
level, in avoidance of pregnancy, in TB treatment, in 
use alcohol drink, an urban dweller, aware of HIV sta-
tus, wealthy, nonmarital and circumcised is predictive 
of HIV positivity.

To determine a 95% sensitivity of individuals living 
with HIV knowing their status and a 95% or more prob-
ability of individuals being HIV positive we utilized the 
XGBoost model to calibrate the given situations A and 
B respectively.

Situations
95% of individuals living with HIV know their state
Table  3, shows confusion matrices on test samples. A 
sensitivity of 95% for males would need 4,154 individu-
als out of 8,388 (49.52%) tested to identify 651 HIV posi-
tives from 685 persons living with HIV. Correspondingly, 
therefore, five individuals would need testing to find one 
person who is HIV positive with a precision of 15.67%. 
3,301 individuals out of 9,021 (36.59%) of females would 
require testing to detect 1,115 HIV positives out of the 
1,173 persons living with HIV. Similarly, the precision is 
33.77% and needs 19 individuals tested.

Fig. 3  f1 scores Boxplot on methods used on left-out samples per sex
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95% or higher probability of being HIV positive
We identified 348 (4·14%) males out of the 8,388 
and 975 (10.81%) females out of 9,021 as a high-risk 
population. We find that 350 males would have been 

identified HIV positives out of 685 people living 
with HIV while 969 females would have been cor-
rectly identified HIV positives from 1,173 individuals, 
Table 3.

Fig. 4  Sequential floating forward selection (SFFS) for males

Fig. 5  Sequential floating forward selection (SFFS) for females
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Discussion
We used a large dataset of over 80,000 respondents in 
four countries from the East and Southern Africa region 
to predict the HIV status of persons by use of socio-
demographic factors. We used the XGBoost method in 
the identification of the most predictive factors of HIV 
positivity, which delivered better results than the other 
five algorithms with f1 scores on the sample test of 90% 
and 92% when all variables are included in males and 
females respectively.

Fig. 6  SHAP summary plots for HIV status predictors in male individuals

Fig. 7  SHAP summary plots for HIV status predictors in female individuals

Table 3  People living with HIV know their status and 95% or 
more probability of being HIV positive

95% of those with HIV TP FP FN TN precision

Know their status (males) 4200 3503 34 651 15.67

Know their status (females) 5662 2186 58 1115 33.77

95% or > probability of 7690 13 350 335 99.26

being HIV positive (males)

95% or more probability of 7842 6 204 969 96.26

being HIV positive (females)
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The method enabled us to establish the most predic-
tive features for HIV status in both sexes: age, relation-
ship with the head of the family, ever enrolled in school, 
the highest level of education, highest grade at that 
school level, work for payment in the last 12  months, 
wether avoiding pregnancy, age at first sex experienced, 
ever sought TB treatment, frequency of alcohol drinking, 
urban area indicator, wealth quintile, number of pregnan-
cies, number of births since 2012, marital status and cir-
cumcision status.

The course of the association between predictor fea-
tures and HIV status of individuals was determined 
through the use of XGBoost along with SHAP plots and 
illustrated specific feature importance to give an intui-
tive understanding of the key features. The age of an 
individual has the highest overall impact on HIV sta-
tus than other features, and any change of age can have 
a more remarkable influence than others. More aged 
individuals have a higher probability of infection in both 
sexes. Several of those avoiding pregnancy by various 
methods stand a higher chance of contracting the dis-
ease in both sexes. Potential reasons for this may be an 
increased exposure to sex making them more vulnerable. 
The majority of those living in urban regions seemed to 
be more exposed to the disease than their counterparts 
living in rural areas. Those with a little level of education 
have low knowledge of mitigation measures of HIV risk 
and pose a greater risk of HIV in both sexes. HIV posi-
tivity is associated with a higher number of those seek-
ing TB treatment; a low CD4 count from HIV patients 
are at a much higher risk of falling ill from TB infection 
than those who are negative. Similarly being uncircum-
cised exposes males to the disease which is consistent 
with studies by [45] while in females alone, being exposed 
to sex at an older age, attaining higher grade at school, 
an increase in the number of children born may lead to 
a reduction of HIV positivity. Our results are consist-
ent with those of [46] that indicated literacy and urban-
ity as strong predictors of HIV acquisition and Sing 
et al., which found that urban dwellers may increase HIV 
positivity through more contact with high-risk sexual 
individuals than rural residents [47]. Age, a little level 
of education and gender being predictors of the disease 
assert the findings in [48, 49].

A 95% sensitivity was required in ensuring that 95% of 
individuals living with HIV knew their status. With the 
XGBoost algorithm, we utilized 15 and 12 most predic-
tive variables of males and females accordingly to estab-
lish 5 and 19, the number required to screen to know one 
individual with HIV in males and females respectively. 
These are within the range of 3 to 86 and 4 to 154 for 
community-based and facility-based screening respec-
tively given in previous studies [50]. We identified 4·14% 

males and 10.81% females as a high-risk population in 
the second situation, which is consistent with previous 
studies that indicated that about seven women get new 
infections with HIV for every four men infected [51, 52]. 
In general, female performance in all our algorithms was 
slightly higher than those of males in this study. Our 
method borrows heavily from Orel’s approach in pre-
dictor identification, and they both choose the Xgboost 
model algorithm as the best performing model among 
the alternatives. Our results, on the other hand, show 
different predictors than those found in Orel’s research, 
with the exception that they both found individual age 
and wealth as predictors of the disease [29].

Other screening methods exist, but they are not with-
out drawbacks. Universal screening, in which patients are 
given tests on health care facilities, is limited to a poor 
cost–benefit ratio in low HIV incidence situations [53]. 
While indicator-condition-guided testing based on spe-
cific medical conditions ignores factors such as age, sex, 
and medical conditions, which have all been linked to a 
lower risk of HIV transmission [54]. In generalized epi-
demic settings, a focus on well-known risk groups such 
as serodiscordant spouses and young women can effec-
tively reach high-risk individuals [55] but may overlook 
less well-known or easily defined subgroups at risk [56], 
resulting in inefficient resource allocation [57]. Despite 
the absence of a recognized risk factor, self-assessment is 
one method of recognizing individuals at high risk. How-
ever, an individual’s risk perception is influenced by their 
HIV-related awareness, and unanticipated or uncon-
trolled exposures can go undetected [58]. According to 
WHO guidelines, PrEP should be targeted at subpopula-
tions considered to be at high risk of HIV infection [59]. 
However, in the context of a widespread outbreak, the 
best demographic subgroups to target may not be obvi-
ous, and merely providing PrEP to established high-risk 
subgroups like young people or mobile populations may 
be ineffective. As a result, a PrEP technique based on 
more subtle use of individual characteristics may be able 
to reduce the cost of preventing a new HIV infection. 
Our method provides an alternative to some of the draw-
backs listed above, as well as a potential complemen-
tary method for identifying people who may gain most 
from enhanced mitigation strategies. One limitation of 
this study is the validity of our model. There was a high 
degree of missingness and inconclusiveness from self-
reported data that potentially impacted the training data.

Our conclusion might reveal the social-behavioural 
identification of HIV and can enhance screening 
approaches in limited resources situations. There is a 
need to adapt HIV screening strategies that better tar-
get the adult population, those using contraceptives, 
urban dwellers, the little educated population, TB 



Page 10 of 11Mutai et al. BMC Med Res Methodol          (2021) 21:159 

patients and uncircumcised men. There is an increased 
number of available surveys with individual-level data 
that is rich in demographic characteristics, social his-
tory, laboratory tests and results of various diseases. 
More advanced approaches to utilize them can effec-
tively assist in preventing, diagnosing and testing HIV 
and other diseases. Community-based or facility-based 
testing programs could incorporate this approach in 
practice to identify high-risk individuals. However, 
additional studies are needed to further optimize this 
model, integrate and apply them into a real-world pri-
mary care setting. This may also disclose individu-
als who may need PrEP, among other risk reduction 
strategies.
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