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Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease (NDD) that affects
motor neurons, causing weakness, muscle atrophy and spasticity. Unfortunately, there are only
symptomatic treatments available. Two important innovations in recent years are three-dimensional
(3D) bioprinting and induced pluripotent stem cells (iPSCs). The aim of this work was to demonstrate
the robustness of 3D cultures for the differentiation of stem cells for the study of ALS. We repro-
grammed healthy and sALS peripheral blood mononuclear cells (PBMCs) in iPSCs and differentiated
them in neural stem cells (NSCs) in 2D. NSCs were printed in 3D hydrogel-based constructs and
subsequently differentiated first in motor neuron progenitors and finally in motor neurons. Every
step of differentiation was tested for cell viability and characterized by confocal microscopy and
RT-qPCR. Finally, we tested the electrophysiological characteristics of included NSC34. We found that
NSCs maintained good viability during the 3D differentiation. Our results suggest that the hydrogel
does not interfere with the correct differentiation process or with the electrophysiological features of
the included cells. Such evidence confirmed that 3D bioprinting can be considered a good model for
the study of ALS pathogenesis.

Keywords: ALS; 3D bioprinting; neural stem cells; motor neurons progenitors; motor neurons

1. Introduction

Neurodegenerative diseases (NDDs) are a group of debilitating pathologies that affect
over 50 million people around the world, with an increasing rate due to the progressive
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ageing of the population. Despite their different features, which cause disparate manifesta-
tions, they all lead to the death of specific neural cells. Unfortunately, the causes of these
pathologies are still unknown, and they remain incurable [1–3].

Amyotrophic lateral sclerosis (ALS) is an NDD that affects upper and lower motor
neurons (MNs), causing weakness, muscle atrophy and spasticity. It can be manifest in
two forms, the sporadic form (sALS), which constitutes 90–95% of cases, and the familiar
form (fALS), which constitutes 5–10% of cases, and can involve different causative genes.
As for other types of NDDs, such as Alzheimer’s and Parkinson’s disease, there are only
symptomatic treatments available [4–6].

Due to the lack of cure for these diseases, it is even more important to find valid
experimental models for the study of their etiopathogenesis. In recent years, many exper-
imental models, such as fruit fly, mouse, nematode worm and baker’s yeast [7–12], but
also traditional 2D cell cultures [7,13], have been used. In this field, one of the most recent
and important newnesses is the use of induced pluripotent stem cells (iPSCs). These are
pluripotent stem cells obtained from adult somatic cells using specific transcription factors
called “Yamanaka factors”. iPSCs can be differentiated in many types of cells, such as
neurons, astrocytes and oligodendrocytes. As they can be obtained from patients, they
allow scientists to create a more realistic pathological model and to advance the discovery
of novel specific treatments in the field of personalized medicine [14–16].

Another important innovation in recent years is three-dimensional (3D) bioprinting. It
consists of the inclusion of different types of cells in various biocompatible biomaterials to
create a bioink, which is then printed with the use of a bioplotter. 3D bioprinting allows
the growth and viability of the included cells in a 3D environment, which can better mimic
the biological characteristics of the tissues or organs. Moreover, it allows the study of the
interaction between cells, and between cells and the environment.

Since its definition by Guillemot in 2010 [17], many biomaterials have been
developed and used for the generation of 3D constructs, such as hydrogels, i.e., hyaluronic
acid, xyloglucan, collagen, alginate sodium, gelatin, nanofibers and carbon-based
biomaterials [18–21].

To date, a large amount of progress has been made in the field of 3D bioprinting,
specifically, the creation of vessels, bones, cartilages and heart cells [22–26]. The nervous
tissue is relatively new to the topic of 3D bioprinting, and to date, progress has also been
made in the creation of small structures, such as nerve grafts and retinal ganglion, but
progress in disease modelling is limited [27–29].

The aim of this work was to join the field of iPSC differentiation and 3D bioprinting,
demonstrating the validity of 3D cultures for the differentiation of cultured stem cells in
order to study NDDs in a more realistic model. After a first mechanical characterization
of the hydrogel, we developed a protocol of both control (CTRL) and sALS stem cells
differentiation in 3D structures, and we compared the differentiation processes of these
cells in 2D and 3D through immunofluorescence analysis, confocal microscopy and Real-
Time qPCR (RT-qPCR). Moreover, we used a specific antibody for the detection of cells’
action potentials to test the electrophysiological characteristics of printed NSC34. We
concluded that the inclusion and printing of cells allow good viability and differentiation
of healthy and sALS stem cells, confirming 3D bioprinting as an optimal tool for the study
of ALS pathogenesis.

2. Results
2.1. Hydrogel Characterization Confirmed Its Optimal Features for Cells Cultures

To evaluate the mechanical features of the printed structures we performed three
different assays, measuring the moisture, swelling ratio and porosity of both printed
constructs composed only of Cellink Bioink (IK-102000; Cellink, Gothenburg, Sweden) and
constructs composed of the hydrogel and culture medium.

The water content, evaluated using the moisture test, is an important characteristic of
the integrity of hydrogels. We found that in both types of constructs, within or without a
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culture medium, the moisture percentage was above 95% without significant differences
(Figure S1). Swelling is directly linked to moisture, which indicates the ability to absorb
water. In both types of constructs, after three hours of submersion, the swelling ratio
reached a plateau at approximately 55% for the constructs composed of the hydrogel and
the medium, and approximately 40% for the constructs composed only of the hydrogel
(Figure S2). Moreover, in both cases, and at each time point, the mass swelling ratio did
not exceed the value of 2 (Table S1). Finally, we tested the porosity, which is related to the
amount of pore space of the hydrogel. The porosity test showed that the printed constructs
composed of Cellink Bioink and culture medium had a higher porosity percentage when
compared to constructs composed only of hydrogel (Figure S3).

2.2. Neural Stem Cells (NSCs) Showed Good Viability during the 3D Differentiation Process

To evaluate the capability of the cells to proliferate in 3D conditions, we used the
LIVE/DEAD viability assay, and multiple measures were taken from three different 3D
structures, printed at 25 ◦C with a pressure between 45 and 70 kPA, in each differentiation
step [18]. sALS NSCs encapsulated and printed into the bioink showed good viability
during the differentiation process. We observed an increasing viability when NSCs were
printed and differentiated from the bioink, with statistically significant differences between
NSCs and immature motor neurons (iMNs) (day 0 vs. 14, ** p < 0.01), between NSCs and
motor neurons (MNs) (day 0 vs. 20, *** p < 0.001) and between motor neuron progenitors
(MNPs) and MNs (day 7 vs. 20, ** p < 0.01) (Figure 1).
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Figure 1. Neural stem cells (NSCs) maintain good viability during the differentiation to motor
neurons (MNs). The cell viability was evaluated at days 0, 3, 7, 10, 14 and 20 of differentiation. At day
7, the cells reached the stage of motor neuron progenitors (MNPs), and the viability was increased
by 18%. The MNPs bar is in yellow because it is the first stage of cell specialization to MNs. At day
14, MNPs reached the stage of immature motor neurons (iMNs) with an increase in viability of 50%,
whereas at day 20, MNPs reached the stage of MNs with an increase in viability of 62%. There is a
statistically significant difference between NSCs and iMNs (** p < 0.01), between NSCs and MNs
(*** p < 0.001) and between MNPs and MNs (** p < 0.01). Error bars indicate SD. Data were analyzed
using ANOVA, followed by the Bonferroni test (GraphPad Prism 8).
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2.3. NSCs Showed Good Differentiation When Printed in 3D

To confirm that the bioink allows the correct differentiation process of NSCs, we per-
formed an immunofluorescence analysis for the typical markers of the differentiation stages.

Figure 2 shows an example of the confocal acquisition 3D reconstruction of CTRL and
sALS constructs during the cell differentiation process. Cells, at all steps of differentiation,
formed colonies and expressed typical markers: Nestin, SOX2, SOX1 and PAX6 for NSCS;
Olig2 and PAX6 for MNPs; and TUBB3 and Chat for MNs. The inclusion in the hydrogel
and the following printing process did not affect the correct differentiation of cells.
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Figure 2. Cells express the typical markers of each stage of differentiation in 3D bioprinting. NSCs dif-
ferentiated from induced pluripotent stem cells (iPSCs) of control (CTRL), and sporadic amyotrophic
lateral sclerosis (sALS) subjects were grown into Cellink Bioink (IK-102000; Cellink, Gothenburg,
Sweden) and differentiated into MNPs and MNs. Cells express the typical markers of every differen-
tiation step: (a,e) NSCs: Nestin = green and SOX2 = red; (b,f) NSCs: SOX1 = green and PAX6 = red;
(c,g) MNPs: Olig2 = green and PAX6 = red and (d,h) MNs: TUBB3 = green and Chat = red. The
images were taken from videos acquired through confocal microscopy (Olympus Fluoview, FV10i,
Tokyo, Japan).

Furthermore, the corrected total cell fluorescence (CTCF) analysis allowed a quantifi-
cation of the markers’ immunofluorescence in the different layers of the confocal recon-
struction. The CTCF identified the layer at approximately 75 µm from the beginning of the
structure as the one with the maximum immunofluorescence intensity for almost every
differentiation step (Figure S4). Using confocal software (Olympus Fluoview, FV10i, Japan),
we obtained the reconstruction video from which the images were acquired, which shows
the cell colony and its marker expression in every confocal plane. Moreover, the video
shows the thickness of the colony itself (Supplementary Videos), which is impossible to
appreciate from 2D cultures images (Figures S5 and S6).
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2.4. Printed Cells Expressed the Typical Markers of the Differentiation Stages

To confirm the correct differentiation and obtain a more precise quantitative measure
of markers’ expression, we tested the expression of Nestin, SOX2, SOX1, PAX6, Olig2,
TUBB3 and MAP2 using RT-qPCR. The cells, both from CTRL and sALS, expressed the
expected specific set of markers for each differentiation step in both 2D and 3D conditions
(Figure 3).
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Figure 3. RT-qPCR confirms the expression of the typical markers during differentiation. The
differentiation was confirmed using the markers for NSCs (Nestin, SOX2, SOX1 and PAX6), MNPs
(PAX6 and Olig2) and MNs (TUBB3 and MAP2). Error bars indicate SD. Data were analyzed using
ANOVA, followed by the Bonferroni test. * p < 0.05; ** p < 0.01 (GraphPad Prism 8).

NSCs showed a reduction in Nestin, SOX2 and SOX1 expression in 3D structures
(* p < 0.05 and ** p < 0.01) compared to the 2D condition, which is probably due to the
printing process. Moreover, both in 2D and 3D, sALS NSCs expressed more Nestin and
SOX2 than CTRL cells, whereas this trend was inverted for SOX1 and PAX6. In the stage of
MNPs, we observed a difference between CTRL and sALS cells: in sALS, there was a lower
expression of PAX6 and Olig2, especially in 3D, when compared to CTRL cells. Moreover,
in both sALS and CTRL, the printing process increased the expression of the MNP marker
Olig2.

Finally, the number of sALS cells expressing MNs markers, in both 2D and 3D con-
ditions, showed a drastic reduction when compared to CTRL ones. Furthermore, the
expression of MAP2 in CTRL MNs increased, and the number of cells expressing TUBB3
was reduced in 3D cultures when compared to 2D.

2.5. Printed Cells Maintain Their Electrophysiological Characteristics

To test the electrophysiological characteristics of cells included in the hydrogel, we
used NSC34 cells, which share many characteristics with human MNs. First, we developed
a protocol of NSC34 differentiation at a more mature stage. As shown in Figure 4, already
at day 1, after the beginning of differentiation, cells began to display propagations. At day
14, cells changed their morphology and appeared aggregated in colonies with the growth
of many propagations and connections between themselves.

After 14 days of differentiation, we performed an immunofluorescence analysis using
the neuronal activity marker c-fos. Cells were first treated with 15 mM KCl to induce the
firing. As shown in Figure 5, both the 2D- and 3D-cultured cells increased their firing
after treatment.

The fluorescence intensity was higher in 15 mM KCl-treated cells when compared to
the non-treated cells (** p < 0.01). Moreover, the analysis of immunofluorescence intensity
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demonstrated that the inclusion in the gel and the printing process did not interfere with
the electrophysiological characteristics of NSC34.

We noticed that, while in the 2D cultures, non-treated NSC34 did not fire, untreated
3D NSC34 showed a low firing intensity, probably due to the autofluorescence of the bioink,
which caused background fluorescence.
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Figure 4. NSC34 differentiate in 14 days of culture. NSC34 were differentiated using DMEM High
Glucose, 1% penicillin/streptomycin, 1% L-glutamine and 10 µM all-trans retinoic acid (RA), and the
differentiation process was evaluated at days 0, 1, 4, 7, 11 and 14 using the optical microscope Axio
Imager 2 (Zeiss, Oberkochen, Germany). Cells began to show propagation already at day 1 and then
grouped into colonies with many interconnections. Scale bar = 25 µm.
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Figure 5. NSC34 cells maintain their electrophysiological characteristics when printed. NSC34 cells
were induced to fire with 15 mM KCl both in 2D (a) and 3D (b). Then, an immunofluorescence
analysis using the neuronal marker c-fos was performed. Data show that the hydrogel does not
interfere with the firing capacity of printed NSC34. Error bars indicate SD. Data were analyzed using
a t-test followed by the Mann–Whitney test. ** p < 0.01 (GraphPad Prism 8). Scale bar = 20 µm.

3. Discussion

NDDs are a huge problem for society, not only due to the difficulties that they cause
for patients, but also due to their economic and social costs. For these reasons, the study of
these diseases has rapidly developed in recent years, and many in vitro and in vivo models
have been studied [7–13,30].

In recent years, two main fields have emerged in the study of models for NDDs: the
use of iPSCs and their differentiation for the development of a more patient-like model,
and 3D bioprinting. Three-dimensional bioprinting is an emerging technique that allows
the creation of 3D culture models, in which cells can grow in an environment similar to the
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physiological one. Many studies have focused on the use of 3D bioprinting, but few have
dealt with NDDs [15,16,18,19].

In this work, we demonstrated the possibility to grow and differentiate iPSCs-derived
NSCs in a 3D environment, in order to create a more physiological model for the study of
NDDs, such as ALS.

First of all, we performed mechanical tests on our printed constructs. Moisture is
an important value for hydrogels, inasmuch as it indicates the water content, but it also
correlates with the capacity to maintain dimension stability. Moreover, moisture facilitates
the solubility and diffusion of substances [31,32]. We found a moisture percentage above
95% in both the printed construct types (the one composed only of hydrogel and the
one composed of both cell medium and hydrogel in a 1:10 proportion), as previously
reported [32,33], indicating a high amount of water content in both the conditions. A
precedent study demonstrated that the water content can depend on the presence of
hydrophilic groups in the hydrogel itself [33], which, in our hydrogel, are represented by
the hydroxyl groups located on the surface of the cellulose fibres [34] and by the intrinsic
hydrophilic nature of sodium alginate [35]. The swelling characteristics of the hydrogel are
directly linked to moisture. Swelling is the ability of the hydrogel to absorb water. A high
swelling rate indicates that the hydrogel can easily change shape and break in a hydrated
environment. Moreover, crosslinking can affect and decrease the swelling ratio, reducing
the empty spaces available to water molecules within the hydrogel [36]. We found that
the printed structures composed of only the hydrogel had a lower swelling rate when
compared to the one composed of hydrogel and culture medium. In both conditions, the
swelling ratio reached a plateau at around 3 h after submersion, indicating that it could no
longer change shape. Finally, we performed a porosity assay. Porosity plays a huge role in
nutrient and oxygen diffusion, especially in an environment without a vascular system [32].
We found that the porosity percentage is higher in structures composed of hydrogel and
cell medium.

As few studies have focused on the development of a 3D nervous model, we first
performed a LIVE/DEAD assay on sALS NSCs to ascertain the cell viability during the
differentiation process. We found that the inclusion in the hydrogel and the printing process
did not interfere negatively with the viability of the cells. On the contrary, we observed
increased viability after the printing process, with a significant increase between the first
stage of differentiation, that of NSCs, and the last stage, that of MNs.

This evidence demonstrated the possibility of using Cellink Bioink (IK-102000; Cellink,
Gothenburg, Sweden) for the cultivation of stem cells and their differentiation. We then
demonstrated, through confocal microscopy, that cells do not only live and proliferate in the
hydrogel but that they correctly differentiate. We found that, in cells from both CTRL and
sALS patients cultivated in 3D, the expression of the typical markers of the differentiation
steps strongly confirms the correct differentiation process. As opposed to 2D-cultured cells,
3D cultures allow the study of cell organization and how cells connect with one another in a
3D environment, which better mimics the tissue organization. These results further confirm
precedent findings, which show that neurons grown in 3D form a functional network that
is not achieved in 2D [37,38].

To obtain more precise quantitative data about the differentiation markers, we per-
formed an RT-qPCR. First, we observed that the gel did not interfere with the expression
of the typical cell markers, except for NSCs, as already reported for the ASGR1 gene [39].
The differences between CTRL and sALS cells were maintained when cells were printed in
3D. Moreover, both in 2D and 3D conditions, there was a greater expression of Nestin and
SOX2 in sALS NSCs than in CTRL NSCs, whereas the trend was inverted for SOX1 and
PAX6. Nestin is a marker of undifferentiated nervous cells at a stage that precedes the exit
of the cell cycle and the cell committee [38], whereas SOX2 is implicated in self-renewal in
undifferentiated cells [40,41]. On the other hand, SOX1 and PAX6 are considered markers
of a more “mature” stage of stem cells; SOX1 is reported to represent activated neural stem
progenitors and to be the earliest marker of the neuroectodermal lineage [39], whereas
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PAX6 is also an MNP marker. Since Nestin and SOX2 are considered markers of a more
“immature” stage of NSCs, our data suggest that sALS NSCs seem to be less differentiated
than CTRL cells.

In both 2D and particularly in 3D, we found differences in the expression of specific
markers also in MNPs and MNs. We observed a decreased expression of PAX6 in sALS
MNPs compared to CTRL cells. A possible explanation for this is that sALS cells differen-
tiate before CTRL cells, as PAX6 is also expressed in NSCs, and it could be considered a
marker of more immature MNPs. On the contrary, there was a major expression of PAX6 in
CTRL, indicating that there were still immature MNPs present and a mixed population in
CTRL with the concurrent presence of immature and mature MNPs. Moreover, we noticed
that in both NSCs and MNPs, the expression of PAX6 was low. It was already demonstrated
that embryonic stem cells undergo low to high levels of PAX6 expression during their
differentiation to neural stem cells, fading away when they reach a more differentiated cell
type [42]. We observed that in 3D, both in CTRL and sALS, there was an increase in Olig2
expression, indicating that 3D promotes MNPs maturation. Finally, at the stage of MNs,
both in 2D and 3D, we noticed a reduction in ALS cells expressing MNs markers when
compared to CTRL ones, as expected from the motor neuronal death characteristic of the
ALS pathology. Moreover, we noticed that in CTRL, the 3D condition caused an increase
in MAP2 expression and a decrease in TUBB3 expression. This indicates a major presence
of mature MNs (mMNs) in 3D cultures when compared to 2D cultures. These findings
suggest that the 3D environment increases the differentiation of CTRL MNPs in mMNs
when compared to the 2D environment. In fact, precedent studies have suggested that,
whereas TUBB3 is a marker of iMNs [43,43], MAP2 is a marker of mMNs [44,45].

Ultimately, we evaluated the possibility of cells maintaining their electrophysiological
characteristics when printed. To investigate this aspect, we used NSC34 cells, a mouse
spinal cord x neuroblastoma hybrid cell line. These types of cells constitute a good model
for the study of the nervous system, as they summarize many aspects of MN development
in an immortalized system. Moreover, they produce action potentials when stimulated
with KCl [46]. We trialled different methods to obtain electrophysiological recordings of
the included NSC34, such as the patch-clamp technique and multielectrode array (MEA),
without results. These assays were difficult due to the bioink itself, which forms a film
around the cells, preventing the adhesion between the cell membrane and the patch
pipette or the MEA chip containing the electrodes. For this reason, we performed an
immunofluorescence analysis with the use of the antibody c-fos, an action potential marker.
We found that the hydrogel did not interfere with the electrophysiological characteristics
of stimulated cells. Although the hydrogel caused background fluorescence due to an
intrinsic autofluorescence, yet described in other types of hydrogels [47,48], the fluorescence
intensity was significantly increased after the treatment when compared to untreated cells,
which showed a minor fluorescence intensity, as in 2D conditions.

In conclusion, the inclusion and the printing in Cellink Bioink (IK-102000; Cellink,
Gothenburg, Sweden) allowed not only good viability in the stem cells but also their differ-
entiation in MNs. Moreover, it did not interfere with the electrophysiological characteristics
of printed NSC34. This will allow future studies on NDDs and, in particular, on ALS in a
more physiological environment, which better mimics the tissue characteristics of patients,
such as the spatial organization.

4. Materials and Methods
4.1. Enrolment of ALS Patients and Healthy Volunteers

Peripheral blood mononuclear cells (PBMCs) were isolated from an sALS patient,
diagnosed at the IRCCS Mondino Foundation (Pavia, Italy) and tested for genetic mutations
with Next-Generation Sequencing, as described in Filosto et al., 2018 [49]. Patients positive
for genetic mutations were excluded from this work.
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One healthy CTRL subject was recruited at the IRCCS Policlinico S. Matteo Foundation
in Pavia (Italy). The subject was interviewed on their personal health history to confirm the
normal phenotype and avoid the presence of any pathology.

All individuals signed the consensus after reading informative notes.

4.2. Isolation of PBMCs

Total blood was obtained from the sALS patient and the CTRL subject and conserved
into EDTA blood tubes. PBMCs were obtained using Ficoll-Histopaque®-1077 (Sigma-
Aldrich, Milan, Italy) within 24 h, following the manufacturer’s instructions. PBMCs were
then collected, and the cell viability was determined via the Trypan Blue (Sigma-Aldrich,
Milan, Italy) Exclusion Test using an automatic cells counter (TC20TM Automated Cell
Counter, BioRad, Segrate, Italy). PBMCs were then preserved in Fetal Bovine Serum (FBS)
(EuroClone, Pero, Italy) and 10% dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Milan, Italy)
to prevent cell death and stored in liquid nitrogen.

4.3. PBMCs Reprogramming

PBMCs were reprogrammed following a protocol already set up by our group [18]. In
brief, 5× 105 cells were first suspended in PBMC medium (StemPro™-34 + SCF 100 ng/mL,
FLT-3 100 ng/mL, IL-3 20 ng/mL, IL-6 20 ng/mL) and 4 days later transduced with a virus
obtained from the CytoTune®-iPS 2.0 Sendai Reprogramming Kit (Invitrogen, Carlsbad,
CA, USA) using the following formula:

Volume (µL) =
MOI (CIU/cell)·n. o f cells

titer o f virus (CIU/mL)· 10−3(mL/µL)

where MOI is a virus-dependent number; KOS = 5; hc-Myc = 5; hKlf4 = 3; and the titer of
virus is a lot-dependent number.

After 24 h of incubation, the medium was replaced with the PBMC medium. Cells
were then plated on a vitronectin-coated culture dish and cultured for 7 days in complete
StemPro™-34 medium (ThermoFisher Scientific Inc., Waltham, MA, USA) and then in
Essential 8™ Medium (ThermoFisher Scientific Inc., Waltham, MA, USA) until the for-
mation of iPSCs colonies. The colonies were manually picked and grown on vitronectin
for 3–5 passages. iPSCs were conserved in Essential 8™ Medium and 10% DMSO in
liquid nitrogen.

4.4. iPSC Differentiation in NSCs

The obtained iPSCs were then differentiated from NSCs in 2D. iPSCs growth on
vitronectin at a confluence of 60–70% was cultured in an NSC Differentiation Medium
composed of Neurobasal (ThermoFisher Scientific Inc., Waltham, MA, USA) and Neural
Induction Supplement 50X (ThermoFisher Scientific Inc., Waltham, MA, USA) for 7 days.
The medium was changed every other day and at day 8 exchanged with an Expansion
Medium composed of Neurobasal 2X (ThermoFisher Scientific Inc., Waltham, MA, USA),
Advanced DMEM/F12 2X (ThermoFisher Scientific Inc., Waltham, MA, USA) and Neural
Induction Supplement 50X (ThermoFisher Scientific Inc., Waltham, MA, USA).

4.5. Characterization of the Hydrogel

Cells were encapsulated in Cellink Bioink (IK-102000; Cellink, Gothenburg, Sweden),
printed using the Bioplotter Cellink BioX (Cellink, Gothenburg, Sweden) and crosslinked
using the provided crosslinking agent (Cellink, Gothenburg, Sweden). Cellink Bioink is
a commercial bioink composed of cellulose nanofibrils and alginate. Bioink was printed
using a 0.41 mm nozzle (23G) at 25 ◦C, with a printing speed of 600 mm/min and with a
pressure between 45 and 70 kPa.
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4.5.1. Moisture

The moisture was evaluated, as described by Shawan et al. [32], and modified using
the method described by Piola et al. [33], for both constructs composed of only the hydrogel
and of cell medium DMEM Low Glucose (Carlo Erba, Cornaredo, Italy) and hydrogel in a
1:10 proportion. After 3 days in distilled water, hydrated constructs were weighed and dried
for 3 days at 37 ◦C. The percentage of moisture was evaluated using the following formula:

Moisture(%) =

[
WH −WD

WH

]
× 100

where WH is the weight of hydrated prints before drying and WD is the weight of the
constructs after drying. The experiment was replicated three times with three different
samples for each condition.

4.5.2. Swelling Test

The swelling test was performed, as described by Asohan et al. [36] and Piola et al. [33].
Printed constructs, both constructs composed only of the hydrogel and of cell medium

and hydrogel in a 1:10 proportion, were dried for 2 days at 37 ◦C and then weighed. They
were rehydrated in distilled water and weighed again after the water was removed at
different time points (0, 1, 3, 6 and 24 h). The swelling ratio (S) was calculated using the
following formula:

S =

[
WH −WD

WD

]
× 100

where WH is the weight of hydrated prints and WD is the weight of dehydrated constructs.
The experiment was replicated three times with three different samples for each condition.

4.5.3. Porosity

The porosity of Cellink Bioink was evaluated by using the liquid displacement method,
as described by Piola et al. [33]. We evaluated the porosity of both bioprinted constructs
composed of only hydrogel and constructs composed of cell medium and the hydro-
gel in a 1:10 ratio. A known quantity of absolute ethanol (Carlo Erba, Cornaredo, Italy)
was weighed, and the constructs were submerged. After 5 min of submersion, sam-
ples were weighed and at the end the ethanol was weighted after the removal of the
printed constructs.

The porosity was calculated using the following formula:

Porosity(%) =

[
W1 −W3

W2 −W3

]
× 100

where W1 is the weight of pure ethanol, W2 is the weight of ethanol in combination with
the printed construct and W3 is the ending weight of ethanol without the construct.

The experiment was replicated three times with three different samples for
each condition.

4.6. Printing of NSC Cell Line

NSCs differentiated from iPSCs were encapsulated in sterilized Cellink Bioink
(IK-102000; Cellink, Gothenburg, Sweden) and printed using the Bioplotter Cellink BioX
(Cellink, Gothenburg, Sweden). This bioink has already been used for the encapsulation
and growth of human NSCs, as reported by Chiang et al. [50]. For the encapsulation
process, 6 × 105 cells/mL NSCs were mixed with the bioink in a 1:10 proportion using
two 5 mL syringes and a Luer connector. The solution composed of the bioink and cells
was then printed using the parameters already set in our laboratory [18] and following the
manufacturer’s recommendation (BPR-IK-102000, Cellink, Gothenburg, Sweden). Briefly,
encapsulated cells were printed using a 0.41 mm nozzle (23G) at 25 ◦C, with a printing
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speed of 600 mm/min and a pressure between 45 and 70 kPa. We used an open-source
Computer-Aided Drafting (CAD) software to design an STL grid model (FreeCAD©, ver.
0.16), and the slicing process was assessed using Slic3r (version 1.2.9). The printed 3D
constructs were then crosslinked using the ionic crosslinking agent provided with the
bioink (Cellink, Gothenburg, Sweden). The printed NSCs were cultivated in the Expansion
Medium described above.

4.7. Differentiation of NSCs

NSCs in 2D and the corresponding cells included and printed in the bioink were
cultivated in appropriate media for the differentiation first in MNPs and then in MNs
(Figure 6).
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Figure 6. Workflow for MN differentiation. Induced pluripotent stem cells (iPSCs) were cultured for
14 days for the differentiation in NSCs and their expansion. At day 14, the medium was exchanged
with MNP Differentiation Medium, which allowed the formation of MNPs in 7 days. MNs then
formed in 14 days with the use of two different media, a medium for the formation of iMNs (iMN
Differentiation Medium) and another one for their maturation (MN Differentiation Medium).

NSCs were plated on a vitronectin-coated plate for the 2D condition, or printed in the
bioink for the 3D condition, and cultivated for 7 days with the MNP Differentiation Medium,
composed of Neurobasal 2X, Advanced DMEM/F12 2X, Neural induction supplement
50X, 0.1 µM Retinoic Acid (Sigma-Aldrich, Milan, Italy) and 0.5 µM Purmorphamine
(ThermoFisher Scientific Inc., USA).

MNPs were cultivated for 7 days in a medium composed of Neurobasal 2X, Advanced
DMEM/F12 2X, 0.5 µM Retinoic Acid, 0.1 µM Purmorphamine, 10 ng/mL GDNF (Ther-
moFisher Scientific Inc., USA), 10ng/mL IGF (ThermoFisher Scientific Inc., USA) and
10 ng/mL BDNF (ThermoFisher Scientific Inc., Waltham, MA, USA) to obtain iMNs. iMNs
were then cultivated for 7 days in the same medium of MNPs with the addition of 0.1 µM
Compound E (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) for the complete
differentiation in mMNs, as previously described [51].

4.8. Viability Assay

Due to the impossibility of performing the Trypan Blue exclusion method on the
printed cells, due to the hardening of the constructs by the crosslinking agent, the viability
was evaluated using the LIVE/DEAD Viability Assay (ThermoFisher Scientific Inc., USA),
which has already been used in different 3D bioprinting studies [52–55]. Constructs were
incubated in 0.75 µM calcein AM (Invitrogen, Carlsbad, CA, USA) (green) and in 1 µM
ethidium homodimer-1 (Invitrogen, Carlsbad, CA, USA) (red), dissolved in cold 1X PBS
(Sigma-Aldrich, Milan, Italy). Calcein stained living cells, indicating intracellular esterase
activity, while ethidium homodimer-1 indicated a loss of plasma membrane activity, stain-
ing dead cells. After 45 minutes of incubation, they were washed with 1X PBS and observed
using a microscope Axio Imager 2 (Zeiss, Oberkochen, Germany), with an Axiocam Mrm
camera (Zeiss, Oberkochen, Germany).

Viability was evaluated at days 0, 3, 7, 10, 14 and 20.

4.9. Immunofluorescence Analysis

Cells cultured in 2D and 3D constructs were first fixed in 4% paraformaldehyde
(ThermoFisher Scientific Inc., Waltham, MA, USA), for 15 (2D) and 30 min (3D) and blocked
in 5% Normal Goat Serum (ThermoFisher Scientific Inc., Waltham, MA, USA) and 0.1 %
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tween, for 1 h at room temperature (RT) and for 2 h at 4 ◦C, respectively. They were both
incubated in primary antibody at 4 ◦C overnight (Table 1). For NSC immunofluorescence,
we combined four markers: Nestin, a type VI intermediate filament protein expressed in
the cytoskeleton and in the cells during development [40,56]; SOX2 and SOX1, transcription
factors involved in self-renewal maintenance [41,57] and neurogenesis [58,59], respectively;
and finally, PAX6, a transcription factor present during embryonic development [60]. The
same analysis was performed for MNPs and differentiated MNs with the typical markers
of the specific stages: Olig2, involved in MN and oligodendrocyte differentiation [61] and
PAX6 for MNPs; TUBB3, involved in neurogenesis and axon guidance and maintenance [62];
and Chat, which catalyzes the biosynthesis of the neurotransmitter acetylcholine [63],
for MNs.

Table 1. Primary and secondary antibodies used for the immunofluorescence analysis.

Primary Antibody Secondary Antibody Brand

Nestin 1:100 CFTM 594 goat anti-mouse 1:500 Abcam (Cambridge, UK)
SOX2 1:250 CFTM 488A goat anti-rabbit 1:500 Proteintech (Chicago, IL, USA)
SOX1 1:200 CFTM 488A goat anti-rabbit 1:400 Abcam (Cambridge, UK)
PAX6 1:100 CFTM 594 goat anti-mouse 1:400 Invitrogen (Carlsbad, CA, USA)

Olig2 1:400 CFTM 488A goat anti-rabbit 1:500 Novus Biologicals
(Centennial, CO, USA)

TUBB3 1:400 CFTM 488A goat anti-rabbit 1:500 Abcam (Cambridge, UK)

Chat 1:200 CFTM 594 goat anti-mouse 1:400 Novus Biologicals
(Centennial, CO, USA)

The following day, they were incubated with the secondary antibody (Table 1): 1 h
at RT for the 2D cultures and 3 h at 4 ◦C for the 3D constructs. Finally, the 2D cultures
were mounted with Prolong® Gold anti-fade reagent DAPI (Invitrogen, Carlsbad, CA,
USA) and the 3D structures were mounted with Polyvinyl alcohol mounting medium with
DABCO® anti-fading (Sigma-Aldrich, Milan, Italy), then dried and nail-polished. Samples
were acquired using confocal microscopy (Olympus Fluoview, FV10i, Tokyo, Japan), and
an image was acquired every 15 µm. Three-dimensional reconstructions were performed
using the relative software (Olympus Fluoview, FV10i, Tokyo, Japan). Image analysis
was carried out using the Fiji-ImageJ free software (https://imagej.net/Fiji/Downloads,
accessed on 13 January 2021).

Moreover, immunofluorescence quantification was performed for every confocal slice
of the 3D structure. The corrected total cell fluorescence analysis (CTFC) was calculated on
the whole cell colony and obtained according to previously described protocols using the
following formula [64,65]:

CTCF = Integrated Density − (Area of selected cell ×Mean fluorescence of background readings)

The CTFC of the first layer was normalized as 1.0, and the relative fluorescence
intensity of each other layer was defined as the ratio of the layer CTFC to that of the first
layer, as described by Xu and colleagues in 2019 [66].

4.10. RT-qPCR

Total RNA from NSCs, MNPs and MNs, cultured both in 2D and 3D conditions, was
extracted using TRIzol® (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s
instructions. RNA quality and quantity were evaluated using the NanoDrop spectropho-
tometer (Invitrogen, Carlsbad, CA, USA), and 1000 ng of RNA was reversed-transcribed
using an iScriptcDNA Synthesis Kit (BioRad, Segrate, Italy) following the manufacturer’s
instructions. Finally, a quantitative polymerase chain reaction (qPCR) was performed
using the CFX Connect™ Real-Time PCR Detection System (BioRad, Segrate, Italy) and the
SYBR Green Master Mix (BioRad, Segrate, Italy). Then, 1 µL of cDNA was used, and the
expression of all the genes (Table 2) was run at 60 ◦C.

https://imagej.net/Fiji/Downloads
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Table 2. List of RT-qPCR primers used for the detection of the differentiation step markers.

Gene Primer Sequences (5′-3′) Annealing Temperature

Nestin F GGA AGA GAA CCT GGG AAA GG
R GAT TCA GCT CTG CCT CAT CC 60 ◦C

SOX2 F AGTCTCCAAGCGACGAAAAA
R TTTCACGTTTGCAACTGTCC 60 ◦C

SOX1 F AAATACTGGAGACGAACGCC
R AACCCAAGTCTGGTGTCAGC 60 ◦C

PAX6 F TGTGTGCTCTGAAGGTCAGG
R CTGGAGCTCTGTTTGGAAGG 60 ◦C

TUBB3 F CAGATGTTCGATGCCAAGAA
R GGGATCCACTCCACGAAGTA 60 ◦C

MAP2 F AGGGCTGGTAGGTTGGATCT
R TGTGTCTCTGCCTTTGTATC 60 ◦C

GAPDH F CAG CAA GAG CAC AAG AGG AAG
R CAA CTG TGA GGA GGG GAG ATT 60 ◦C

4.11. Electrophysiological Analysis

Cells were first differentiated in 2D using a medium composed of DMEM High
Glucose (Carlo Erba, Cornaredo, Italy), 1% penicillin/streptomycin (Carlo Erba, Italy),
1% L-glutamine (Carlo Erba, Cornaredo, Italy) and 10 µM all-trans retinoic acid (RA)
(Sigma Aldrich, Italy) for 14 days, and the differentiation was evaluated using the optical
microscope Axio Imager 2 (Zeiss, Oberkochen, Germany) at days 0, 1, 4, 7, 11 and 14. For
the 3D sample, 1 × 106 NSC34 cells were then encapsulated in the bioink. Cells were
treated with 15 mM KCl, as NSC34 cells do not fire action potentials autonomously, and
the treatment with KCl induced them to fire. Experiments were driven simultaneously in
2D and 3D and both with cells treated with KCl for 20 min at 37 ◦C and with cells left in 1X
PBS for 20 min at 37 ◦C as a control sample. After the treatment, an immunofluorescence
analysis with the antibody c-fos (Santa Cruz Biotechnology, Santa Cruz, CA, USA; dilution
1:300) was performed. C-fos is an indirect marker of neuronal activity often expressed when
neurons fire action potentials. C-fos is transcripted transcribed when the neuronal activity is
strong enough to activate the mitogen-activated protein kinase (MAPK) signalling pathway,
which has a low calcium sensitivity. External stimuli cause a rapid transcription of this
gene [67]. Cells were then analyzed using confocal microscopy (Olympus Fluoview, FV10i,
Tokyo, Japan).

4.12. Statistical Analysis

All tests were performed three times, and data were presented as the mean ± SD.
Statistical analyses were performed using GraphPad Prism (GraphPad Prism 8), adopting
the t-test followed by Mann–Whitney test for comparison between two groups, and one-
way analysis of variance test (ANOVA), followed by the Bonferroni test, in the experiments
with more than two groups. A p-value < 0.05 was considered statistically significant.
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