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ABSTRACT: The escalating demand for biocatalysts in pharma-
ceutical and biochemical applications underscores the critical
imperative to enhance enzyme activity and durability under high
denaturant concentrations. Nevertheless, the development of a
practical computational redesign protocol for improving enzyme
tolerance to denaturants is challenging due to the limitations of
relying solely on model-driven approaches to adequately capture
denaturant−enzyme interactions. In this study, we introduce an
enzyme redesign strategy termed GRAPE_DA, which integrates
multiple data-driven and model-driven computational methods to
mitigate the sampling biases inherent in a single approach and
comprehensively predict beneficial mutations on both the protein surface and backbone. To illustrate the methodology’s
effectiveness, we applied it to engineer a peptidylamidoglycolate lyase, resulting in a variant exhibiting up to a 24-fold increase in
peptide C-terminal amidation activity under 2.5 M guanidine hydrochloride. We anticipate that this integrated engineering strategy
will facilitate the development of enzymatic peptide synthesis and functionalization under denaturing conditions and highlight the
role of engineering surface residues in governing protein stability.
KEYWORDS: enzyme stability, denaturants, computational redesign, machine learning, peptide C-terminal amidation

1. INTRODUCTION
Growing concerns related to environmental and energy issues
have propelled the widespread adoption of biocatalytic
approaches, driven by the exceptional selectivity and efficiency
of enzymes.1,2 However, natural biocatalysts often suffer from
inherent fragility, which compromises their activity and
durability under demanding conditions such as elevated
temperatures and high denaturant concentrations.3,4 Over
recent decades, substantial interest has arisen in protein
engineering strategies aimed at enhancing enzyme tolerance to
elevated temperatures.5 These conditions can substantially
weaken internal hydrophobic interactions, electrostatic inter-
actions, hydrogen bonds, and van der Waals forces, ultimately
driving protein unfolding and irreversible aggregation.6 To
address this challenge, computational tools like Rosetta_ddG7

and FoldX8 have been developed to identify stabilizing
mutations by modeling the physical interactions involved and
assessing the energy changes resulting from residue sub-
stitutions. These methods have remarkably contributed to
numerous successful cases in protein engineering, leading to
the creation of enzymes with more robust backbones capable
of withstanding elevated temperatures.9 Nevertheless, devel-
oping a practical computational redesign protocol for
bolstering enzyme tolerance to denaturants like urea and

guanidine hydrochloride (Gnd·HCl) remains a continuous
endeavor. This ongoing challenge has impeded advancements
in optimizing enzymes for protein synthesis, functionalization,
and digestion, which are crucial for meeting the demands of
applications in pharmaceutical manufacturing, chemical
biology, and proteomics research.10−12

The molecular mechanism of denaturant-mediated protein
unfolding is still a subject of debate, with two main hypotheses
proposed: the indirect mechanism and the direct mechanism.13

The indirect mechanism posits that denaturants induce alkane
solvation, disrupting the hydrogen bonding network formed by
water molecules and diminishing internal hydrophobic
interactions.14 In contrast, recent studies have provided
experimental evidence supporting an alternative hypothesis,
suggesting a direct mechanism.15 According to this perspective,
denaturants bind to the protein’s surface, leading to the
formation of a dry molten globule (DMG) state, followed by
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global structural disruption under the influence of dispersion
forces and hydrophobic interactions.16 The direct mechanism
emphasizes the importance of not only reducing backbone
flexibility but also minimizing interactions between protein
surfaces and denaturing agents to enhance enzyme tolerance to
denaturants. Due to the intrinsic chemical and topographical
heterogeneity of the protein surface, efficiently depicting
protein-denaturant interactions poses a challenge for ap-
proaches grounded in physical models.17,18 This challenge
likely contributes to the observed disparities between the
predictions made by Rosetta_ddG and FoldX and the
experimentally measured thermodynamic stability changes of
surface mutations.19 To address this restriction, insights from
strategies used in protein thermostability engineering may
provide valuable guidance. We have previously developed a
strategy known as GRAPE, which combines multiple computa-
tional tools to counter the sampling biases associated with a
single approach for identifying adequate stabilizing mutations
to improve enzyme thermostability during the mutation
accumulation process.20 Building upon this strategy, we
recognized the potential to integrate diverse computational
techniques rooted in distinct principles, such as evolutionary
insights. This integration may offer effective solutions for
identifying beneficial mutations that might otherwise be
overlooked by purely model-driven methods.
In this study, we introduce an engineering strategy termed

“GRAPE_DA” (GRAPE for improving enzyme tolerance to
denaturing agents), which synergistically combines several
data-driven and model-driven methods to comprehensively
predict stabilizing mutations on both the protein surface and
backbone (Figure 1). To demonstrate the effectiveness of this
methodology, we selected a peptidylamidoglycolate lyase
(PAL) as our exemplar for redesign. Our efforts culminated
in the creation of the final mutant, PAL14, which exhibited a
remarkable up to 24-fold enhancement in conversion rates
under the influence of 2.5 M Gnd·HCl. In addition to
mutations that improve the stability of PAL14’s backbone by
refining polar and hydrophobic interactions, several polar-to-
hydrophobic mutations on the protein surface contribute to
the reduction of interaction sites for Gnd·HCl. These
refinements in both the surface and internal regions collectively
mitigate the effects of denaturants on the enzyme, presenting
this strategy as a pragmatic engineering protocol for bolstering
the enzyme robustness in the presence of denaturing agents.
Within the GRAPE framework, we introduced MSAddG, a
machine learning-based module that identified four beneficial
mutations involving the substitution of surface polar residues
with aromatic ones. This unique preference, not commonly

favored by mainstream computational methods, provides
valuable insights into the distinct roles of exposed hydrophobic
residues in maintaining protein stability under diverse
conditions.

2. RESULTS

2.1. Computational Redesign of a Prokaryotic PAL

PAL catalyses the lysis of peptides possessing a C-terminal
hydroxyglycine residue, yielding the corresponding des-glycine
peptide amides and glyoxylic acid.21 In animals, PAL
collaborates with peptidyl−glycine hydroxylating monooxyge-
nase (PHM) to generate C-terminally amidated peptide
hormones and toxins.22 Interestingly, several bacterial proteins
exhibiting similar activities have been experimentally identified,
yet their natural functions and evolutionary trajectories remain
unclear.23 Among these prokaryotic proteins, Exiguobacterium
sp. PAL (ExiPAL), which can be prepared through
recombinant expression in Escherichia coli, has been employed
as an enzymatic platform for traceless protein synthesis and C-
terminal modification.24,25 Nonetheless, the limited robustness
of ExiPAL curtails its broader utilization for peptides and
proteins reliant on Gnd·HCl to maintain solubility.
To address this limitation, we initiated the engineering of

ExiPAL to bolster its stability in the presence of denaturing
agents. Our initial step involved analyzing the structure of
ExiPAL to ascertain the regions amenable to redesign. We
generated a structural model of ExiPAL by employing
AlphaFold226 and aligned it with the crystal structure of
PAL from Rattus norvegicus.27 This analysis revealed that
ExiPAL adopts a β-propeller configuration consisting of six
blades, each encompassing four antiparallel β-strands (Figure
S1A). Within this propeller arrangement, we identified two
distinct cavities. One cavity served as the active site, where a
zinc ion likely coordinates with H95, H210, and H309.
According to the proposed mechanism of RnPAL,27 our
scrutiny pinpointed Y178 and R225 as the putative catalytic
residues (Figure S1B). In the other cavity, a calcium ion
potentially coordinates with the main chains of V43 and I97, as
well as the side chain of D310. Our experiments involving
ethylene diamine tetraacetic acid (EDTA) demonstrated that
EDTA-treated ExiPAL displayed a significant reduction (−21.4
°C, Figure S2) in its apparent melting temperature (Tm). This
underscores the pivotal role of divalent metal ions in
preserving protein stability. To retain the functional signifi-
cance of the side chains involved in catalysis and ion binding,
we preserved residues H95, H210, H309, Y178, R225, and
D310, while the other residues were subjected to engineering.

Figure 1. Schematic representation of enzyme engineering to enhance (A) tolerance to elevated temperatures and (B) resistance to high denaturant
concentrations.
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Having obtained the structural information on ExiPAL, we
delved into leveraging evolutionary insights, another pivotal
resource for enhancing enzyme robustness. Due to the intrinsic
trade-off between function and stability, enzymes often
undergo mutations that increase their activity while sacrificing
robustness during evolution.28 In this context, many data-
driven methods have been devised to unearth stabilizing
mutations by harnessing these accumulated evolutionary
changes. One such method is ABACUS, a structure-based
sequence redesign software grounded in a statistical energy
function.29 ABACUS has demonstrated its utility in improving
the thermostability of enzymes like xylanase30 and glucose
oxidase.31 Given the potential benefits of finding mutations

that reduce backbone flexibility, ABACUS remains a valuable
tool in our efforts to enhance ExiPAL’s denaturant tolerance.
Additionally, strategies such as consensus analysis32 and
ancestral sequence reconstruction33 have been employed to
generate enzyme mutants with improved thermostability.
However, these methods heavily rely on a deep understanding
of the gene family and the intricate selection of relevant
sequences, presenting challenges when applied to enzymes
with obscure evolutionary trajectories, as is the case with
ExiPAL.17

Consequently, we explored alternative avenues for harness-
ing evolutionary information by capitalizing on the rapid
advancements in machine learning within the field of protein

Figure 2. (A) Experimental characterization of the predicted mutations. The lyase activities of the purified enzymes were assessed using α-
hydroxyhippuric acid at 0 and 2 M Gnd·HCl, respectively. WT denotes the wild-type ExiPAL (colored in blue). 17 positive candidates are
represented in grape circles. (B) Locations and the prediction sources of the 17 mutations. (C) Mutations were systematically accumulated, leading
to the generation of PAL14. Each data point represents an accumulation mutant, with colors indicating the respective accumulation round.
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chemistry.34 This has opened up the possibility of more
sophisticated integration of evolutionary knowledge and
experimental data. Drawing upon the extensive repository of
stability parameters stemming from equilibrium denaturant
titrations for single-site mutations in the ProThermDB
database,35 we developed a machine learning-based method
called MSAddG (Figure S5A). MSAddG leverages evolu-
tionary information derived from multiple sequence alignments
(MSAs) of homologous proteins. The network architecture of
MSAddG incorporates two 7-dimensional vectors representing
evolutionary and physicochemical embeddings, respectively
(Table S5). After rigorous training using the designated
dataset, MSAddG demonstrated impressive fitting outcomes
on the training (Figure S5B) and testing (Figure S5C)
datasets. To further evaluate the complementary significance of
MSAddG, we conducted a comparative analysis with several
computational methods, including Rosetta_ddG, FoldX,
ABACUS, and ESM-1b, another model that leverages the
logit discrepancy between mutated and wild-type amino acids
from MSAs to predict mutation effects.36 To prevent data
leakage, we employed another dataset containing the ΔTm
values of single-site mutations from previous experimental
research. The five approaches demonstrated comparable
overall prediction performance, while MSAddG stood out by
uniquely identifying 16 stabilizing mutations that were
overlooked by the other four methods, representing the

highest count of such identifications (Figure S6 and Table S6).
Notably, MSAddG has also proven effective for inherently
unstable proteins with Tm values below 45 °C. In addition,
ESM-1b independently pinpointed 15 stabilizing mutations,
further highlighting the substantial potential of these data-
driven methods in mitigating the sampling bias in model-
driven approaches.
Subsequently, we employed a combination of data-driven

and model-driven techniques to assess the impact of all single-
site mutations within ExiPAL on stability. Mutations yielding
scores surpassing the respective cutoff values underwent
thorough structural scrutiny to detect any potential biophysical
pitfalls. In previous efforts to enhance enzyme thermostability,
mutations that led to the creation of internal cavities, the
disruption of hydrogen-bonding or electrostatic interactions,
and the exposure of hydrophobic residues on the protein
surface were typically excluded.6,20,37 Driven by the direct
mechanism of denaturant-induced protein unfolding, we
intentionally excluded mutations introducing internal cavities
or disturbing internal polar interactions while permitting all
residue substitutions on the enzyme’s surface. After eliminating
duplicate mutations (those of similar types identified by one or
more methods at the same site), we experimentally
characterized 62 mutants using α-hydroxyhippuric acid as a
substrate (Table S1). Mutants displaying simultaneous
increases in activity under 2 M Gnd·HCl, along with a higher

Figure 3. (A) Gel electrophoresis analysis of cell extracts of PALwt and PAL14. M: molecular weight marker. (B) Equilibrium Gnd·HCl-induced
unfolding analysis of PALwt and PAL14. (C) Measurement of the apparent Tm values for PALwt and PAL14. (D) Determination of lyase activities
of PALwt and PAL14 using α-hydroxyhippuric acid as the substrate at various concentrations of Gnd·HCl. Assays were performed in triplicate. Due
to the detection limit of high-performance liquid chromatography (HPLC), the minimum measurable activity is 0.1 mU/mg. (E) The relative
activities of PALwt and PAL14 are shown. Activity in the absence of Gnd·HCl was set as 1.
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ratio of activities under 2 M compared with 0 M Gnd·HCl,
were singled out as positive candidates (Figure 2A). In total,
17 beneficial mutations were identified. MSAddG, ESM-1b,
ABACUS, Rosetta_ddG, and FoldX offered 4, 4, 5, 6, and 2
mutations, respectively, with some overlapping predictions
(Figure 2B). Remarkably, MSAddG identified four beneficial
mutations (R3Y, T45F, E137W, and R141W) that involved the
replacement of exposed polar residues with aromatic ones,
which was not commonly favored by the other four methods
(Table S2). This underscores the significance of incorporating
complementary approaches to identify mutation types that
might be overlooked by prevailing computational tools.
In our pursuit of a more robust variant incorporating

multiple mutations, we initially attempted to construct a
mutant that encompassed all 17 mutations, but this variant was
expressed as inclusion bodies. To overcome the obstacles
posed by negative epistatic interactions, we turned to our
previously proposed greedy accumulation strategy.20 The
mutations were divided into two distinct clusters based on
their positions within the protein structure. Cluster 1
comprised 10 residues located within the region comprising
the β-sheets and β-turns, while cluster 2 included the
remaining 7 residues situated on the loops and α-helix around
the active center. To initiate the accumulation process, we
selected mutant F320Y (PAL1), which exhibited the highest
activity under 2 M Gnd·HCl, as the starting point (Figure 2C).
The subsequent rounds of accumulation involved systemati-
cally combining mutations from cluster 1 with F320Y. This
process yielded the best hit, F320Y/I97L, which displayed
enhanced activity under 2.4 M Gnd·HCl. This mutant served
as the template for the second round of accumulation. By
repeating this iterative process and introducing mutations
E120P, T45F, A256I, Q238R, and N78T, we created the PAL7
mutant. The lyase activity of PAL7 under 2.4 M Gnd·HCl
could not be further enhanced by the inclusion of additional
mutations from cluster 1. At this point, we integrated the
mutations associated with cluster 2 into PAL7, with the Gnd·
HCl concentration for characterizing mutants raised to 2.8 M.
This process spanned four additional rounds of accumulation,
involving mutations N226E, E65T, T246P, and R141W,

resulting in the creation of the PAL11 mutant. Continuing
our efforts, we further increased the Gnd·HCl concentration
and introduced mutations E137W, V33P, and R188P,
culminating in the generation of the PAL14 mutant. PAL14
exhibited lyase activity of 528 mU/mg under 0 M Gnd·HCl
and 3.2 mU/mg under 3.2 M Gnd·HCl conditions. Despite
additional attempts to incorporate the remaining mutations
into PAL14, we observed a reduction in lyase activities under
the elevated Gnd·HCl concentrations. Consequently, PAL14
was designated as the final mutant in our accumulation
process.
2.2. Characterizing the Stability and Catalytic Durability of
PAL14

With the optimized PAL14 variant in our possession, we
conducted a comprehensive series of experiments to assess its
stability. PAL14 exhibited an exceptional expression yield
within E. coli cells, producing approximately 150 mg of purified
enzyme per gram of dry cell weight, surpassing PALwt by over
4-fold. This substantial increase in yield, as evident in the gel
electrophoresis analysis of the cell extracts, clearly indicated its
improved stability in vivo (Figure 3A). Following purification,
both PAL14 and PALwt underwent equilibrium denaturant
titration analyses using Gnd·HCl and urea (Figures 3B and
S3). In comparison to PALwt, PAL14 demonstrated notable
enhancements in denaturant tolerance, with the half
concentration (C1/2) values increasing by 0.52 M for Gnd·
HCl and 0.79 M for urea, respectively. Utilizing data from
equilibrium urea titrations, we calculated the Gibbs free energy
difference of folding (ΔG) for PALwt and PAL14. The ΔG
value decreased from −1.3 to −1.9 kcal/mol, indicating
improved thermodynamic stability of PAL14. Moreover,
PAL14 exhibited a 6.5 °C higher apparent Tm compared to
PALwt, suggesting its elevated kinetic stability (Figure 3C).
The enhanced lyase activity of PAL14 under conditions of up
to 3.6 M Gnd·HCl also aligned with the improved stability
parameters (Figure 3D,E). Additionally, PAL14 demonstrated
increased activity and total turnover numbers by more than 3-
fold when subjected to other denaturants, including 6 M urea
and 0.6 M thiourea (Table S4). These results collectively

Figure 4. C-terminal amidation of the peptides by PALwt and PAL14 in the presence of 2.5 M Gnd·HCl. The peptide substrates were incubated
with PAL at 30 °C and pH 6.5 for 3 h. Conversions were determined by integrating the peak areas of the peptidyl-hydroxyglycine and the produced
peptide amide monitored by HPLC at 220 nm.24 As the lysis reaction can proceed without an enzyme at a relatively slower rate, we included a
control group with no enzyme added to correct for background product formation. Therefore, the improvement folds were calculated using the
following formula: (CPAL14 − CPALwt)/(CPALwt − Cno enzyme), where C represents the conversion.
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underscore the significant increase in the structural robustness
of ExiPAL achieved through the optimization process.
Furthermore, we conducted an extensive assessment of the

catalytic durability of PAL14 using the peptide library DLSYX-
hG (hG represents hydroxyglycine) as the substrate (Figure 4).
In the presence of 2.5 M Gnd·HCl, a condition used in
enzymatic protein conjugation and functionalization,24 PALwt
demonstrated only modest enhancement in peptide amide
production compared to a control group without the enzyme.
In contrast, PAL14 displayed a remarkable improvement in
enzymatic conversion rates, achieving up to a 24-fold increase.
These findings highlight PAL14’s immense potential for
facilitating the C-terminal functionalization of peptides that
necessitate denaturing agents to maintain solubility. Moreover,
we anticipate that the engineering strategy presented in this
work will serve as a blueprint for developing enzymes more
resistant to high denaturant concentrations, thereby promoting
the application of enzymatic biomacromolecule synthesis and
modification technologies.

2.3. Impacts of Mutations on PAL14’s Denaturant
Tolerance

In the context of the direct mechanism of denaturant-induced
protein unfolding, the initial step involves the tight binding of
denaturants to the protein surface through interactions with
side chains and main-chain amides. Subsequently, denaturants
may penetrate the protein’s core, engaging with internal
residues and facilitating protein unfolding.16 This mechanism
emphasizes the importance of minimizing denaturant binding
to the protein surface, in addition to the commonly studied
changes in ΔG values, for improving the enzyme’s tolerance to
denaturants. In light of this, we delved into exploring
biochemical parameters that could reflect the interaction
between the enzyme and denaturants. Previous studies have
reported that during equilibrium denaturant titrations,
alterations in the slope (m value) of the fitted line of ΔGU
versus denaturant concentration correlate with changes in
denaturant accessibility of proteins under varying pH
conditions.38,39 To investigate this further, we performed
equilibrium Gnd·HCl titrations for wild-type PAL and PAL
mutants and calculated their m values (Figure S3 and Table

Figure 5. (A) m values of the fitted ΔGU versus Gnd·HCl concentration lines for PAL variants. (B−J) Structural insights into the impacts of the
introduced mutations in PAL14. Structural models of PALwt (grey) and PAL14 (cyan) were generated using AlphaFold2. Yellow dashed lines were
used to represent hypothesized electrostatic and cation−π interactions in Figure 5G, whereas in the other figures, they denoted proposed hydrogen
bonding interactions. The prediction confidence levels are illustrated in Figure S4.
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S2). The results indicate that m values decreased for a group of
surface mutations, shifting from polar to hydrophobic,
including T45F, E120P, E137W, R141W, R188P, and T246P
(Figure 5A−F). Remarkably, the E120P and E137W mutations
substantially reduced the m value by 0.46 and 0.38 kcal/mol/
M, respectively. Although these mutations exhibit an increase
in ΔG values due to disruption of the native hydrogen bonds,
they reduce the interactions between Gnd+ ions and the
protein surface, ultimately enhancing the C1/2 values of Gnd·
HCl-induced unfolding. In contrast, the introduction of a
negatively charged residue in the Zn2+ cavity (N226E)
increased the m value by 0.20 kcal/mol/M. This aligns
consistently with an electrostatic theory, which suggests that
electrostatic interactions between Gnd+ ions and negatively
charged residues may represent the predominant mechanism
behind Gnd·HCl-induced destabilization.40,41 These results
underscore the significance of surface engineering, particularly
the reduction of surface negatively charged residues and the
substitution of exposed polar residues with hydrophobic ones
in enhancing enzyme tolerance to denaturing agents.
Regarding the N226E mutation, structural analysis showed
that the introduced side-chain carboxylate group may interact
with R225 and R250 through electronic interactions (Figure
5G). The pKa of the catalytic residue Y178 is proposed to be
affected by R225 via cation−π interaction;27 thus, the N226E
mutation might impact the properties of catalytic residues
rather than improving structural robustness.
In addition to surface engineering, several factors that are in

line with protein thermostability engineering have also
contributed to the heightened robustness of PAL14. The
introduction of new hydrogen bonds (E65T, Q238R, and
F320Y) likely induces a more constrained state within the loop
regions (Figure 5H−J). Furthermore, the introduction of
proline residues on the loops, attributed to the V33P, E120P,
R188P, and T246P mutations, might play a pivotal role in
reducing unfolding entropy, thereby favoring the native folding
state of the enzyme.42,43 Additionally, the I97L and A256I
mutations appear to refine the surrounding steric hindrance
and hydrophobic interactions, resulting in a reduction in ΔG
values. These findings highlight the collaborative efforts
between model-driven and data-driven tools in redesigning
both the surface and internal regions of the enzyme, ultimately
enhancing PAL14’s tolerance to high denaturant concen-
trations.

3. DISCUSSION
Over more than half a century, Gnd·HCl and urea have served
as fundamental reagents for assessing protein thermodynamic
stability, amassing a vast dataset that includes mutation-related
stability changes.44,45 While these data have played a pivotal
role in refining parameters within various computational tools,
the intricate molecular interactions in the realm of protein
chemistry extend beyond the scope of a concise energy
function. Consequently, researchers have adopted strategies
that combine various computational methods to mitigate the
limitations of each approach. Alongside well-established
model-driven methods, data-driven approaches leveraging
evolutionary insights have attracted significant attention. For
instance, EmCAST, which relies on an empirical potential
related to Cα dihedral angle preferences, has been developed to
predict stabilizing mutations, particularly those involving
surface hydrophilic residues in monomeric proteins.46

However, accurately assessing the interactions between surface

hydrophobic residues, especially aromatic ones, and solvent
molecules remains a challenging task in computation protein
redesign. It’s imperative to acknowledge that urea and Gnd+

ions can interact not only with hydrophilic but also
hydrophobic side chains.47 Recent computational modeling
studies have advanced the notion that Gnd+ ions may engage
in water-assisted cation−π interactions with individual
aromatic amino acids.48 Nonetheless, due to the intrinsic
chemical and topographical heterogeneity of the protein
surface, these interactions are notably influenced by the
hydration patterns of Gnd+ ions and the relative orientations
between Gnd+ ions and the aromatic rings.49,50 In the case of
ExiPAL, among 11 attempts involving the substitution of
exposed hydrophilic residues with aromatic ones by
Rosetta_ddG, FoldX, ABACUS, and ESM-1b, only one
beneficial mutation (Q102Y) was identified. Regrettably, this
mutation did not synergize with other substitutions to further
enhance the enzyme robustness. In contrast, MSAddG
pinpoints four beneficial mutations (R3Y, T45F, E137W, and
R141W) of this type in 11 attempts, highlighting its
effectiveness. Although this black box model may not directly
provide a detailed energy function describing the interactions
between aromatic residues and denaturants, it does shed light
on unique insights into surface engineering patterns.
Specifically, it emphasizes the usefulness of introducing
exposed hydrophobic residues to reduce denaturant−protein
interactions and enhance enzyme denaturant tolerance by
decreasing the m value. Moreover, this work highlights the
significance of collaboration between data-driven and model-
driven methods in the comprehensive evaluation of all
mutations, on both the protein surface and backbone, during
enzyme stability engineering.
We should note that while PAL14 exhibits improvements in

both thermodynamic and kinetic stability compared to wild-
type PAL, a subset of accumulated mutations, such as T45F
and E137W, results in an enhanced C1/2 value and a decreased
Tm value simultaneously. This observation aligns with previous
research findings, which indicate that mutations can exert
diverse effects on enzyme apparent robustness under varying
conditions due to differences in underlying mechanisms.19

Consequently, to develop specialized machine learning
methods tailored to enhance enzyme robustness across
demanding conditions beyond high denaturant concentrations
and elevated temperatures, the availability of experimental data
under specific conditions becomes paramount. These con-
ditions worthy of study may include extreme pH environments
as well as high concentrations of salts, organic solvents, and
surfactants. This highlights the critical need to establish high-
throughput experimental platforms capable of consistently
generating standardized data on protein mutants’ stability and
activity for model training. We anticipate that with high-quality
data and advanced machine learning technologies, the
integrated engineering strategy used in this study may be
seamlessly extended to redesign proteins with enhanced
functionality for a multitude of other challenging scenarios
encountered in biocatalysis and beyond. Moreover, aside from
single-site mutation prediction, artificial intelligence models
may have the potential to optimize the accumulation paths,
thereby reducing engineering time and expediting the
development of robust biocatalysts.
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4. METHODS

4.1. Software and Computational Methods
Chemical structures were crafted by using ChemBioDraw Ultra
(version 14.0). To generate structure models of PAL variants,
AlphaFold 2 (version 2.0.0) was employed with the settings as
previously described,26 and the resulting models were visualized using
PyMOL (version 1.7). The final predictions were ranked based on
their pLDDT values, and the top-ranked structural model was selected
for further analysis. Energy calculations were conducted using
Rosetta_ddG (version 2021.16.61629),7 FoldX (version 5),8 and
ABACUS (first version),29 with settings as described by Cui et al.20

To utilize MSAddG, the MSA of PALwt was generated by searching
the UniRef30 database and applying the same settings employed
during the training of MSAddG. More details on the employment of
MSAddG and ESM-1b are described in the Supporting Information.
The selection criteria for mutations chosen for structural inspection in
each method were as follows: ABACUS energy < −3 a.e.u., ESM-1b
score < −1.5, predicted ΔΔG < −1.5 kcal/mol (Rosetta_ddG and
FoldX) or −1.0 kcal/mol (MSAddG).
4.2. Site-Directed Mutagenesis
The plasmids for the mutants were generated using a QuickChange
site-directed mutagenesis kit (Agilent). After DNA amplification, the
PCR products were subjected to DpnI (New England Biolabs)
treatment to digest the original DNA template. These products were
subsequently transformed into E. coli TOP10 competent cells. The
mutated protein sequences were confirmed through DNA sequencing.
4.3. Expression and Purification of PAL
The expression strain E. coli BL21(DE3), which harbored the vector
derived from pET28b-PALwt, was cultured in 50 mL of LB broth
medium supplemented with 50 mg/L kanamycin sulfate at 37 °C and
180 rpm. When the optical density at 600 nm reached approximately
0.8, protein expression was induced by adding 0.5 mM IPTG.
Subsequently, the cells were cultured at 30 °C and 180 rpm for 16 h.
The cells were then harvested via centrifugation (14,000g, 10 min, 4
°C), resuspended in a lysis buffer (containing 50 mM Tris, 200 mM
NaCl, and 20 mM imidazole, pH 8.0), and subjected to sonication for
cell lysis. After centrifugation (14,000g, 60 min, 4 °C), the cell extract
was loaded onto a 5 mL HisTrap HP column (GE Healthcare). His-
tagged PAL was eluted using an elution buffer (containing 50 mM
Tris, 200 mM NaCl, and 300 mM imidazole, pH 8.0). The buffer was
subsequently exchanged with a storage buffer (50 mM Tris, 0.1 mM
ZnCl2, and 0.1 mM CaCl2, pH 8.0) via ultrafiltration (10 kDa Amicon
centrifugal filter, Millipore). The PAL variants were concentrated to a
final concentration of 4 mg/mL and stored at −20 °C until use.
4.4. Determination of Thermodynamic and Kinetic
Stability of PAL
The experiments were conducted by using the Prometheus NT.48
system (NanoTemper Technologies, Munich, Germany). The
fraction of folded and unfolded proteins was determined based on
the ratio of fluorescence changes at 350 and 330 nm. To determine
the Tm values, a sample of the protein solution at 0.2 mg/mL
(prepared by diluting the storage protein solution with 200 mM MES
buffer, pH 6.5) was subjected to a heating process ranging from 25 °C
to 85 °C at a heating rate of 1.0 °C/min. For equilibrium denaturant
titrations, 24 samples of the protein solution at 0.2 mg/mL (prepared
by diluting the storage protein solution with 200 mM MES buffer
containing 0−4 M Gnd·HCl or 0−8 M urea, pH 6.5) were incubated
at 4 °C for 18 h equilibrium, and then fluorescence changes were
measured at 25 °C.
4.5. Determination of Lyase Activity with
α-Hydroxyhippuric Acid
In a 1.5 mL tube, 80 μL of a reaction buffer consisting of 200 mM
MES and varying concentrations of denaturants (0 to 5 M Gnd·HCl,
0 to 7.5 M urea, or 0 to 0.75 M thiourea) at pH 6.5, along with 10 μL
of a 10 mM α-hydroxyhippuric acid solution (prepared in 200 mM
MES buffer, pH 6.5), and 10 μL of a 4 mg/mL PAL solution, were

combined and mixed thoroughly. The enzymatic reactions were
carried out at 30 °C for 60 min and then terminated by adding 100 μL
of a 2 M HCl solution. The formation of benzamide was monitored
by HPLC at 254 nm. One unit (U) of enzyme activity was defined as
the amount of the enzyme capable of producing 1 μmol of benzamide
per minute.
4.6. Determination of Lyase Activity with Peptides
Initially, the peptides DLSYKG, DLSYEG, DLSYTG, DLSYFG,
DLSYLG, and DLSYAG were hydroxylated using PHM, following
established protocols.24 Then, in a 1.5 mL tube, 100 μL of a reaction
buffer composed of 200 mM MES and 5 M Gnd·HCl at pH 6.5, along
with 80 μL of a 0.125 mM DLSYX-(hG) solution (prepared in 200
mM MES buffer at pH 6.5) and 20 μL of a 4 mg/mL PAL solution
were combined and mixed thoroughly. The reactions were conducted
at 30 °C for 3 h, and the samples were quenched by adding an equal
volume of 2 M HCl solution. Conversion rates were estimated by
integrating the peak areas of DLSYX-NH2 and DLSYX-(hG)
monitored by HPLC at 220 nm.
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