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Highly Sensitive and Transparent 
Strain Sensors with an Ordered 
Array Structure of AgNWs for 
Wearable Motion and Health 
Monitoring
Fanqi Yin1,2, Huajun Lu1,2, Hao Pan1,2, Hongjun Ji   1,2, Shuai Pei1,2, Hao Liu1,2, Jiayi Huang1,2, 
Jiahui Gu1,2, Mingyu Li1,2 & Jun Wei3

Sensitivity and transparency are critical properties for flexible and wearable electronic devices, and 
how to engineer both these properties simultaneously is dramatically essential. Here, for the first time, 
we report the assembly of ordered array structures of silver nanowires (AgNWs) via a simple water-
bath pulling method to align the AgNWs embedded on polydimethylsiloxane (PDMS). Compared with 
sensors prepared by direct drop-casting or transfer-printing methods, our developed sensor represents 
a considerable breakthrough in both sensitivity and transparency. The maximum transmittance was 
86.3% at a wavelength of 550 nm, and the maximum gauge factor was as high as 84.6 at a strain of 30%. 
This remarkably sensitive and transparent flexible sensor has strictly stable and reliable responses to 
motion capture and human body signals; it is also expected to be able to help monitor disabled physical 
conditions or assist medical therapy while ensuring privacy protection.

Highly stretchable and sensitive strain sensors are widely used in health monitoring, medical assistance and elec-
tronic skin applications because of their signal transmission functions1–9. To improve the sensor properties, two 
aspects are typically considered: material selection and sensor structure10–13, which means that either composite 
materials, such as graphene or carbon nanotubes (CNTs), are applied as the conductive layer to improve their 
capability14–19, or the entire sensor is designed to have a particular structure, such as an elastic porous sponge20. 
Although the most conductive and flexible materials are graphene and CNTs, they have a deep color, leading to 
low transparency21. Over the last few years, nanoparticles or mixtures of nanowires (NWs) and nanoparticles 
have been investigated22–24. Disappointingly, nanoparticles require high-temperature sintering to obtain sufficient 
conductivity25,26, resulting in the entire process being very complex and unacceptable for heat-sensitive materials.

In recent years, silver (Ag) NWs have been widely developed because of their outstanding mechanical 
and electrical properties27–31. Ha et al. used AgNWs as a sensing film and proposed multidimensional resis-
tive strain sensors with a large gauge factor (GF) of >20 and a wide strain-detectable range of up to 60%32 
.Polydimethylsiloxane (PDMS) is a common material in flexible sensors with excellent elasticity and transpar-
ency, and most proposed sensors are composed of AgNWs coated onto PDMS as the conductive layer, and the 
inactivity of PDMS ensures no reactivity with AgNWs. A sandwich-structured sensor of PDMS/AgNW/PDMS 
has been proposed33, which maintains complete encapsulation and avoids large-area irreversible deformation and 
translocation of AgNWs in the PDMS matrix. Because of the hydrophobicity of PDMS, more AgNW solution 
must be dropped onto PDMS to ensure good conductivity34. If the transfer-printing method is adopted35, loss of 
the AgNWs easily occurs during the transfer process. Neither the direct drop-casting nor the transfer-printing 
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method can guarantee a highly uniform AgNW film, and both methods result in low sensitivity and transparency 
(maximum gauge factor is approximately 1433 and the sensor is nearly opaque).

Uniform and thin conductive films are vital to both the sensitivity and transparency of a sensor36,37. Ordered 
array structures are competitive for simultaneously maximizing the above two key features. Compared with pat-
terning AgNWs on glass or PET38,39, there are more difficulties in forming ordered array structures on PDMS 
because of its hydrophobicity and large surface roughness and its flexible and elastic properties. These character-
istics of PDMS limit the implementation of conventional aligning methods on it. In general, previous reports have 
sacrificed high sensitivity and transparency40–42, which are important for some situation. For example, in some 
applications, sensors are used to assist therapy or motion, such as heart rate monitors for heart disease patients, 
who are not willing monitors to tell tales of their health, so the transparency of sensors prevents monitors from 
privacy disclosure. Thus, balancing conductivity, sensitivity, transparency, tensile properties and reliability is par-
ticularly challenging for wearable and flexible electronics.

Here, we propose an effective and easy processing method by convection-induced interfacial self-assembly 
based on water-bath pulling, which is more easily available and cost-effective than some other methods, involv-
ing lithography technology, to orderly align AgNWs on PDMS38. For the first time, we fabricated two layers of 
AgNWs with uniform and regular orientation embedded on PDMS. Then, they were molded into a PDMS/two 
ordered AgNW array layers/PDMS sandwich structure to enhance the stability and reliability of the sensitive 
and transparent sensor. The prototype sensor with highly aligned networks of AgNWs fully satisfies the practical 
requirements of simultaneous high sensitivity, transparency and flexibility. This sensor has powerful potential to 
be applied for assisting motion detection, health monitoring and treatment, while the transparency of the sensor 
simultaneously protects the privacy of disabled people.

Results and Discussion
Ordered array structure.  Stable floating interface.  To obtain an ordered array structure of AgNWs on 
a flexible substrate, we propose a water-bath pulling method by pulling the substrate out of solution and align-
ing the AgNWs through convection-induced interfacial self-assembly. Generally, when dropping a droplet of a 
NW-ethanol solution into hot water, it will temporarily stay on the water surface instead of precipitating due to 
gravity and then spread because of the Marangoni effect, forming an ethanol/water interface. Moreover, the NWs 
will be directionally arranged in this thin interface by the shear force derived from the movement of two fluids 
against each other. By pulling the substrate out of solution, we successfully transferred NWs onto PDMS with 
order arrays. The detailed process is schematically shown in Fig. 1.

In previous reports38,39,43, upon continuously heating the bottom of a beaker, convection flow will form in the 
water, and upward-flowing and downward-flowing streams will appear in the center of and around the edge of 
the water in the beaker, respectively, which keep a droplet afloat on the surface of the water. To test that claim, we 
dropped the solution at the edge of the beaker where downward-flowing streams should exist and turned off the 
heating source to prevent water from sustaining a convection flow, and the droplet was supposed to precipitate 
rapidly in both situations. However, we still observed a thin layer of AgNWs floating on the water surface, which 

Figure 1.  Fabrication process of the sensitive and transparent flexible sensor by the water-bath pulling method.
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illustrates that the convection flow generated from heating is not the main reason for the formation of a stable 
interface (Fig. S1a).

A series of experiments was designed to explore the reason for this phenomenon, as shown in Fig. S1b–h. 
When the room-temperature AgNW solution was added to hot water, the contact interface instantly cooled, 
leading to a temperature difference between the solution surface and its bottom. Convection flow, referred to as an 
upward-flowing stream here, together with surface tension, helped the droplet overcome gravity. Regardless of the 
position of the droplet on the water surface, the upward-flowing stream would result in a floating state (Fig. S1f). 
If the AgNW solution temperature was higher than that of the water, convection flow from the surface to bot-
tom (downward-flowing stream) occurred, which promoted precipitation (Fig. S1h). If the temperatures of the 
two solutions were approximately equal, no convection flow occurred, and the droplet quickly spread (Fig. S1d). 
Based on these observations, we speculated that the formation of a stable interface is probably due to local heat 
convection between the hot water and the AgNW solution (droplet of ethanol).

Aligning AgNWs on PDMS by pulling.  To form a better and more stable ethanol/water interface, we increased the 
temperature of the deionized water to enhance the strong convection flow. In addition, we increased the concen-
tration of the AgNW solution to ensure a closer arrangement of AgNWs at the interface. Furthermore, a lifting 
machine was utilized to provide a uniform and steady force to pull the PDMS substrate out of solution.

Figure 2a–c show the appearance and characterization of the AgNWs after the one-step synthesis (see the 
experimental section for details). The diameter of the NWs was approximately 40–60 nm, and the dimensions 
of the wires were very uniform. Importantly, if the AgNWs were thinner and longer (larger length-to-diameter 
ratio), the ohmic contacts among the Ag wires formed more easily. However, wires that are too long may result 
in a disturbance and increase the difficulty of controlling their orientation during pulling. To gain a better direc-
tional orientation on PDMS, we utilized AgNWs with diameters of 40–60 nm and lengths of 30–50 μm (Fig. S2).

Compared with the NW alignments formed with traditional technologies, the orientation effect produced in 
this paper was more obvious in both the single and double layers (Fig. 2d–f). Fast Fourier transform (FFT) anal-
ysis by MATLAB, shown in the insets, indicated the presence of a very small radial angle in the single layer and 
nearly 90° and 30° in the double layers, suggesting that the AgNWs had a strong one-dimensional, controllable 
orientation on PDMS. Some other kinds of substrates, such as PET and glass, were tested using our method, and 
well-ordered array structures of AgNWs were also obtained (Fig. 3a,b). More importantly, through our opti-
mized water-bath pulling method, these NWs can be aligned over a very large area with a multilevel orientation 
(Fig. 3c), and even on a substrate area of 10 cm × 10 cm, an orthogonal orientation of the AgNWs was successfully 
achieved (Fig. 3d). According to the confocal laser scanning microscope (CLSM) image and its FFT analysis, 
as shown in Fig. 3c, the two directional textures were very strong, and the radial angle was approximately 90°. 
According to our experiments, AgNWs were easily redissolved upon the second pulling and were rarely aligned 
in an obvious double-layered network structure. Mostly within a small area, some amount of ordering alignment 
for the double layer was present. To solve this problem, we dried the substrate in an oven at 70 °C for 5 min after 
the first pulling process. On the one hand, this process helps evaporate water and ethanol from the PDMS sur-
face, maintaining a dry PDMS surface and makes preparations for the following pulling process. On the other 

Figure 2.  Characterization and ordered array structures of the AgNWs. (a) TEM images of AgNWs 
synthesized by a one-step polyol method. (b) The histogram of the diameters of the AgNWs. (c) The histogram 
of the lengths of the AgNWs. (d) SEM images of a single layer of AgNWs aligned by water-bath pulling. Inset: 
FFT analysis image. (e) SEM images of double layers of AgNWs with an angle of 90° aligned by water-bath 
pulling. Inset: FFT analysis image. (f) SEM images of double layers of AgNWs with an angle of 45° aligned by 
water-bath pulling. Inset: FFT analysis image.
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hand, the adhesion between the AgNWs and PDMS substrate will be stronger to avoid dissolution in the next 
pulling operation. More experiments were designed to qualitatively control the space between adjacent AgNWs 
by water-bath pulling, and we found that higher temperatures of deionized water and higher concentrations and 
volumes of the/ethanol solution contribute to the close arrangement of AgNWs on the substrate, as shown in 
Fig. S3. More details about the experiments are discussed in the Supporting Information.

Transparency and conductivity.  These conductive ordered array structures prepared by our water-bath 
pulling method have many advantages in potential applications due to their excellent orientations. First, trans-
parent conducting films are widely applied to numerous areas, such as solar cells and touch panels, in which high 
transparency and conductivity are needed. However, the color depth of conductive AgNW layers depends on the 
layer thickness and the NW arrangement. Stacking and overlapping of NWs are commonly applied in traditional 
methods to improve the conductivity at the expense of transparency. In addition, the PDMS substrate itself is 
strongly hydrophobic, which obstructs normal coating with a solution. To obtain better conductivity, the PDMS 
surface is typically coated with a thick layer of randomly aligned NWs by a direct drop-casting technique44,45. 
Amjadi et al. used spin coating to drop a solution onto glass46 and then transferred NWs to PDMS by peeling 
off the partially cured PDMS and avoiding the uneven distribution of AgNWs on PDMS. However, dropping 
a solution onto glass or a wafer cannot guarantee a uniform distribution of NWs, and spin coating has strict 
requirements for the concentration of the NW solution to control the film thickness. Furthermore, material con-
sumption, including NWs falling off the substrate, leading to nonuniformity and open circuits in local areas, is 
also a notorious issue.

When the conductive layer is prepared by our water-bath pulling method, the AgNWs are attached to the 
PDMS surface by action of the upward force, and the water and ethanol will fall off the substrate because of the 
hydrophobicity of the substrate. After a 90° rotation of the above PDMS, an overlay layer of AgNWs was aligned 
on top of the previous layer to form an orthogonal array structure to enhance the ohmic contact to improve its 
conductivity. According to a four-point probe resistivity measurement system, its square resistance was just 25 Ω/
sq. Due to the organized distribution of the AgNWs, minimal stacking and overlapping among wires occurred, 
which avoids redundant contacts that lead to low sensitivity and keeps the obtained conductive layer within a 
thin and uniform film. In addition, the NWs formed a regular mesh or grid, leading to a sensor with better trans-
parency. After packaging with covered PDMS, the maximum transmittance of our strain sensors reached 86.3% 
with a resistance of only 168 Ω (because our sensors were sandwich structures of PDMS/AgNW/PDMS and their 
dimensions were kept constant, we characterize their conductivity by using resistance in the following section). 
However, for the sensor manufactured by transfer printing under the same specifications, the transmittance was 

Figure 3.  Adaptability of the water-bath pulling method on different substrates. (a) SEM images of double 
layers of aligned AgNWs coated on a PET substrate. Inset: contrast between the coated and uncoated substrate. 
(b) SEM images of double layers of aligned AgNWs coated on glass substrate. Inset: contrast between the coated 
and uncoated substrate. (c) CLSM image of double layers of aligned AgNWs on a large PDMS substrate. Inset: 
FFT analysis. (d) Optical image of double layers of aligned AgNWs on a large (10 cm × 10 cm) PDMS substrate. 
Its transparency is clearly outstanding since our university logo is clearly visible under real capturing conditions.
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less than 75% at the same resistance. If we pursue better transparency, excessive resistance will lead to poor 
performance.

To increase the reliability of the results, we fabricated multiple sensors by each method and screened out 
three sensors which are close to each other in resistance value in each group, then we tested the transparency and 
sensitivity. Figure 4a shows the transmittance of the strain sensors under different resistances made with three 
methods. The results clearly indicate that the sensors made by the water-bath pulling method have a better trans-
mittance, exceeding 80%. In contrast, ultralow transparency was present after drop casting, and the transmittance 
was only 21%. For the sensors obtained by the transfer method, the transmittance was below 80%. The appearance 
of the usable strain sensors fabricated by the three methods is shown in the inset of Fig. 4a, including sensors 
fabricated by the transfer-printing, water-bath pulling and direct drop-casting methods. Obviously, the middle 
sensor has the best transparency among the three samples. We can clearly observe the numbers, characters and 
patterns of our university logo. In contrast, the other two sensors possess poor transparency because of the thick 
AgNW layer and their random distribution. According to the experiments above, we can conclude that a large 
thickness of the AgNW layer contributes more to conductivity but reduces the transmittance of the sensors.

Figure 4c–e show the height profiles of the AgNW networks fabricated by the three methods. In Fig. 4c, 
AgNWs are distributed uniformly, and a regular grid structure can be obviously seen. The height is distributed 
mainly within the range of 1.0–1.5 μm. In Fig. 4d, more AgNWs were observed and distributed irregularly, and 
stacking and overlapping can be found, resulting in a wider range of height distribution, mainly from 1.5 to 
5.0 μm. In Fig. 4e, few stacks were found because AgNWs at the bottom of a stack on the substrate cannot be 
transferred due to not touching the liquid PDMS, but overlapping was still observed. The height distribution was 
mainly from 2.5 to 6.0 μm. More AgNWs were lost during transfer, resulting in a sparse network.

Sensitivity and repeatability.  Next, we tested the mechanical properties and sensitivity of the sandwich 
strain sensor with an ordered array structure of AgNWs. The test results of average value are shown in Fig. 4b. 
Three original ΔR/R0-Strain curves were depicted with similar lighter color in each group.

During the stretching process, if the stretching amplitude was too large, the resistance change went beyond 
the measurement range. At this point, we believe that the sensor reached the maximum stretch. We found that the 
conductive layer in the sensor had a remarkable effect on its sensitivity and stretchability. The conductive layer 
formed using direct drop-casting possessed a very small resistance (only 2.4 Ω); however, little resistance change 
occurred during stretching46, which indicated that the sensitivity of the entire sensor was very low, regardless of 
micro- or large-scale stretching. For the sensor formed by the transfer method, conductive layers with different 
resistances were obtained by controlling the solution concentration (amount of AgNWs). When an application 
requires very good conductivity, a sensor can be fabricated with a small resistance (10.8 Ω) using a high solution 
concentration. Similar to the above discussion, the tensile performance was good, but the sensitivity was poor. By 

Figure 4.  Optical and electrical performances of sensors fabricated by different methods: ■2.4 Ω by drop 
casting, •10.8 Ω by transfer printing, ♣36 Ω by transfer printing, ♦186 Ω by transfer printing, ▲68 Ω by water-
bath pulling, ★168 Ω by water-bath pulling. (a) The transmittance of sensors as a function of resistance. Inset: 
optical image of three different sensors fabricated by transfer printing, water-bath pulling and drop casting. (b) 
ΔR/R0 versus tensile strain for various sensors. Height profiles of the AgNW network by (c) water-bath pulling, 
(d) drop casting and (e) transfer printing.
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increasing the resistance using a low solution concentration, the gauge factor (GF) during large-scale stretching 
was considerably increased and reached a maximum of 19.6 when the resistance was 186 Ω. However, unfor-
tunately, the stretching ability was still poor, with a maximum strain of 30%. Then, we compared two sensors 
formed using the water-bath pulling method with resistances of 168 Ω and 68 Ω. Surprisingly, we found that 
these sensors were much more sensitive than the sensors made by the other two methods. In particular, during 
small-scale stretching, these sensors maintained a relatively high sensitivity (GF is 29.3 and 16.7 at a strain of 10%, 
respectively), which has rarely been reported before. Furthermore, the maximum GF of the sensor with a 168 Ω 
resistance during large-scale stretching reached 84.6, far greater than the values reported in the literature35,46. To 
gain stable tensile properties, we further increased the number of droplets in the water-bath pulling method to 
obtain a sensor with a resistance of 68 Ω, and its largest GF was approximately 43 with a good stretching perfor-
mance when the strain was 40%.

To conclude, the reason that the sensitivity of our sensor is better than that of those made by drop-casting and 
transfer-printing methods is that our sensor with an aligned AgNW structure is more uniform than the AgNW 
conductivity layer formed by other methods, avoiding stacking and overlapping dramatically, which prevent 
AgNWs from moving with the PDMS when strain is applied. According to simulations, when only consider-
ing unidirectional NWs that are stretched parallel to the alignment direction, the junctions quickly disconnect, 
resulting in sparse NWs46. Relatively, the NWs squeezed in the vertical direction are more closely arranged. 
However, considering the above two factors, if the AgNWs are aligned in an orthogonal arrangement, chang-
ing the stretching direction will result in a large resistance change (high sensitivity). Meanwhile, the squeezed 
wires (vertical direction) will be more closely arranged, resulting in more probable connections with wires in the 
orthogonal direction to ensure a conductive pathway. Due to these reasons, the proposed sensor with an ordered 
array structure maintains both a high sensitivity and good tensile properties47. Additionally, the thinness of the 
conductive layer contributes greatly to the sensor sensitivity. The conductive layer is much thinner in our sensor 
made by water-bath pulling (only two AgNW layers) than that in sensors made by the drop-casting (more AgNW 
solution is applied due to the hydrophobicity of PDMS) and transfer-printing (to compensate for the loss of 
AgNWs, the conductive layer is much thicker) methods, as shown in the inset of Fig. 4a.

For NW-material sensors, during stretching, the NWs will sustain excessive displacement, which may cause 
the entire sensor to fail due to open conductive paths. In this way, if the recovery capability of the sensor is poor 
or if the NWs sustain large and permanent displacement, the entire sensor will lose function or fail to work. 
Our sandwich-structure sensors with an ordered array structure of AgNWs have natural advantages in terms of 
reliability. The package structure avoids the entry of external impurities and humidity and the loss of AgNWs. In 
addition, the complete encapsulation ensures that the AgNWs quickly recover to their original position with the 
recovery of the PDMS after stretching, which guarantees that the sensors function repeatedly and reliably.

Sensing and application of the strain sensor.  It is noticeable that upon stretching the sensor, despite the 
protection from encapsulation, the NWs will be stressed by the deformation of PDMS, which is one reason for the 
resistance change in a sensor. In general, a sensor demonstrates good recovery after microstretching. However, 
when a sensor undergoes larger stretching movements, such as finger bending or knee moving, the AgNWs will 
gather, resulting in NWs missing from some areas, which may cause an open circuit. In our sensor fabricated by 
water-bath pulling, the mentioned problems can be solved. Figure 5 shows the signal monitoring of our strain 
sensors during stretching (Fig. 5a), bending (Fig. 5b), and twisting (Fig. 5c). Repeated and periodic peaks indicate 
quick and strict responses when the sensor is loaded with regular or irregular stress inputs. As an example, in 
Fig. 5b, the different shapes of the signal curve correspond to a series of deformations (displacements) of the sen-
sor. The sudden appearance of peaks and troughs suggests resistance changes during the stress cycles. The rapid 
decreases and increases in the signal indicate that the sensor has a rather good response time (which is related to 
the speed of the movement), amplitude and repeatability. Moreover, the similar shape of each cycle indicates the 
satisfactory recovery performance of the strain sensor over repeated cycles. Thus, the sandwich strain sensor with 
an ordered array structure of AgNWs has noticeable advantages in both performance and reliability, in addition 
to good transparency, conductivity, and sensitivity.

Figure 5d–f show the high sensitivity of the sensor for health monitoring. The current-time curves indicate 
that changes in the current signals over time were strictly modulated by human behaviors, including throat swal-
lowing (Fig. 5d), finger bending (Fig. 5e) and knee movement (Fig. 5f). Interestingly, when we performed these 
operations, signal interruption phenomena did not appear, which indicated the good tensile properties of the 
sensor with an ordered array structure of AgNWs under large strain. Various articular or muscular movements 
produced unique curve shapes due to the completely different deformations of the sensor. Additionally, each 
curve possessed repeated shapes accompanying regular movements, proving that the sensor has superior recov-
erability and a potential application in motion recognition.

Commonly, reported strain sensors responding to mechanical deformation by a resistance change have low 
sensitivity, resulting in small signal changes when slightly stretched (Fig. 4b shows that an ordinary resistance 
sensor displays a small change when the strain (ε) is less than 10%). However, our sensors with an ordered array 
of AgNWs were able to detect a mild touch. The signal curves derived from microstretching, such as clicking a 
mouse (Fig. 5g) and mildly twisting the ruler (Fig. 5h), in which the minimum response time was as low as 0.1 s 
(Fig. 5h inset), were investigated. When touched, the sensor responded very quickly and displayed a large signal 
change. The durability of the sensor was detected by bending for more than 10,000 cycles, as shown in Fig. 5i, 
according to which we can conclude that the stability of the sensor is fairly good. Above all, our sensor can mon-
itor different motions with a corresponding feature signal curve, which can be discriminated by its shape. The 
sensor performed well in stability with sharp generated current decreases and increases, which possessed obvious 
regularity, and rapid speed of response and recovery.
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Finally, five stretchable and transparent sensors were assembled into a glove, and a real-time gesture detector 
was obtained, as shown in Fig. 6a. Generally, to completely recreate finger movements, fourteen sensors should be 
applied for each hand since each hand has fourteen joints. However, here, we only used five sensors to simplify the 
model. These sensors were attached to finger joints on the glove surface, and bending or stretching was achieved 
with fingers in the glove. Figure 6a schematically shows the working mode of the finger gestures and their motion 
recreation in the virtual computer. For every faint movement of the fingers in the glove, the monitored signal of 
the relevant sensors varied. The monitored data were then transferred wirelessly to a computer and exhibited 
as curves of ΔR/R-time in a customized program. The degree of the monitored signal variation reflected how 
much the finger bent, and the gesture could be recreated accurately and in real time. A series of finger movements 
with our glove are shown in Fig. 6b. Data received from the five sensors were acquired simultaneously and then 
processed by the self-designed software into the corresponding curves, as shown in Fig. 6c. Platforms in the 
curve indicate that the sensor was at rest (no movement), and the up- and down-hill changes indicated bending 
and extending of the fingers, respectively. The bending angle was calculated according to the relative height of 
the platform to the original for the sensitivity and stability of sensors; thus, for example, the state of the middle 
finger in Fig. 6c at 5.4 s can be recorded by using the time-bending angle planar reference frame as noted (5.4, 3) 
in Fig. 6e. Finally, the corresponding finger gestures were recreated precisely according to the obtained bending 
angles, as shown in Fig. 6d.

Such a highly sensitive and transparent sensor can also be adapted to help the disabled achieve dynamic health 
monitoring and medical treatment. For example, our sensor can be applied to analyze health situations combined 
with big data. Additionally, the high transparency of the sensor allows patients to discretely wear the sensor and 
avoid discrimination, which enables patients to receive physical therapy while preventing secondary damage from 
psychological sensitivity. Based on this transparent, stretchable, sensitive, reliable and multifunctional sensor, the 
realization of flexible sensors integrated with the human body is expected to enter the big data era.

Conclusions
In summary, we reported an aligned AgNW network structure as a conductive layer on PDMS by a water-bath 
pulling method in a flexible and wearable strain sensor to provide better sensitivity, transmittance and stabil-
ity performance. The fabrication process was very simple, but the effect was outstanding due to the peculiar 
orthogonal orientation and sandwich-structure encapsulation. The sensor possessed ultrahigh sensitivity with 
a large gauge factor of 84.6 at a strain of 30%. Furthermore, the thickness of the AgNW film was controlled by 

Figure 5.  Repeatability testing and applications. (a) Stretching test. (b) Bending test. (c) Twisting test. 
(d) Swallowing detection. (e) Finger bending detection. (f) Knee movement detection. (g) Mouse clicking 
detection. (h) Ruler twisting detection, inset: Response time of ruler twisting detection. (i) Repeatability test.
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the concentration of droplets during the pulling process, and ultratransparency was achieved. Finally, the sensor 
was applied to the detection of human muscle and touching motions and demonstrated excellent reliability and 
repeatability, fast response and high stability. Thus, combined with its ultrahigh transparency, the sensor can be 
applied in motion detection and health monitoring, particularly for disabled people to fully protect their privacy. 
Based on the ability of monitoring data to construct a large database, we can conduct remote monitoring and 
control to provide the timeliest and best treatment plans.

Methods
Preparation of AgNWs.  The AgNWs were synthesized via a one-step polyol method48–51. AgNO3 (99.8%, 
AR) and glycerol were used as the reactants. Polyvinylpyrrolidone (PVP) with Mw = 1,300,000 g/mol and 
Mw = 650,000 g/mol were mixed as coating agents with a molar ratio of 2:1. AgNO3 was dissolved in glycerol 
(15 ml) and stirred at room temperature by magnetic stirring with a stirring speed of 60 rpm. The mixed PVP was 
dissolved in glycerol (20 ml) and stirred under a heating temperature of 65 °C with a stirring speed of 260 rpm. 
After complete stirring, NaCl (150 μM, 2 ml) was added to the PVP solution, and the resulting solution was stirred 
at a constant temperature of 50 °C. Next, the AgNO3 solution was dropped into the mixed solution and stored for 
5 min, and then, the solution was poured into the reaction vessel to react at 155 °C for 4 h. After the reaction, the 
solution was washed with ethanol at a volume ratio of 1:3 and centrifuged three times at 4000 rpm for 10 min to 
remove the excess PVP and impurities. Finally, the AgNWs were stored in ethanol for further experiments, and 
AgNW/EA (AgNWs in ethanol) with a mass fraction of 0.4% was obtained. The average diameter and length of 
the AgNWs were approximately 40–60 nm and 30–50 μm, respectively.

Figure 6.  Application of the real-time finger gesture recreation. (a) Schematic of the sample structure and 
working process. (b) Optical image of a series of different finger gestures. (c) ΔR/R0 versus time for various 
sensors on the glove due to serial finger gestures. (d) Simulated image recreation of the finger gestures 
corresponding to (c) based on the motion of (b). (e) The corresponding bending angle mapping according to (c).
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Fabrication of the sensor with an ordered array structure.  The fabrication process of the sensor is sche-
matically shown in Fig. 1. The PDMS substrates were first prepared by a mask (5.5 cm × 2.5 cm with a thickness of 
0.5 mm). The beaker was filled with deionized water and heated to a certain temperature on a heating plate and 
placed under the chuck. When these steps were complete, the previously prepared AgNW solution was dropped into 
the beaker by a pipette, and a thin layer of AgNWs will float on the surface of water instead of depositing. Next, the 
chuck and PDMS were immersed into the deionized water and then lifted at a speed of 20 mm/min. The thin layer 
of AgNWs will be absorbed onto the surface of PDMS under the effect of Van der Waals force. When the pulling 
process was finished, the AgNWs had been transferred onto PDMS from the water surface. After the first water-bath 
pulling step, the PDMS was heated in an oven for 5 min. Then, the above procedure was repeated after rotating the 
PDMS substrate by 90°. Finally, a substrate with a double-layered AgNW network array was obtained.

The excess AgNWs were removed using tape at the edge of PDMS. To monitor the electrical signals, two elec-
trodes printed with Ag nanoparticle paste were obtained by an ink-jet printer (DM02831, FUJI) on both sides of 
the aligned AgNW conductive layer. Finally, the sensor was encapsulated with liquid PDMS and cured at 80 °C 
for 1 h to ensure its stability and reliability.

Characterization.  The microstructures of the AgNWs were characterized by a scanning electron micro-
scope (SEM, HITACHI S-4700), and more subtle structures were observed by a transmission electron microscope 
(TEM, Tecnai G2 Spirit 120 kV). The transmittance was measured by UV-visible spectrophotometry (UV-2600). 
The tensile properties were measured by a digital tensile machine (HANDPI HPB). The current changes were 
measured dynamically using an electrochemical workstation (CHI760D). The morphology of the oriented 
AgNWs on a large-area substrate was captured using CLSM (VK-X200).
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