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ABSTRACT

As antibiotic resistance continues to increase
among Gram-negative organisms
Acinetobacter baumannii there is a growing

such as

need for novel therapies to overcome these

resistance mechanisms. Antibiotics active

against baumannii
(MDRAB) are few, and agents in development

are primarily active against other multidrug-

multidrug-resistant ~ A.

resistant ~ Gram-negative organisms. The
combinations of colistin and antimicrobials

such as glycopeptides and lipopeptides are
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unique potential treatment modalities against
MDRAB. For both lipopeptides and
glycopeptides in vitro data have demonstrated
significant  synergy,
bactericidal activity in time-kill curves. Several

resulting in rapid

invertebrate in vivo models have also
demonstrated increased survival compared to
colistin alone. Currently, very little clinical data
have focused on using these combinations for
infections caused exclusively by multidrug-
resistant Gram-negatives. The combination of
vancomycin and colistin has been studied with
conflicting results regarding both improved
outcomes and risk of nephrotoxicity. Although
in vitro and in vivo models have proved
promising, further investigation is required to
provide clinical data necessary to support the
use of these combinations. The objective of this
review is to summarize literature currently
available for the mnovel combination of
lipopeptides or glycopeptides with colistin for
the treatment of A. baumannii, in particular
MDRAB.
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INTRODUCTION

Antibiotic resistance continues to be a global
public health crisis [1]. The Centers for Disease
Control and Prevention (CDC) state that
resistant bacteria cause over two million
infections in the United States annually, with
a mortality rate of over 20,000 individuals per
year [2, 3]. Curtailing resistance through
infection control measures is key to mitigating
the threat and decreasing the spread of these
organisms [4]. Once patients are infected,
optimizing antimicrobial therapy
becomes paramount. This is a challenge

however,

secondary to the declining availability of
active agents and dwindling pipeline of novel
antibiotics. = As such, antibiotic-resistant
bacterial infections can result in significant
morbidity and mortality, often requiring the
use of second- or third-line antibiotic agents
that are more toxic and/or less effective.
According to the CDC’s Antibiotic Resistance
Threat
Acinetobacter  baumannii
threat that
public
intervention [2]. Although there are currently
antimicrobials in the later stages of

development with promising activity against

Assessment, multidrug-resistant
(MDRAB) pose a
may become

serious urgent

without health monitoring and

drug-resistant Gram-negatives, the activity
against MDRAB is minimal [5, 6]. The
Infectious Diseases Society of America (IDSA),
in their update entitled Bad Bugs, No Drugs: No
ESKAPE, states that Acinetobacter baumannii
(ACB) is
between unmet medical needs and current

“emblematic of the mismatch
antimicrobial research...” [7]. This is echoed in
the 2010 update of the IDSA’s 10 x’20 Initiative
that shows eight antimicrobials in phase II or III
development with none demonstrating activity
against MDRAB [8]. With the rise of multidrug,

extensively drug, and pandrug-resistant

Acinetobacter spp. there is a critical need to

discover safe and effective therapeutic

strategies.

The Challenge of Acinetobacter Infections

Initially considered to have low pathogenicity,
ACB is now one of the most important
nosocomial pathogens, especially intensive
care unit (ICU)-associated infections such as
bacteremia, pneumonia, and wound infections.
Often a colonizer of skin and sputum, ACB also
has the ability to live on fomites, such as
ventilator equipment, for prolonged periods of
time [9]. Clinically, ACB infections have
demonstrated increased lengths of mechanical
ventilation, hospital/ICU stays, and mortality
rates of 30-70% [9-12]. These organisms often
harbor multiple resistance mechanisms through
both selective pressures secondary to antibiotic
exposure and transmission from other highly
resistant organisms. A recent genomic study of
Acinetobacter spp. found that these organisms
has the ability to acquire over 40 resistance
genes from other pathogenic Gram-negative
bacteria [13]. Three main
permit ACB to
antimicrobial treatment: hydrolyzing enzymes,

resistance
mechanisms circumvent
such as beta-lactamases; condensed porin
channel proteins on its surface that decrease
target entry sites; and alteration of cellular
targets [14].
Increasingly, multidrug- and extensively drug-
resistant ACB isolates have been reported, with
the incidence of carbapenem
exceeding 75-90% in some Asian countries
[15]. There are limited therapeutic options for
carbapeneme-resistant these
infections are associated with a high morbidity

functions and antimicrobial

resistance

isolates and

and mortality. Merely repurposing existing
FDA-approved agents to treat carbapenem-
resistant ACB has proved less than favorable
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[16]. Polymyxin antimicrobials have lost favor
in treating infections secondary to toxicities
associated with higher doses [17, 18]. These
agents are generally considered a last resort for
the treatment of multidrug-resistant Gram-
carbapenem-
resistant ACB, or after other treatments have

negative infections such as

proven ineffective. cationic
polypeptide, interacts with
lipopolysaccharide (LPS) layer of

negative bacteria leading to osmotic lysis of

Colistin, a
anionic
Gram-

the cell. Research has focused primarily on
therapy versus monotherapy
with colistin as the primary active agent.
Promising in vitro

combination

results have been
demonstrated with colistin in combinations
with fosfomycin, tigecycline, and
carbapenems. Clinical results, primarily
associated with the endpoint of mortality,
have been mixed [19-22]. This review will
focus on several unconventional combinations
with colistin that have demonstrated possible

clinical utility.

METHODS

Literature associated with the combination of
colistin and glycopeptides, lipopeptides, and
lipoglycopeptides for the targeted treated of
ACB was included in this review. All relevant
English-language peer-reviewed publications
were accessed through PUBMED using the
following medical subject heading (MeSH)
terms: vancomycin, daptomycin, telavancin,
glycopeptide,

lipopeptide, lipoglycopeptide,

colistin, Acinetobacter baumannii, and
combination therapy. Citations within these
references were also assessed for inclusion.
Publications in abstract form were included in
the review if these abstracts were presented as

part of professional meetings.

The analysis in this article is based on
previously conducted studies and does not
involve any new studies of human or animal
subjects performed by any of the authors.

DISCUSSION

Unconventional Approaches to Treatment

Studies with Glycopeptide Antibiotics
Until
combinations of colistin and antimicrobials

recently little was known about
with exclusive activity against Gram-positive
bacteria. Novel combinations of colistin plus
glycopeptide and lipopeptide antibiotics have
recently been examined, yielding positive
results [23, 24]. Vancomycin is a glycopeptide
antibiotic that has become a mainstay in the
treatment of methicillin-resistant Staphylococcus
aureus (MRSA) over the past two decades that
works by inhibiting peptidoglycan synthesis in
the bacterial cell wall [25, 26]. The proposed
mechanism of synergy relates to the cell-
membrane permeabilizing ability of colistin.
Colistin causes an electrostatic interaction
with LPS (lipid A), disrupting the outer
membrane of the Gram-negative bacteria. This
allows the otherwise large and hydrophobic
vancomycin molecules to pass through the
outer LPS layer and reach the site of action at
the cell wall [23, 24].

Synergy between vancomycin and colistin in
MDRAB was first described by Gordon et al. [23]
with in vitro checkerboard assays, synergy
Etests, and time-kill curves, against 39 MDRAB
isolates; five epidemic strains and 34 clinical,
and one reference isolate [American type
culture collection (ATCC) 19606]. For the
checkerboard assays, synergy was first defined
by the lowest fractional inhibitory
concentration index (FICI) of <0.5. The FICI
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was calculated as [(minimum inhibitory
concentration MIC] colistin with
vancomycin)/(MIC  colistin  alone) + (MIC

vancomycin combined with colistin)/(MIC
vancomycin alone)]. The second method was
the two-well method wherein the absence of
growth in wells containing 0.25 x MIC of both
drugs and 2 x MIC of both drugs was deemed
synergistic. These tests were completed on the
five epidemic strains and ATCC 19606. Synergy
by the Etest method was tested as the change in
vancomycin MIC in colistin-supplemented
versus unsupplemented agar plates. Time-Kkill
curves against the five epidemic strains were
conducted with colistin alone and with the
combination of colistin and vancomycin
steady-state
concentrations at standard dosing—colistin

at amounts that mimic
1mg/L and vancomycin 20 mg/L. Samples
were removed as 1 mL aliquots at times O, 2, 4,
8, 24, and 48. Synergy was found by both the
checkerboard assay and the two-well method,
demonstrating a decrease in vancomycin MIC
in four of the six tested isolates. Etest synergy
was performed on all isolates. Vancomycin
MICs were>256 mg/L. on unsupplemented
agar, while MICs in the presence of colistin
ranged from 48 to <0.016 mg/L. In the time-Kkill
curves of the five epidemic strains, colistin
alone was initially bactericidal, however,
early as 4h. The
combination was bactericidal and was able to
suppress regrowth during the entire 48 h of
incubation for all except one isolate. This isolate

regrowth occurred as

was plated and demonstrated a sevenfold
increase in colistin MIC. A similar in vitro
study was conducted using teicoplanin, a
glycopeptide antibiotic with a mechanism of
action similar to vancomycin [27]. Again,
significant in vitro synergy with colistin was
demonstrated in checkerboard assays, synergy
Etests, and time-kill curves. Several other

in vitro studies of similar design have also
synergy
vancomycin or teicoplanin and colistin
(Table 1 [23, 24, 27-31]) [28-30]. Of note, the
study by Vidaillac et al.
the enhanced activity of the combination
in ACB compared to other Gram-negative

demonstrated between either

demonstrates

isolates (Fig. 1 [29]). Additionally, significantly
enhanced survival has been demonstrated with
in vivo Galleria mellonella invertebrate models
during combination therapy in the treatment of
ACB infections [32]. The survival rate of larvae
inoculated with MDRAB treated with colistin
monotherapy was 48%, compared to >90% in
the vancomycin combination and 67% in
teicoplanin combination.

Although the combination of glycopeptide
antibiotics and colistin has demonstrated
promising in vitro and in vivo results there are
concerns regarding its clinical application; in
particular, the risk of combining two agents
with known risk of nephrotoxicity. To date
there have been few clinical studies directly
evaluating the efficacy and safety of this
combination. In a retrospective review of
patients who received at least 5days of
therapy MDRAB
investigators noted no significant difference in
ICU length of stay or 28-day mortality (48%
50%) [33]. This
correlation may be secondary to the small
sample size of 57 patients. There was,
however, still a significant increase in the risk
of developing renal failure across any acute
kidney injury network (AKIN) stage (p = 0.04).
The combination was then studied in a larger
cohort of critically ill patients infected with

combination against

versus lack of clinical

Gram-negative bacteria, including, but not
limited to, patients with MDRAB [34]. Of the
184 patients included, 99 patients were infected
with MDRAB, 48 received the combination of

glycopeptide and colistin. The remaining
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Fig. 1 Vancomycin and colistin in Gram-negative refer-
ence and MDR isolates. In vitro evaluation of the
bactericidal activity of colistin combinations at 0.5x
MIC against A. bauwmannii ATCC 19606 (a), K. preu-
moniae ATCC 700603 (b), P. acruginosa ATCC 27853
(), ABml [COL MIC=8] (d), KPml [COL
MIC = 32] (e), and PAm1 [COL MIC = 8] (f). Filled
circle growth control, open circle colistin plus vancomycin,
inverted filled triangle colistin plus trimethoprim, open
triangle colistin  plus trimethoprim—sulfamethoxazole.
ATCC American type culture collection, COL combina-
tion with colistin, MDR multidrug resistant, MIC mini-
mum inhibitory concentration. Reproduced with
permission from Antimicrobial Agents and Chemotherapy

[29]

patients were primarily infected with
carbapeneme-resistant Klebsiella pneumoniae and
MDR P. aeruginosa. Overall, 68 (40.9%) of
included patients

therapy, primarily with vancomycin. The most

received combination
notable difference between patients treated
with colistin alone and those treated with
combination therapy was the presence of
Gram-positive  co-infection (41.2%  versus
0.0%, p <0.001). Thirty-day mortality was not
significantly different between those treated
with the combination and those treated with
monotherapy (33.8% versus 29.6%). Although
infection with MDRAB was an independent
predictor of mortality, through cox regression
the receipt of the combination for >5 days was
shown to be protective for 30-day survival.
There was no difference in renal toxicity
patients
glycopeptides and those that did not.

between the who received

Studies with Lipopeptide Antibiotics

In addition to the glycopeptides, the
lipopeptide daptomycin  and
lipoglycopeptide antibiotic telavancin have

antibiotic

been investigated in combination with colistin
(Table 1). Telavancin has a dual mechanism
of action wherein it acts as glycopeptide
antibiotics by inhibiting transpeptidation and

transglycosylation, the peptidoglycan
polymerization step of cell wall synthesis, as
well as altering cell membrane permeability via
changing membrane potential [35, 36]. Similar
to vancomycin and teicoplanin, the
combination with colistin has demonstrated
significant synergy in vitro and improved
survival in an in vivo invertebrate model [30,
37]. Daptomycin has a unique and not yet fully
elucidated mechanism of action that causes
calcium-dependent destabilization of the cell
membrane as well as altering the cell wall
through septal defects [38]. As is the case with
glycopeptides, the presence of a LPS outer
membrane in Gram-negative bacteria protects
against daptomycin binding to the cellular
membrane.

In a 2012 abstract, Malmberg et al. [39]
initially demonstrated possible synergistic
activity of daptomycin in combination with
colistin against 15 clinical isolates of MDRAB.
The combination of 2.3 mg/L colistin and
2.1 mg/L daptomycin was effective in 13
isolates, however, regrowth after 4 h was seen.
Galani et al. [31] studied the combination of
daptomycin and colistin against 14 MDRAB
clinical isolates. Of these, four were resistant to
colistin. Synergy was tested using Etests, MICs,
and time-kill curves. Daptomycin Etests were
placed on agar supplemented with subinhibitory
concentrations (0.5 x MIC) of colistin. The time-
kill curves were completed with cation-adjusted
Muller-Hinton broth over a 24-h period using
0.25%x, 0.5x, and 1 x MIC of colistin for
susceptible strains, 5 mg/L colistin for resistant
strains, and 10 mg/L of daptomycin. In the
Etests, subinhibitory concentrations of colistin
were able to decrease the daptomycin MIC to
4-128 mg/L in the colistin-susceptible isolates
but colistin concentrations upwards of 5 mg/L
had no effect on daptomycin MICs for resistant
isolates. A total of 30 isolate-concentration
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combinations were performed in the time-kill
curves. Daptomycin and colistin demonstrated
synergy 16 of the 30 (53.3%)
combinations. Among ten colistin-susceptible

against

isolates that were exposed to 0.5 x MIC colistin
bactericidal activity occurred in five (50%),
compared to zero isolates exposed without
daptomycin. Nine of 10 isolates exposed to
colistin at 1 x MIC demonstrated bactericidal
activity with no regrowth at 24 h. It appears the
possible benefits of the daptomycin—colistin
combination were limited to colistin-
susceptible isolates and favorable results were
demonstrated at 0.5 x MIC and 1 x MIC for
colistin.

Phee et al. [24] tested susceptibility to the
daptomycin—colistin combination in 30 Gram-
negative isolates, including Escherichia coli, K.
pneumoniae, and ACB. Among the fourteen ACB
isolates tested was ATCC strain 19606 and two
colistin-resistant isolates. Synergy was tested
using

daptomycin Etests on agar

supplemented with subinhibitory
concentrations (0.125-0.75 mg/L) of colistin
versus unsupplemented agar. The results for
each were compared using a “sensitization
factor” (ratio daptomycin MIC alone to MIC in
combination with colistin) with a factor <2
noting a lack of synergy. MICs for daptomycin
on colistin-supplemented agar were compared
to Clinical and Laboratory Standards Institute
(CLSI) breakpoints for both S. aureus and
enterococci spp. Daptomycin MICs for all
isolates were initially >256 mg/L, a decrease in
MIC (4-64 mg/L) and increase in sensitization
factor (8-128) were observed in all colistin-
susceptible ACB isolates, but not the two
colistin-resistant or any other Gram-negatives
tested. The author hypothesized that although
potent synergy was demonstrated in ACB
isolates the target for daptomycin may be
absent in other Gram-negative bacteria.

Although most antibiotic agents possessing
activity limited to Gram-positive pathogens
may become active against Gram-negatives if
allowed to pass the outer LPS layer, this is not
true for daptomycin [40]. Daptomycin has to
charged
phospholipids within the cell membrane.
Randall et al. [40] hypothesized that the
substantially lower amount of phospholipids
(one-third that of S. aureus) in Gram-negatives

interact with the negatively

such as E. coli may result in the lack of activity
of daptomycin. After an in vitro study of the
destabilizing effects of daptomycin against
liposomes comprised both E. coli and S. aureus,
the authors concluded that major differences in
phospholipid composite affect daptomycin
activity in Gram-negatives.

CONCLUSION

Gram-negative organisms such as ACB, in
particular MDRAB, represent a serious threat to
public  health.
infections often requires using last resort

Currently, fighting these
agents, such as colistin, that often have

suboptimal activity ~ when used as
monotherapy and are associated with serious
toxicities such as nephrotoxicity. Combination
therapy with various antimicrobial agents has
proven beneficial in the treatment of MDRAB;
however, data are limited to retrospective
studies of small sample sizes. Promising novel
combinations of colistin with Gram-positive
glycopeptide or
lipopeptide antibiotics have been studied

active agents such as

primarily in vitro and in vivo. Future
investigation to gain insight on the clinical
impact of these combinations is required to
determine the possible benefits associated with
use of such combinations. In particular,
elucidation of the mechanism by which these

combinations seem to work best in ACB as
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opposed to other MDR Gram-negative
pathogens and further investigation of
whether higher doses of daptomycin will
[24, 40, 41].
Additionally, further description of use of
these combinations in monomicrobial MDRAB

improve results in MDRAB

infections without de-escalation to colistin
monotherapy following eradication of co-
infecting Gram-positive pathogens would be
beneficial from a clinical perspective. It is also
unclear if utilizing polymyxin B in lieu of
colistin would provide similar synergistic
activity against ACB or other MDR Gram-
negative pathogens. Lastly, triple therapy with
colistin, a lipopeptide or glycopeptide, and
another agent active against MDRAB such as
tigecycline or carbapenems should also be
investigated in the clinical setting. With a
dwindling pipeline of agents with novel
mechanisms of action, finding new and
unique means to employ antibiotics that are
currently available is crucial to improve
outcomes in these life-threatening infections.
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