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Abstract: Precision medicine, providing the right therapeutic strategy for the right patient, could
revolutionize management and prognosis of patients affected by cardiovascular diseases. Big data
and artificial intelligence are pivotal for the realization of this ambitious design. In the setting of
pulmonary arterial hypertension (PAH), the use of computational models and data derived from
ambulatory implantable hemodynamic monitors could provide useful information for tailored
treatment, as requested by precision medicine.

Keywords: implantable hemodynamic monitors; computational models; pulmonary arterial hypertension;
precision medicine; big data

1. Introduction

Advances in panomics, including genomics, proteomics, transcriptomics and metabolomics,
are paving the way for the shift from population-based clinical decision making to a true
personalization of care based on individual genetic and environmental factors. Despite
the success achieved with medical reductionism, the idea that all patients with the same
disease should be treated similarly is too limited to be accepted today [1]. Treating the
patient, not the disease is the goal for precision medicine.

In spite of advances achieved with drugs targeting the endothelin, nitric oxide and
prostacyclin pathways involved in the disease, PAH is still characterized by high morbidity
and mortality rates [2,3]. Thus, the current challenge is the development of personalized
medicine strategies, providing the right treatment to the right patient [4].

Omic technologies, big data and artificial intelligence could contribute to realizing this
ambitious goal, allowing a step forward in current clinical practice (Figure 1).

As the right ventricle (RV) is the main determinant of patient’s prognosis [5], compu-
tational models simulating the effects of increased afterload on RV function and predicting
response to specific drugs could aid physicians in optimizing PAH understanding, progno-
sis and clinical decision making. Versatility, reliability, simplicity and low execution time
are pivotal for the success of these models.

The present paper focuses on new potential opportunities offered by computational
models and data derived from ambulatory implantable hemodynamic monitoring (IHM),
used to provide useful information for PAH patient management, as expected in the
precision medicine era.
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Figure 1. Hypothetical pathway for precision medicine in PAH. Treating the patient, not the disease, 
is the goal for precision medicine. Panomics, phenotyping, big data derived from electronical health 
systems and sensing devices, and artificial intelligence with the use of computational simulators 
could contribute to developing this ambitious goal in PAH, overcoming the current limitations of 
reductionism. 

2. A Look at Omic Technologies in PAH 
The current World Symposium on Pulmonary Hypertension (WSPH) classification 

categorizes patients on the basis of similar clinical and hemodynamic patterns without 
considering differences in genomics, proteomics, transcriptomics and metabolomics. 
Indeed, only two of the five categories, PAH and pulmonary veno-occlusive 
disease/pulmonary capillary haemangiomatosis, are linked to molecular mechanism. 
Similarly, current PAH treatment strategies primarily target pulmonary vasoconstriction, 
without taking into account recent advances in omics fields. Omic technologies could 
overcome these limitations and enhance clinical research in PAH, generating new 
understanding of the disease and improving both diagnosis and treatment. 

The description of all omics technologies goes beyond the aim of this perspective 
paper; however, we choose briefly mention genomics. 

The most common genetic cause of PAH involves the gene encoding the bone 
morphogenetic protein receptor type II (BMPR2), a receptor for the transforming growth 
factor (TGF)-ß protein superfamily, particularly expressed on the pulmonary vascular 
endothelium. The reduction in expression or function of BMPR2 signaling leads to altered 
cellular responses to TGF-ß. 

Since the identification of BMPR2 mutations, the PAH genetic landscape has 
significantly expanded, with novel causative genes detected by new-generation 
sequencing methodologies (e.g., SMAD9, CAV1, EIF2AK4, ENG) [6]. Genomics advances 
could lead to progress in PAH therapy through the development of new drugs targeted 
to mutational correction. 
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Figure 1. Hypothetical pathway for precision medicine in PAH. Treating the patient, not the disease,
is the goal for precision medicine. Panomics, phenotyping, big data derived from electronical health
systems and sensing devices, and artificial intelligence with the use of computational simulators could
contribute to developing this ambitious goal in PAH, overcoming the current limitations of reductionism.

2. A Look at Omic Technologies in PAH

The current World Symposium on Pulmonary Hypertension (WSPH) classification
categorizes patients on the basis of similar clinical and hemodynamic patterns without con-
sidering differences in genomics, proteomics, transcriptomics and metabolomics. Indeed,
only two of the five categories, PAH and pulmonary veno-occlusive disease/pulmonary
capillary haemangiomatosis, are linked to molecular mechanism. Similarly, current PAH
treatment strategies primarily target pulmonary vasoconstriction, without taking into ac-
count recent advances in omics fields. Omic technologies could overcome these limitations
and enhance clinical research in PAH, generating new understanding of the disease and
improving both diagnosis and treatment.

The description of all omics technologies goes beyond the aim of this perspective
paper; however, we choose briefly mention genomics.

The most common genetic cause of PAH involves the gene encoding the bone mor-
phogenetic protein receptor type II (BMPR2), a receptor for the transforming growth factor
(TGF)-ß protein superfamily, particularly expressed on the pulmonary vascular endothe-
lium. The reduction in expression or function of BMPR2 signaling leads to altered cellular
responses to TGF-ß.

Since the identification of BMPR2 mutations, the PAH genetic landscape has significantly
expanded, with novel causative genes detected by new-generation sequencing methodologies
(e.g., SMAD9, CAV1, EIF2AK4, ENG) [6]. Genomics advances could lead to progress in PAH
therapy through the development of new drugs targeted to mutational correction.

To achieve a comprehensive phenotyping of PH patients allowing a more efficacious
approach of the PH classification in terms of clinical impact, the National Institutes of
Health (NIH)/National Heart, Lung and Blood institute (NHLBI) recently launched an
ongoing initiative called “Redefining pulmonary Hypertension through Pulmonary Vascu-
lar Diseas Phenomics (PVDOMICS)” [7,8]. To date, the study has enrolled approximately
1200 adult participants with PH, classified according to the traditional WSPH groups one to
five, or with risk factors for PH or healthy control individuals. All participants underwent
a deep clinical, imaging and hemodynamic assessment and blood analysis through sam-
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ples obtained from the peripheral vein, pulmonary artery and distal-to-pulmonary artery
occlusion for a broad collection of selected omics tests. The large dataset deriving from
PVDOMICS, including clinical and omic biobanks, will represent a precious and unique
resource available for future PH investigations.

3. Ambulatory Implantable Hemodynamic Monitors: A New Source of Big Data

Big data, referring to the storage and analysis of large volumes of medical information
from individual patient data, provide a unique opportunity to improve health, identify
personalized therapeutic options and detect different treatment responses to therapy [9].
The main sources of big data include: (a) the electronic patient-health-record systems (EHR),
allowing physicians to store, process and share electronically patients’ medical data for the
coordination of multicenter registries and (b) sensing devices, wearable and implantable
devices for the continuous monitoring of specific parameters [10]. The huge amount of
data derived from EHR and sensing devices has radically changed the management of
PAH over the last two decades, as well as other cardiovascular diseases.

4. Novel Devices for Monitoring Pulmonary Arterial Hypertension Patients

PAH is an obstructive pulmonary vasculopathy characterized by a progressive increase
in pulmonary vascular resistance (PVR) that leads to RV overload, and ultimately, RV
failure. The close monitoring of pulmonary arterial pressure and RV function could help
clinicians tailor the best therapeutic strategy in order to improve patients’ outcome and
reduce hospitalization rates [11,12]. Indeed, PAH patients’ functional status and prognosis
mostly depend on the ability of the RV to adapt to the increased afterload [13]. In the
earlier stages, the increased RV contractility, with little or no increase in right heart chamber
dimensions, allows for preserving cardiac output. In the later stages of the disease, the
homeometric adaptation fails and the stroke volume is maintained by progressive increase
in RV end-diastolic volume (heterometric adaptation) [14,15]. The consequent tricuspid
functional regurgitation leads to additional RV volume overload. Finally, the leftward
displacement of the interventricular septum and the left ventricle (LV) underfilling due to
reduced RV cardiac output accounts for the heart failure (HF) syndrome [16].

In this scenario, optimal management of PAH patients strongly relies on the assessment
of RV function, RV remodeling and hemodynamic status [17–19]. Echocardiography is the
first-line technique for the evaluation of RV size and function [20,21], but does not provide
robust hemodynamic data. Conversely, right heart catherization allows for a comprehensive
hemodynamic assessment, but it is an invasive procedure with technical challenges, and
it must be performed in a clinic, providing a snapshot of patient’s hemodynamics at a
single time point. Ambulatory IHMs, such as CardioMEMSTM (Abbott, Sylmar, CA, USA),
providing frequent remote hemodynamic measurements in the home setting and recording
the variability of pulmonary pressure during the day, provide additional information for
PAH patients’ management, potentially overcoming the above limitations [22].

5. The CardioMEMS System

IHMs have recently been approved for the management of patients with HF [23],
aiding physicians to adjust HF therapy before the development of congestive symp-
toms [24]. As recommended by the 2016 ESC Heart Failure Guidelines [25], the wireless
CardioMEMSTM system may be considered (class IIb) for the monitoring of pulmonary
artery pressure in symptomatic patients with HF with previous HF hospitalization, in order
to reduce the risk of recurrent HF hospitalization.

Conversely, the experience of IHMs in the management of patients with PAH is still
limited to small series. CardioMEMS system implantation in 26 PAH patients with NYHA
class III or IV has recently shown that IHMs may represent a promising tool to early identify
decompensation or noncompliance, to reassess response to therapy and to allow rapid drug
titration, reducing in-person visits and invasive hemodynamic assessments [22,26]. Impor-
tantly, while clinical experience with IHMs in PAH is increasing, providing a huge amount



J. Clin. Med. 2022, 11, 82 4 of 6

of data, IHMs represent a unique opportunity to improve and validate computational
cardiovascular simulators in this setting. However, randomized, larger clinical trials are
needed before these devices can be routinely used in clinical practice.

6. Computational Cardiovascular Simulators

Advances in technology have led to the development of computational simulators,
which are useful in research, clinical and e-learning environmental settings [27].

In the field of cardiovascular diseases, the most used numerical simulators provide a
representation of the left and right heart, systemic, pulmonary and coronary circulation,
relying on pressure–volume relationships and lumped-parameter models [28–30].

Computational simulators are intended as interactive software for reproducing physi-
ological and pathological clinical conditions. Usually these are characterized by a modular
approach, consisting of a basic core module and supplementary, highly specialized modules.
As an example, we may consider the following supplementary modules:

- Supplementary modules for ventricular assist devices;
- A supplementary module to reproduce the biventricular pacemaker behavior;
- A supplementary module for the total artificial heart;
- A supplementary module for intra-aortic balloon pumping;
- A supplementary module for the thoracic artificial lung.

Combining these modules, clinicians may virtually reproduce patient’s hemodynamic
conditions, simulate the effects of different therapeutic interventions in real time and
obtain accurate prediction of device performance. Thus, such computational simulators
(e.g., CARDIOSIM, CircAdapt Simulator, HemoLab and Harvi) could support physicians
in clinical decision making [31–34].

Computational simulators might also play a pivotal role in unravelling the cardiopul-
monary unit response to different therapeutic strategies in the complex PAH pathophys-
iology. Indeed, computational simulators accurately describing the interaction between
the respiratory and the circulatory system might correctly reproduce the hemodynamic
and respiratory condition of PAH patients, allowing the right drug for the right patient.
Nevertheless, only few systems currently include hemodynamic and ventilatory variables
coupling the cardiovascular and respiratory system, allowing a complete simulation of PAH
pathophysiology. The optimization and the widespread diffusion of computational PAH
simulators in daily clinical practice require strict cooperation between model developers
and PAH specialists.

7. Conclusions

The exponential growth in technology may add a significant contribution to patients’
management and potentially improve the prognosis of patients affected by cardiovascular
diseases such as PAH. Reproducing pathophysiological conditions and simulating the
effects of drugs and interventional procedures on the cardiovascular system, computational
simulators may become a new approach in clinical practice. The validation of these systems,
useful for their strength and clinical applications, remains a major issue. Big data derived
from electronic patient-health-record systems and ambulatory IHMs could be used to
improve and validate computational PAH simulators, welcoming precision medicine era
into the PAH field.
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