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Abstract

The present study evaluates the effect of nickel oxide nanoparticles on some biochemical

parameters and midgut tissues in the ground beetle Blaps polychresta as an indicator

organism for nanotoxicity. Serial doses of the NiO-NPs colloid (0.01, 0.02, 0.03, 0.04, 0.05,

and 0.06 mg/g) were prepared for injecting into the adult beetles. Insect survival was

reported daily for 30 days, and the sublethal dose of 0.02 mg/g NiO-NPs was selected for

the tested parameters. After the treatment, nickel was detected in the midgut tissues by X-

ray microanalysis. The treated group demonstrated a significant increase in aspartate ami-

notransferase (AST) and alanine aminotransferase (ALT) activities when compared to the

untreated group. However, the treated group demonstrated a significant decrease in ascor-

bate peroxidase (APOX) activity when compared to the untreated group. Histological and

ultrastructural changes in the midgut tissues of treated and untreated beetles were also

observed. The current findings provide a precedent for describing the physiological and his-

tological changes caused by NiO-NPs in the ground beetle B. polychresta.

1. Introduction

The production of nanoparticles has increased due to the instant progress of nanotechnology

[1]. With the progress of nanotechnology, metal oxide nanoparticles (MONPs) have been

widely used in different fields, for instant paints, cosmetics, electronic devices, additives in

food, and medical and biological systems [2, 3]. With the excessive use of MONPs, studies

have investigated their adverse effects on the environment, human health, and soil organisms

[4]. Derived nanoparticles (NPs) can induce different interactions in living organisms [5].

The size of NPs enables them to reach the cell‘s nucleus through the nuclear pore and inter-

act directly with the DNA in the chromosomes, causing genetic damage. Also, they can inter-

act with proteins involved in DNA replication and generate high quantities of oxidative stress

that induces DNA damage [6].
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Nickel (Ni) is combined with some metals to make alloys, such as stainless steel [7]. It is

extensively used in industry due to its toughness, hardiness, high resistance to corrosion and

rusting, and it also has good plasticity [8]. Industrial activities can raise the Ni concentration

in the environment [8]. Ni has low solubility in water, which indicates its toxicity effects [9].

Exposure of organisms to Ni or its compounds induces different pathological effects, such as

inflammation, allergy reactions, teratogenicity in the human body, lung fibrosis and lung can-

cer [8]. Nickle nanoparticles (Ni-NPs) are used in biological medicine and may induce cardiac

toxicity, liver and spleen injury, and lung inflammation [8].

Insects have the ability to act as environmental monitors in a variety of situations [10]. In

addition, insects have a short generation period, are very prolific, are inexpensive, and offer

good genetic tools for studying human-related illnesses, such as cancer and tumors [11, 12].

Beetle genetic sequences are accessible, and parts, including the midgut, reproductive organs,

and fat bodies, are quite straightforward to access for study [13]. Tenebrionid beetles are excel-

lent ecological models since they live in a variety of environments [14]. Their behavior is inex-

tricably linked to human activities, like urbanization, agricultural areas, and plantations [15].

They’re also incredibly adaptable to harsh climatic circumstances, and, unlike other insects,

they live for a long time and maintain a steady population [16]. The ground beetle B. poly-

chresta (Coleoptera: Tenebrionidae) is the most common tenebrionid and may be seen in

enormous numbers [17]. The toxicity of nanoparticles has been studied using zebrafish [18].

Due to its fast embryonic growth, it shows complex behaviors and may be utilized as an animal

model under particular physical circumstances (temperature� 28˚C). However, since it needs

a low temperature, it might be challenging to utilize as an ecological model at times. As a con-

sequence, the data may be erroneous [19].

Biochemical reactions are the result of an organism’s response to a stressor [20]. Biochemi-

cal analysis is progressively used in environmental risk assessments to monitor the prevalence

of xenobiotics [21]. Therefore, biochemical alterations demonstrate the negative effect that

results from vulnerability to a contaminant [22]. The detoxification enzymes in insects are the

defence barriers against foreign compounds and they have significant roles in preserving nor-

mal physiological functions [23]. Aspartate aminotransferase (AST) and alanine aminotrans-

ferase (ALT) aid energy production and serve as a connection between the protein and

carbohydrate metabolism [24]. These enzymes are known to be changed during various patho-

logical conditions. The increase in transaminases is considered evidence of cellular leakage

and loss of functional cell membrane integrity [23].

Reactive oxygen species (ROS) can damage proteins, lipids, and other important macro-

molecules in the insect’s body. Therefore, organisms must scavenge ROS before cellular dam-

age [25]. Ascorbate peroxidase (APOX) reduces H2O2 with concordant ascorbate oxidation

[26]. Insects distinctly lack glutathione peroxidase and, since catalase has a poor affinity for

H2O2, the APOX enzyme may have a significant role in removing H2O2 in insects [27].

The midgut epithelium is the principle site that manages the detoxification of ingested

xenobiotics [28]. It is considered an important organ for toxicity analysis because the accumu-

lation of metals occurs in the midgut [29]. Moreover, it is one of the primary interfaces where

insects come in contact with injected metals [30]. MO-NPs are capable of inducing cellular

and subcellular modifications in the midgut epithelium in insects [31]. Therefore, histological

and ultrastructure inspections help in monitoring the pathological effects even at the sublethal

level [32].

The current study aims to assess the biochemical, histological, and ultrastructure changes

that resulted in the ground beetle B. polychresta as a sensitive indicator organism for nickel

oxide nanoparticles (NiO-NPs) that may be accumulated in the environment by industrial

activities.
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2. Materials and methods

Ethics Statement: The ethical rules for animal regulations were followed and approved by the

Faculty of Science, Alexandria University committee in January 2014(Alex-11-2014). All insti-

tutional and national Guidelines for the care and use of animals (insects) were followed.

2.1. The studied insect

According to Condamine et al. [33], beetles were identified as Blaps polychresta in the family

Tenebrionidae at the Faculty of Agriculture, Alexandria University, Entomology Department.

2.2. Sampling procedure

One-hundred and forty beetles were sampled from a non-contaminated site, the garden of the

Faculty of Science, Elshatby, Alexandria University, Alexandria, Egypt [34].

To guarantee that the area would not be affected, the beetle collection site was situated on

private property. They were preserved alive in local soil and plants in glass cages in the labora-

tory. They were kept at a temperature of 29 ± 3˚C and humidity of 85% RH, similar to their

place of origin.

The beetles were divided into seven groups, one untreated group and six treated groups

with different nickel oxide nanoparticles (NiO-NPs) concentrations. Each group contained 20

adult beetles.

2.3. Synthesis of nickel oxide

Nickel (II) oxide (NiO) nanopowder [Product No.: 637130, APS:<50 nm (BET) with Purity:

99.8% trace metal basis], was purchased from Sigma-Aldrich Co. Ltd, St. Louis, MO, U.S.A.

Particle size and morphology were characterized by a Transmission Electron Microscope

(JEOL, JEM-1400 plus Electron Microscope).

The NiO-NPs colloid was prepared as follows: 1. Particles were suspended in normal saline

(0.6%) with a final concentration of stock solution of 0.1 mg/ml, 2. sonication for 1 min using

a Branson sonifier 450 (Branson Ultrasonics Corp., Danbury, CT, U.S.A.), 3. the suspension

was kept on ice for 15 sec, 4. sonication on ice for 10 min at a power of 400 W. Five serially

diluted doses were taken from the stock solution (0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 mg/g).

All samples were prepared under sterilised conditions.

2.4. Method of treatment

Beetles were injected with serial doses of 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 mg/g from the

NiO-NPs colloid for the determination of the median lethal dose (LD50), which is the dose

required to cause 50% mortality. The untreated group received an injection of normal saline.

The weight of the adult beetle was approximately 1.87 g.

Beetles were injected while still alive in the ventro-caudal between the 4th and 5th abdomi-

nal sclerites. Each beetle was placed on its ventral side and injected with a 1 ml BD hypodermic

syringe (27G, "1/ needle) filled with different doses of the NiO-NPs colloid [35] (S2 Fig). The

needle was kept horizontally as possible and only its tip was injected to prevent any physical

damage of the internal tissues [36]. Mortality was reported daily for 30 days. Cumulative mor-

tality was calculated for each tested dose. The LD50 of NiO-NPs was determined by the log-

probit model using the LdP LineR software (Ehabsoft (http://www.ehabsoft.com/ldpline))

(Table 1, S3 Fig).
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In the mortality test (LD50), the sublethal dose was 0.02 mg/g. The group that received this

dose was considered as the treated group (group 2). The tested parameters (enzyme activities,

histological analysis, and ultrastructure analysis) were investigated in this group [31].

2.5. Nickel X-ray detection in midgut tissues of B. polychresta
The Ni percentage was determined in midgut tissues by using an energy-dispersive X-ray

microanalysis (JEOL (JSM-5300) scanning microscope at the Electron Microscope Unit, Fac-

ulty of Science, Alexandria University, Egypt). Eight samples of midgut tissues were analysed

from each group to estimate the accuracy of the analytical results. SEM EDX software was used

to identify the peaks for each metal in the tissue. For each element in the sample, line intensi-

ties were measured. It was also measured for the same elements in calibration standards of

known composition. A stationary spot (X500) was analysed at random for 110 s.

2.6. Determination of aspartate amino-transferase (AST), alanine amino-

transferase (ALT) activities in midgut tissues

Levels of the enzymes AST and ALT in midgut tissues were estimated colorimetrically using a

kit purchased from Quimica Clinica Aplicada S.A. Co., Spain, according to the method of Reit-

man & Frankel (1957) [37].

2.7. Determination of ascorbate levels (APOX) in midgut tissues

Eight samples of the beetles’ midgut tissues were homogenized and centrifuged (8000 g, 5

min), and kept on ice. Samples were mixed with 2 M Tris buffer (pH 9.2, 26% v/v) and ana-

lysed immediately with reverse-phase HPLC [38]. Ascorbate was separated with a Vydac C-18

column (201 HS, 250 X 4: 6 mm) and guard column, using a mobile phase composed of aque-

ous ammonium phosphate (20 mM) and EDTA (1.0 mM). The flow rate was 1.0 ml/min

(35˚C). The peak area was measured with a Shimadzu UV–visible detector (265 nm), and the

peak area was integrated with a Shimadzu C-R4A integrator. The identity of the ascorbate

peak was determined by analysis of ascorbate standards and confirmed by the treatment of

standards and samples with ascorbate oxidase (10 EU (enzyme units)/ml neutralized sample).

Peak areas were converted to mU/mg protein injected using an ascorbate standard curve.

2.8. Histological and ultrastructure preparations

The midguts were fixed in 4F1G in phosphate buffer solution (pH 7.2) at 4˚C for 3 h and post-

fixed in 2% OsO4 in the same buffer for 2 h. Samples were washed in the buffer and dehydrated

at 4˚C through a series of ethanol. Specimens were immersed in an Epon-Araldite mixture in

labelled beam capsules. The Ultramicrotome (LKB; Bromma-2088-Ultratome1V, Sweden)

Table 1. Dose-response percentages of NiO-NPs in the studied groups.

Dose Dose

1000 00

Log (Dose1000000) Treated Observed mortality response % Linear mortality response % Linear probit

0.000001 1 0.0000 20 5.000 2.14291 2.9710

0.01 10000 4.0000 20 35.000 46.6310 4.9154

0.02 20000 4.3010 20 35.000 52.4605 5.0618

0.03 30000 4.4771 20 45.000 55.8561 5.1474

0.04 40000 4.6021 20 50.000 58.2429 5.2081

0.05 50000 4.6990 20 70.000 60.0742 5.2552

0.06 60000 4.7782 20 95.000 61.5507 5.2937

https://doi.org/10.1371/journal.pone.0255623.t001
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was used for the semithin sections (1 μm thick). Sections were mounted on a glass slide,

stained with toluidine blue and examined with a light microscope to determine the orientation

and the structural features. Photomicrographs were taken at different magnifications by the

Olympus CX31, Leica Ultra Cut R light microscope.

Ultrathin sections (0.06–0.07 μm thick) were cut for transmission electron microscope

(TEM) then picked upon 200 mesh naked copper grids. Grids were stained for 30 min with

uranyl acetate and 20–30 min with lead citrate (Reynolds 1963). Several magnifications were

taken for the electron micrographs. Photographing and scoping the grids were achieved by

Jeol 100 CX Tem, at the E.M. Unit, Faculty of Science, Alexandria University, Egypt (JEM-

1400 plus; JEOL Ltd., Akishima, Tokyo, Japan)

2.9. Data analysis

The log-probit model, LdP LineR software (Ehabsoft (http://www.ehabsoft.com/ldpline)) was

used to estimate the LD50. To estimate mortality, the Kruskal Wallis test for abnormally dis-

tributed quantitative variables and comparisons between more than two studied groups was

used, and post-hoc (Dunn’s multiple comparisons test) for pairwise comparisons. The IBM

SPSS software package version 20.0 program (IBM Corp., Armonk, New York, U.S.A.) was

used for the analysis of the X-ray and enzymes [39]. The Shapiro-Wilk test was used to prove

the normality of the distribution of variables. The Student t-test was used to ascertain the dif-

ference between the two studied groups for normally distributed quantitative variables [40].

The significance of the results was judged at P� 0.05.

3. Results

3.1. NiO-NPs characterizations

A Transmission Electron Microscope (TEM) was used to determine the physical characteris-

tics of NiO-NPs. The micrographs showed that the particles were spherical or oval and aggre-

gated together. The size of the particles ranged from 21.79 to 30.35 nm diameter with a mean

diameter of 26.27 ± 4.43 nm which was similar to the manufacture’s references (<50 nm)

(Fig 1).

3.2. Insect mortality

Beetle mortality was calculated from day 1 to day 30 (S1 & S2 Tables). On day 30, it was

observed that 13 beetles in groups 1 and 2, 11 beetles in group 3, 10 beetles in group 4, and 6

beetles in group 5 were alive with the injection of 0.01, 0.02, 0.03, 0.04, and 0.05 mg/g respec-

tively, although, total mortality was observed in group 6 (0.06 mg/g) (S1 Table). It was noticed

that the 0.04 mg/g dose resulted in 50% mortality and the 0.06 mg/g dose resulted in 100%

mortality. A significant difference in the cumulative mortality percentages between the tested

groups was observed. (Fig 2, S2 Table). From Table 1, the LD50 was reported at 0.04 mg/g

dose, so all the tested parameters were performed in the group that was treated with the suble-

thal dose of 0.02 mg/g and compared with the untreated group.

3.3. Nickel X-ray detection in the midgut of B. polychresta
Ni was detected in the midgut tissues of the treated group by X-ray analysis to determine the

metal percentages (Table 2, S4 Fig). Eight elements were detected in the midgut tissue of the

untreated group (Na, Al, P, S, K, Ca, Cu, and Zn), whereas, nine elements (Na, Al, P, S, K, Ca,

Cu, Zn, and Ni) were detected in the midgut tissues of the NPs treated group, which indicates

that Ni was present in the midgut tissues due to the treatment.
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3.4. Determination of aspartate amino-transferase (AST), alanine

aminotransferase (ALT) and ascorbate peroxidase (APOX) activities in

midgut tissues of beetles in the studied groups

In the treated community, AST and ALT enzyme activity levels were significantly higher than

in the untreated group in the midgut tissues of beetles (Fig 3A and 3B). However, a substantial

reduction in the level of APOX in midgut tissues was found in the treated group as opposed to

the untreated group (Fig 3C).

Fig 1. Transmission electron micrograph of NiO-NPs.

https://doi.org/10.1371/journal.pone.0255623.g001

Fig 2. Cumulative mortality percentage in the studied groups during the studied period. The data is presented as a

mean±SE.

https://doi.org/10.1371/journal.pone.0255623.g002

PLOS ONE Nickel nanoparticles toxicity in biological tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0255623 September 24, 2021 6 / 21

https://doi.org/10.1371/journal.pone.0255623.g001
https://doi.org/10.1371/journal.pone.0255623.g002
https://doi.org/10.1371/journal.pone.0255623


3.5. The external morphology of the alimentary canal of B. polychresta
The alimentary canal of adult B. polychresta composed of a short foregut, long midgut, and

hindgut (ileum, colon, rectum, and anal canal), which opens outside through the anus between

the 8th and 9th sternites (Fig 4A). The anatomical deformity that was observed in the alimen-

tary canals of the treated group was the reduction in the length of the canal, being 7.80 cm in

the untreated group (Fig 4A) and 5.60 cm in the treated group (Fig 4B).

3.6. Histological observations of midgut tissues of adult B. polychresta in

the untreated group

The histological structure of the midgut revealed an epithelium lying on a basement mem-

brane coated by two muscle layers, the circular and the longitudinal muscle fibres (Fig

5A–5C). The epithelium consisted of regenerative cells and digestive cells; columnar cells

and goblet cells. Each of these cells had a large nucleus and basophilic cytoplasm (Fig 5A–

5C). The regenerative cells appeared singly or in clusters called “nidi”, forming crypts

near to the muscle fibres (Fig 5A). In the basal lamina, columnar and goblet cells were

observed (Fig 5A–5C). The basal lamina of the epithelium was provided with a striated

brush border called microvilli (Fig 5A–5C) that expanded the absorption of the cell sur-

face. The peritrophic membrane appeared visible with multilayer and normal thickness. It

was separated from the epithelial cells (Fig 5A).

Table 2. Trace metal percentages (%) in midgut tissues of B. polycresta of the studied groups.

Metals Untreated group Treated group (Group 2) t P
Na 5.63 ± 0.48 5.93 ± 1.12 0.246 0.814

Al 10.40 ± 2.10 9.73 ± 3.86 0.154 0.883

P 12.38 ± 2.86 25.20 ± 7.28 1.640 0.178

S 42.65 ± 1.82 29.50 ± 5.25 2.369 0.082

K 4.63 ± 1.33 7.83 ± 3.05 0.963 0.389

Ca 3.78 ± 1.44 2.03 ± 0.53 1.142 0.297

Cu 5.33 ± 0.36 5.55 ± 0.56 0.337 0.748

Zn 4.18 ± 0.36 3.68 ± 0.42 0.904 0.401

Ni ND 3.45 ± 0.36 – –

For each metal, the percentage expressed by using minimum–maximum values and mean (n = 8) using Student t-test, �statistically significant at P � 0.05; ND: not

detected.

https://doi.org/10.1371/journal.pone.0255623.t002

Fig 3. Activities of antioxidant enzymes a: AST, b: ALT, c: APOX in the studied groups. Data are expressed as mean± SE.

https://doi.org/10.1371/journal.pone.0255623.g003
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3.7. Histological observations of midgut tissues of adult B. polychresta in

the treated group

Histological alterations in the midgut structure were observed in the treated beetles. Numerous

vacuoles, lytic areas, and dense vesicles in the cytoplasm of both cells were observed (Fig 6A–

6D). Necrotic regenerative cells with pyknotic nuclei as well as a columnar cell with pyknotic

nuclei were distinguished (Fig 6B). Also, disruption of microvilli was observed (Fig 6A–6C).

Fig 4. Photograph of the alimentary canal of B. polychresta, a: Untreated group b: Treated group. fg: foregut, mg:

midgut, hg: hindgut.

https://doi.org/10.1371/journal.pone.0255623.g004
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The peritrophic membrane was not visible in the micrographs. It might be affected by the

NiO-NPs treatment (compare Figs 5A with 6B).

3.8. Ultrastructure observations of midgut tissues of adult B. polychresta in

the untreated group

Electron micrographs of the midgut of beetles in the untreated group revealed that the regen-

erative and columnar cells exhibited oval nuclei with patches of heterochromatin and defined

nuclear envelopes (Fig 7A and 7D). Cell boundaries and tight junctions were obvious (Fig 7B).

Mitochondria, numerous cisterns of the rough endoplasmic reticulum, and free ribosomes

were uniformly distributed in the cytoplasm (Fig 7A–7D). Frequent mitochondria in the basal

region were noticed (Fig 7C–7F). Unalterable distributed microvilli cover the luminal border

(Fig 7D and 7E). Few lysosomes and lipid vacuoles were distinguished (Fig 7C, 7E and 7F).

3.9. Ultrastructure observations of midgut tissues of adult B. polychresta in

the treated group

Alterations in the midgut cells were observed in the treated beetles. Some nuclei exhibited

indentation of the nuclear membranes and pyknotic ones were visible (Fig 8A and 8B). An

early apoptotic and achromatic nucleus was detected (Fig 8B). Besides, karyorrhexis was

noticed (Fig 8C). The cytoplasm appeared with frequent vacuolations and lytic areas (Fig 8A–

8D). Myelin figures were also detected (Fig 8A). Spherical electron-dense particles composed

of nanoparticles were distinguished (Fig 8D and 8E). Mitochondria appeared swollen and mal-

formed (Fig 8E). Dilated smooth endoplasmic reticulum (Fig 8C, 8D and 8F), distortion in the

brush border of the microvilli (Fig 8E and 8F), and rupture of the cell boundary were observed

(Fig 8E).

4. Discussion

Because of the growing interest in using NPs in industry, they are being released into the envi-

ronment [41] NPs can combine with contaminants due to their high surface to mass ratio,

which is a path for ecotoxicity [42]. This combination depends on the physical and chemical

properties of the NPs [43]. The liberation of NPs into the soil or water could become a poten-

tial lethal factor that induces cellular toxicity [44]. Ni-NPs toxicity is yet to be completely

Fig 5. A semithin sections of the midgut epithelium a: circular muscle (arrow), longitudinal muscle (double head arrow), regenerative

cell (RC), columnar cell (CC) nucleus (N), microvilli (MV), peritrophic membrane (wavy arrow). b: circular muscle (arrow),

longitudinal muscle (double head arrow), regenerative cell (RC), columnar cell (CC), nucleus (N), goblet cell (GC), microvilli (MV). c:

circular muscle with light and dark bands (arrow), longitudinal muscle (double head arrow), columnar cell (CC), nucleus (N), goblet cell

(GC), microvilli (MV).

https://doi.org/10.1371/journal.pone.0255623.g005
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explained. In the present study, NiO-NPs cytotoxicity has been illustrated in the ground beetle

B. ploycresta as a biological model. Because beetles can settle in contaminated habitats, they

have been successful in biomonitoring programs [10, 17, 32]. Nanoparticles can enter organ-

isms through ingestion or inhalation and are partitioned into tissues where they exert toxic

effects [45]. In the current study, a unique route of administration of serial doses of NiO-NPs

to the beetles through injection was obtained. This administration route confirms that the cho-

sen doses enter the insect’s body. A previous study by Magaye et al. [9] reported that the intra-

venous injection of metallic Ni-NPS in rats caused severe lung and liver injuries.

In the study, Ni was detected by X-ray microanalysis in the midgut tissues of the treated

beetles. X-ray microanalysis is a valid tool for illustrating the distribution of metals in biologi-

cal tissues [46]. The small size, great capacity, and high reactivity of NPs facilitate their trans-

portation to cellular organelles and exert harmful effects, unusual in their micron-sized

counterparts [44]. Little data is available in the literature about the toxicity of Ni-NPs in bio-

logical tissues. It was reported by Capasso et al. [47] that NiO-NPs induced cell cycle retarda-

tion in cell lines of human pulmonary epithelials (BEAS-2B and A549). High doses of oral

administration of NiO-NPs caused chromosomal aberrations and DNA breaks in Wistar rats

[48]. Recent studies show that NiO-NPs have a genotoxic and mutagenic effect in Drosophila
[6, 49]. Also, Magaye et al. [50] stated that Ni-NPs can initiate intracellular oxidative stress,

damaging DNA in cells, which is accountable for their genotoxicity.

Fig 6. A semithin section of abnormal midgut epithelium. a: lytic cytoplasm (�), regenerative cell (RC) with pale

nucleus (N), distorted columnar cell (CC), ruptured microvilli (MV), circular muscle (arrow), longitudinal muscle

(double head arrow), dense vesicle (dv). b: massive disruption of the midgut epithelium with lytic cytoplasm (�),

distorted microvilli (MV), necrotic regenerative cells (RC) with pyknotic nuclei (circle), columnar cell (CC) with

pyknotic nuclei. N: nucleus, double head arrow: longitudinal muscle. c: lytic cytoplasm (�), distortion of microvilli

(MV), columnar cell (CC) with a heterochromatic nucleus, regenerative cell (RC), vacuoles (V), dense vesicle (dv). d:

lytic cytoplasm (�), microvilli (MV), regenerative cell (RC), columnar cell (CC), nucleus (N), vacuole (V), dense vesicle

(dv), circular muscle (arrow), longitudinal muscle (double head arrow).

https://doi.org/10.1371/journal.pone.0255623.g006

PLOS ONE Nickel nanoparticles toxicity in biological tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0255623 September 24, 2021 10 / 21

https://doi.org/10.1371/journal.pone.0255623.g006
https://doi.org/10.1371/journal.pone.0255623


Toxicological endpoints can be obtained from mortality tests [51]. The mortality test in the

present study revealed that the 0.06 mg/g dose resulted in 100% mortality, while the 0.04 mg/g

resulted in 50% mortality. Thus, the selected sublethal dose was 0.02 mg/g. Dabour et al. [31]

reported the mortality of honey bee workers (Apis melifera) due to exposure to sublethal con-

centrations of PbO and CdO NPs (0.65 mg/ml, and 0.01 mg/ml respectively), which is hardly

comparable to the present work.

In the present study, a disturbance in the enzyme activities (significant elevation in AST,

ALT and significant inhibition of APOX) was reported in the treated group compared with the

untreated one. The elevation in transaminase activities might be required to shift amino acids

to the tricyclic acid cycle, so they can be used as fuel molecules to produce additional energy in

the stressed organism [52]. Transaminase activities were remoulded during various pathologi-

cal conditions [53, 54]. This insinuates that injected NiO-NPs may generate toxic reactions.

Upadhyay [52] reported that the elevation in the activities of AST and ALT designates tissue

damage. After fourteen days of intravenous injection, Magaye et al. [9] discovered that Ni

nanoparticles significantly increase alkaline phosphatase (ALP) and significantly decrease ala-

nine aminotransferase (ALT) in the liver of rats, while no significant difference in aspartate

aminotransferase (AST) is observed. Stohs et al. [55] stated that the molecular action of heavy

Fig 7. TEM of normal midgut epithelium a: columnar cell (CC) with oval nucleus (N), nuclear envelope (Ne),

heterochromatin (Hc), mitochondria(M), rough endoplasmic reticulum (RER), free ribosomes (r). b: nucleus (N),

nuclear envelope (Ne), mitochondria (M), heterochromatin (Hc), rough endoplasmic reticulum (RER), smooth

endoplasmic reticulum (SER), cell boundary (arrow). c: columnar cell with nucleus (N), nuclear envelope (Ne),

mitochondria (M), rough endoplasmic reticulum (RER), primary lysosomes (Ly1), secondary lysosomes (Ly2). d:

regenerative cell (RC), nucleus (N), nuclear envelope (Ne), mitochondria(M), rough endoplasmic reticulum (RER),

smooth endoplasmic reticulum (SER), microvilli (MV). e: basal nucleus (N), nuclear envelope (Ne), apical

mitochondria(M), rough endoplasmic reticulum (RER), smooth endoplasmic reticulum(SER), lysosomes (L), lipid

vacuole (L), cell boundary (arrow), tight junction (Tj), microvilli (V). f: apical mitochondria (M), lipid vacuole (L),

brush border with long microvilli (MV).

https://doi.org/10.1371/journal.pone.0255623.g007
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metals provokes ROS, which ushers in cell toxicity. Ni-NPs were found to induce oxidative

stress evinced by the generation of reactive oxygen species (ROS), which suggests that the Ni-

NPs are capable of inducing genotoxic effects [6, 56]. Some research has proved that diverse

kinds of nanoparticles can trigger oxidative stress in arthropod tissues [57, 58]. Rai et al.
(2014) [59] stated that the penetration of the nanoparticles through the exoskeleton can induce

toxicity. Nanomaterials bind to sulphur from proteins or to phosphorus from DNA in the

intracellular space, leading to denaturation of enzymes and organelles [60]. Nel et al. (2006)

[61] and Wise et al. [62] stated that oxidative stress and ROS generation are possible mecha-

nisms of cytotoxicity related to NP exposure. Moreover, it has been suggested that NPs induce

oxidative stress that leads to DNA damage and apoptosis [63]. Siddiqui et al. (2012) [64] found

that NiO-NPs increased apoptosis in MCF-7 and HEp-2 cells in vitro. The inhibition of APOX

activities in the study might be an outcome of structural alterations of proteins, damage, and

finally deactivation of the enzymes [65–67]. APOX catalysed the reduction of H2O2 using

ascorbate as a reducing agent. Therefore, the activity of the enzyme can be limited by the

Fig 8. TEM of the treated midgut epithelium a: nucleus (N) with irregular nuclear envelope Ne (head arrow), pyknotic

nucleus (wavy arrow), vacuoles (V), myelin figure (curved arrow), microvilli (MV). b: lytic cytoplasm (�), intended

nuclear envelopes (head arrow), early apoptotic nucleus (wavy arrow), achromatic nucleus (N1), vacuoles (V),

microvilli (MV). N: nucleus, Ne: nuclear envelope. c: lytic cytoplasm (�) heterochromatic nucleus (N),

heterochromatin (Hc), karyorrhexis (head arrow) at the nuclear envelope (Ne), swollen mitochondria (M), dilated

smooth endoplasmic reticulum (SER), secretory vesicle (Sv). d: lytic cytoplasm (�), nucleus (N), heterochromatin (Hc),

nuclear envelope (Ne), electron-dense particles (white arrow), mitochondria (M), dilated smooth endoplasmic

reticulum (SER), rough endoplasmic reticulum (RER). e: lytic cytoplasm (�), electron-dense particles (white arrow),

heterochromatin (Hc), irregular nuclear envelope Ne (head arrow), swollen mitochondria (M), aggregation of

malformed mitochondria (double head arrow), ruptured cell boundary (arrow), distorted microvilli (MV). f: brush

border with distorted microvilli (MV), swollen mitochondria (M), dilated smooth endoplasmic reticulum (SER), tight

junction (Tj).

https://doi.org/10.1371/journal.pone.0255623.g008
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prevalence of reduced ascorbate. The production of reduced ascorbate is sustained under

favourable conditions, although the process could be disrupted under stressed conditions [67].

Lijun et al. 2005 [68] stated that antioxidant enzymes activities, such as APOX are changed at

high Cd concentrations as an outcome of protein alteration. Due to the shape and surface

characteristics charge of NPs, they can bind to the proteins and generate adverse biological

outcomes such as protein unfolding, thiol crosslinking, fibrillation, and loss of enzymatic

activity [69]. Also, cytotoxicity will occur from the release of toxic ions because the thermo-

static properties of materials favour particle cessation in a biological medium [69]. However,

in the light of these conclusions, NiO-NPs might have a role in enzymatic activity alterations

and protein denaturation.

The histological observations of the midgut of the NiO-NPs treated group showed acute

and irreversible pathological anomalies. Abdollahi et al. [70] stated that the toxicity of xenobi-

otics is related to the production of free radicals, which are implicated in physiological and his-

tological pathology. A disorganisation of the microvilli was noticed in our preparations that

may be a consequence of the rupture of the peritrophic membrane. In the midgut of insects,

the peritrophic membrane envelopes the food [71]. Abu El-Saad et al. [72] reported that the

midgut epithelium is the main object of toxins as it is considered the first barrier against the

intoxication of the organism. Other observed alterations in the current study included disrup-

tion of the epithelial cells as observed by Rawi et al. [73], and the appearance of vacuoles as

reported by Younes et al. [74], Adel et al. [75] and Osman et al. [34]. These pathological alter-

ations in the cells may affect the normal physiology of insects [76]. It was cited that zinc oxide

nanoparticles led to several morphological and histological abnormalities in Ae. aegypti third

instar larvae (exposed to LC50 of 1.57 mg/l for 24 h), including shrinkage in the abdominal

region, thorax shape changes, and midgut damage [77].

Several types of research have postulated the histopathological effects of metal/metalloids

on the insect’s gut. Zhang et al. [29] observed stretching of the cellular axis, an increase of the

cellular volume, cytoplasmic vacuolations, and an inhibition of basophilic secretions towards

the lumen in the midgut of Blattella germanica after treatment with heavy metals (Hg, Pb and

Cr). Al-Dhafar & Sharaby [78] observed degeneration, vacuolation, and shrinkage of some epi-

thelial and goblet cells in the midgut of the larvae of Rhynchophorus ferrugineus after treatment

with ZnSO4. Cid et al. [79] observed histological anomalies (vacuolisation and thickening) in

digestive gland cells of freshwater bivalves (Corbicula fluminea) after exposure to various con-

centrations of nanodiamonds (NDs, 0.01, 0.1, 1, and 10 mg/l) for 14 days.

Krishnan et al. [80] attributed the damage to the gut to the ROS effect. An excess of ROS

reduces nutrient absorption and damages midgut cells, resulting in a nonfunctional digestive

system. According to Krishnan and Kodrik [81], ROS can oxidise PUFA in the cell membranes

and inhibit its function. Dabour et al. postulated the adverse consequences of food administra-

tion of sublethal concentrations of CdO and PbO NPs on the cellular and subcellular struc-

tures of the midgut of honey bee workers (Apis mellifera). They found that CdO and PbO NPs

marked out various histological anomalies in the NPs fed group compared with controls. One

of the histopathological alterations in the midgut tissues of the NiO-NPs treated group in the

current study is the rupture of PM. These results are consistent with those reported by Dabour

et al. [31] who noticed the destruction of PM after food administration of sublethal concentra-

tions of CdO and PbO to honey bee workers (Apis mellifera). The PM serves as a protective

barrier against chemical, physical and microbial food components [82, 83]. Therefore, any

alteration in its structure leads to deleterious effects on the midgut tissues of insects.

Ultrastructure deformities in the NiO-NPs treated group involve chromatin clumping and

the presence of pyknotic nuclei, which suggests less efficient transcription and subsequently

result in the decrease in metabolic activity [84]. This also indicates that cells are in an advanced
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cell death process [85, 86]. The irregulation of the nuclear envelopes and karyorrhexis indicate

a pathway of cell death [87, 88]. Some authors attributed apoptosis to metal accumulation [89,

90], which is in agreement with our results. Research has proven the relation between exposure

to metals and the prevalence of apoptosis [91, 92]. The vacuolated areas in the cytoplasm may

be ascribed to the action of lysosomal hydrolase or the breakage of the mitochondria [93] and

sometimes may be due to the enhanced endocytotic activity as described by Cavados et al.
[94].

Nanoparticles are frequently distinguished from lysosomes upon internalisation, and

numerous nanomaterials have been related to lysosomal impairments [95]. It has been con-

firmed that lysosomal destabilisation activates mitochondrial apoptosis [96, 97].

The study revealed the presence of electron-dense particles in the midgut tissues due to

NiO-NPs accumulations as a detoxification mechanism [98, 99]. Our results follow Polidori

et al. (2018) [93], who detected metal precipitation in spherites in the midgut of paper wasps

(Polistes dominula) collected from urban environments. Also, a similar observation was

noticed by Pigino et al. [100], who reported that a large number of electron-dense granules,

composed of a variety of heavy metals, were accumulated in the epithelium of the midgut ven-

triculus of the mite Xenillus tegeocranus from a deserted mining and smelting area. Karpeta-

Kaczmarek et al. [101] reported that the epithelial cells of midgut and hindgut of Acheta
domesticus (Orthoptera, Gryllidae) were damaged at high concentrations of nanodiamonds

(NDs) and autophagy was activated. The hydrophobic nature of NPs allows them to cross the

cell membranes [102] and then they may act as centres of oxidative damage inside the cell

[103].

Disruption of microvilli is one of our major findings in this study since it is the first site fac-

ing and interacting with pollutants [93]. Some changes in the cytoplasmic organelles were dis-

tinguished in our electron micrographs, such as lysis of mitochondrial matrices, dilated rough

and smooth endoplasmic reticulum, and the presence of myelin figures. It was found that

heavy metals distort cytoplasmic membranes [10, 17]. Mitochondrial alteration is a reflection

of the deregulation of mitochondrial membrane transport [104]. Toxins cause damage to

mitochondrial membranes and cristae, as discovered by Braeckman et al. [105] in insects’

intoxicated cells. Moreover, the swelling of the mitochondria reflects the entry of water and/or

solutes into the mitochondrial matrix [106]. Belyaeva et al. [107] deduced that mitochondria

are an important target for the toxic effects of metals and their oxide NPs.

The interference of heavy metals with proper processing in the ER causes its dilation and

activates the ER stress response [108]. The proliferation of myelin figures in our preparations

has been interpreted as a symptom of intoxication trigged by NiO-NPs that implies an adap-

tive mechanism in response to the high degradation of cellular organelles [109]. These ultra-

structure alterations represent the major features of both cell necrosis and apoptosis [110,

111]. In accordance with our results, Dabour et al. [31] observed ultrastructure anomalies in

the midgut cells of workers of honey bees (Apis mellifera) treated with CdO and PbO-NPs.

The present results are considered the first record to present the physiological and histolog-

ical alterations induced by NiO-NPs in the ground beetle B. polychresta. However, the pro-

cesses behind NiO-NPs’ toxicity remain unknown. Additionally, the effect of nanoscale

dimensions, form, and charge on the different possible mechanisms of action will be examined

in more detail in our upcoming work.

5. Conclusion

The findings of the current study will guide researchers to identify the impact of the sublethal

dose of NiO-NPs on biological tissues. It could be concluded that particles, which are less than
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50 nm, are capable of entering cells and attaching to macromolecules, leading to DNA damage.

Thus, precautions should be taken when dealing with minute particles. The mechanisms

responsible for the toxicity of NiO-NPs still need to be investigated. Also, the impact of nano

size, shape, and charge on the various potential mechanisms of action must be elucidated.

Lastly, further efforts are still necessary to validate the proposed metal oxide nanoparticles in

field conditions, monitoring at the same time their stability, fate in the environment, and sub-

lethal effects on non-target organisms.
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35. Leonard C, Söderhäll K, Ratcliffe NA. Studies on prophenoloxidase and protease activity of Blaberus

craniifer haemocytes. Insect Biochem. 1985; 15(6):803–10.https://doi.org/10.1016/0020-1790(85)

90109-X.

36. de Viedma M, Nelson M. Notes on Insect Injection, Anesthetization, and Bleeding. Great Lakes Ento-

mol. 2017; 10(4):12

37. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and

glutamic pyruvic transaminases. Am J Clin Pathol. 1957; 28(1):56–63. https://doi.org/10.1093/ajcp/28.

1.56 PMID: 13458125

38. Levine M, Wang Y, Rumsey SC. Analysis of ascorbic acid and dehydroascorbic acid in biological sam-

ples. Methods Enzymol. 1999; 299:65–76. https://doi.org/10.1016/s0076-6879(99)99009-2 PMID:

9916197

39. Kirkpatrick L, Feeney B. A Simple Guide to IBM SPSS Statistics for Version 20.0. Wadsworth: Cen-

gage Learning; 2013.

PLOS ONE Nickel nanoparticles toxicity in biological tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0255623 September 24, 2021 17 / 21

https://doi.org/10.1016/s0147-6513%2802%2900038-6
http://www.ncbi.nlm.nih.gov/pubmed/12485579
https://doi.org/10.1073/pnas.91.14.6609
http://www.ncbi.nlm.nih.gov/pubmed/7517554
https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
https://doi.org/10.1002/(SICI)1520-6327(1997)34:1<57::AID-ARCH5>3.0.CO;2-T
https://doi.org/10.1002/(SICI)1520-6327(1997)34:1<57::AID-ARCH5>3.0.CO;2-T
https://doi.org/10.1111/1758-2229.12024
https://doi.org/10.1111/1758-2229.12024
http://www.ncbi.nlm.nih.gov/pubmed/23757127
https://doi.org/10.1080/11250000109356398
https://doi.org/10.1002/jemt.22339
http://www.ncbi.nlm.nih.gov/pubmed/24470251
https://doi.org/10.1016/j.scitotenv.2018.09.311
https://doi.org/10.1016/j.scitotenv.2018.09.311
http://www.ncbi.nlm.nih.gov/pubmed/30360267
https://doi.org/10.3923/ajbs.2019.637.647
https://doi.org/10.1111/j.1365-3113.2010.00567.x
https://doi.org/10.1111/j.1365-3113.2010.00567.x
https://doi.org/10.1007/s11356-015-4606-4
https://doi.org/10.1007/s11356-015-4606-4
http://www.ncbi.nlm.nih.gov/pubmed/25963070
https://doi.org/10.1016/0020-1790(85)90109-X
https://doi.org/10.1016/0020-1790(85)90109-X
https://doi.org/10.1093/ajcp/28.1.56
https://doi.org/10.1093/ajcp/28.1.56
http://www.ncbi.nlm.nih.gov/pubmed/13458125
https://doi.org/10.1016/s0076-6879%2899%2999009-2
http://www.ncbi.nlm.nih.gov/pubmed/9916197
https://doi.org/10.1371/journal.pone.0255623


40. Sokal R, Rohlf F. Biometry: the Principles and Practice of Statistics in Biological Research. 2nd ed.

New York: W.H. Freeman; 1981.

41. Ripp S, Henry T. Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the

Potential Threats around US: ACS Symposium Series. Washington: American Chemical Societ;

2011.

42. GolobičM, Jemec A, Drobne D, Romih T, Kasemets K, Kahru A. Upon exposure to Cu nanoparticles,

accumulation of copper in the isopod Porcellio scaber is due to the dissolved Cu ions inside the diges-

tive tract. Environ Sci Technol. 2012; 46(21):12112–9. https://doi.org/10.1021/es3022182 PMID:

23046103

43. Santra S, Zhang P, Wang K, Tapec R, Tan W. Conjugation of biomolecules with luminophore-doped

silica nanoparticles for photostable biomarkers. Anal Chem. 2001; 73(20):4988–93. https://doi.org/10.

1021/ac010406+ PMID: 11681477

44. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab JChem. 2017; 12

(7):908–31.https://doi.org/10.1016/j.arabjc.2017.05.011.

45. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. Toxicity of silver nanoparti-

cles to Chlamydomonas reinhardtii. Environ Sci Technol. 2008; 42(23):8959–64. https://doi.org/10.

1021/es801785m PMID: 19192825

46. Kheirallah DA, El-Samad LM. Isoenzymes and protein polymorphism in Blaps polycresta and Trachy-

derma hispida (Forsskål, 1775) (Coleoptera: Tenebrionidae) as biomarkers for ceramic industrial pol-

lution. Environ Monit Assess. 2019; 191(6):372. https://doi.org/10.1007/s10661-019-7517-x PMID:

31101990

47. Capasso L, Camatini M, Gualtieri M. Nickel oxide nanoparticles induce inflammation and genotoxic

effect in lung epithelial cells. Toxicol Lett. 2014; 226(1):28–34. https://doi.org/10.1016/j.toxlet.2014.01.

040 PMID: 24503009

48. Dumala N, Mangalampalli B, Chinde S, Kumari SI, Mahoob M, Rahman MF, et al. Genotoxicity study

of nickel oxide nanoparticles in female Wistar rats after acute oral exposure. Mutagenesis. 2017; 32

(4):417–27. https://doi.org/10.1093/mutage/gex007 PMID: 28387869

49. De Carli RF, Chaves DDS, Cardozo TR, de Souza AP, Seeber A, Flores WH, et al. Evaluation of the

genotoxic properties of nickel oxide nanoparticles in vitro and in vivo. Mutat Res Genet Toxicol Environ

Mutagen. 2018; 836(Pt B):47–53. https://doi.org/10.1016/j.mrgentox.2018.06.003 PMID: 30442345

50. Magaye R, Gu Y, Wang Y, Su H, Zhou Q, Mao G, et al. In vitro and in vivo evaluation of the toxicities

induced by metallic nickel nano and fine particles. J Mol Histol. 2016; 47(3):273–86. https://doi.org/10.

1007/s10735-016-9671-6 PMID: 27010930

51. Swidan MH, Kheirallah DA, Osman SEI, Nour FE. Impact of Certain Natural Insecticides on the Mor-

phological and Biochemical Characteristics of Khapra beetle, Trogoderma granarium Everts. Int J

Zool Invest. 2016; 2(1):147–66

52. Upadhyay R. Capparisdecidua Induced Toxicity, Biochemical and Enzymatic Alterations in Rhizo-

perthadominica (Fabr.) (Coleoptera: Bostrichidae). World J Zool. 2013; 8(3):256–66.https://doi.org/10.

5829/idosi.wjz.2013.8.3.73227.

53. Etebari K, Mirhoseini SZ, Matindoost L. A study on interaspecific biodiversity of eight groups of silk-

worm (Bombyx mori) by biochemical markers. Insect Sci. 2005; 12(2):87–94.https://doi.org/10.1111/j.

1744-7917.2005.00010.x.
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98. Triebskorn R, Köhler HR. The impact of heavy metals on the grey garden slug, Deroceras reticulatum

(Müller): Metal storage, cellular effects and semi-quantitative evaluation of metal toxicity. Environ Pol-

lut. 1996; 93(3):327–43. https://doi.org/10.1016/s0269-7491(96)00048-6 PMID: 15093530
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