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Background. Prospective audit with feedback (PAF) is an impactful strategy for antimicrobial stewardship program (ASP)
activities. However, because PAF requires reviewing large numbers of antimicrobial orders on a case-by-case basis, PAF
programs are highly resource intensive. The current study aimed to identify predictors of ASP intervention (ie, feedback) and to
build models to identify orders that can be safely bypassed from review, to make PAF programs more efficient.

Methods. We performed a retrospective cross-sectional study of inpatient antimicrobial orders reviewed by the University of
MarylandMedical Center’s PAF program between 2017 and 2019. We evaluated the relationship between antimicrobial and patient
characteristics with ASP intervention using multivariable logistic regression models. Separately, we built prediction models for ASP
intervention using statistical and machine learning approaches and evaluated performance on held-out data.

Results. Across 17 503 PAF reviews, 4219 (24%) resulted in intervention. In adjusted analyses, a clinical pharmacist on the
ordering unit or receipt of an infectious disease consult were associated with 17% and 56% lower intervention odds, respectively
(adjusted odds ratios [aORs], 0.83 and 0.44; P≤ .001 for both). Fluoroquinolones had the highest adjusted intervention odds
(aOR, 3.22 [95% confidence interval, 2.63–3.96]). A machine learning classifier (C-statistic 0.76) reduced reviews by 49% while
achieving 78% sensitivity. A “workflow simplified” regression model that restricted to antimicrobial class and clinical indication
variables, 2 strong machine learning–identified predictors, reduced reviews by one-third while achieving 81% sensitivity.

Conclusions. Prediction models substantially reduced PAF review caseloads while maintaining high sensitivities. Our results
and approach may offer a blueprint for other ASPs.
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Antimicrobial stewardship programs (ASPs) are tasked with
improving antimicrobial use across many disciplines in and
out of the hospital. A prospective audit with feedback (PAF)
program is an impactful strategy for in-hospital ASP activities.
Under this type of stewardship program, an antimicrobial stew-
ardship team audits active antimicrobial orders within a spec-
ified timeframe. If the antimicrobial order is deemed
noncompliant with recommended guidelines or needs optimi-
zation of dose, route, etc, the ASP team will intervene to

provide therapeutic recommendations and feedback to treating
providers. Compared to restrictive strategies, PAF is more ef-
fective at reducing antimicrobial utilization, and it is a favored
ASP strategy in most inpatient settings [1–3].
In large medical centers with >200 new antimicrobial orders

daily, however, this ASP task also becomes enormous.
Understandingwhich clinical service and care locations, patient
types, and antimicrobials have the highest or lowest likelihood
of intervention may provide opportunities for streamlining
PAF programs to reduce their resource-intensiveness. We
were therefore interested in learning how PAF programs might
perform activities more efficiently by identifying “hotspots” for
ASP intervention in our medical center.
Motivated by the preceding considerations, the objectives of

the current study were 2-fold: (1) to understand which patient
and treatment characteristics are associated with either a higher
or lower likelihood of intervention in a PAF program; and (2)
to develop prediction models to identify antimicrobial orders
that may be safely excluded from review due to a high probabil-
ity that, even if they had been reviewed, they would not have
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triggered an intervention. To achieve these goals, we deployed
both traditional regression analyses and newer machine learn-
ing techniques. We hope that our approach can provide a blue-
print for other stewardship programs to undertake similar
analyses on their own data.

METHODS

The University of Maryland Medical Center PAF Program

The University of Maryland Medical Center (UMMC) is a
750-bed tertiary care center in Baltimore, Maryland, with solid
organ and hematopoietic stem cell transplant and oncology
programs and 8 specialized intensive care units. At UMMC,
there are approximately 100 new antimicrobial orders daily
and 500 active antimicrobial orders at any one time. The
UMMC ASP team consists of 2 infectious disease (ID) physi-
cians (combined 0.3 full-time equivalent) and 3 ID pharmacists
(combined 1.5 full-time equivalent). A PAF programwas intro-
duced in July 2017 and is the mainstay of the stewardship pro-
gram [4]. Under this program, the ASP team aims to review all
new inpatient antimicrobial orders within 3 days of order, to
replicate the Centers for Disease Control and Prevention–en-
dorsed 72-hour “antibiotic time-out” [5].

Each weekday, ASP staff obtain a list of antimicrobial orders
from EPIC, the electronic medical record (EMR). Orders from
patients who have not received ID consults are prioritized for
review, as are intravenous antimicrobials and fluoroquinolones;
however, our ASP policy is to review every new order that is not
discontinued before day 3, andour programgenerallymeets this
goal. During review, prescriptions are evaluated for appropri-
ateness against UMMC antimicrobial guidelines by an ASP
team member; UMMC follows national guidelines, with guid-
ance tailored to the UMMC formulary and antibiograms. If
the ASP member deems the antibiotic order suboptimal or un-
necessary, they will intervene to recommend a therapeutic
change (eg, discontinuation, de-escalation, dosing modifica-
tions) or an ID consult. All reviews and interventions are docu-
mented electronically and maintained in an ASP PAF database.

Study Cohort and Collected Data

We conducted a 2.5-year cross-sectional study of inpatient an-
timicrobial orders that were reviewed by the PAF program be-
tween July 2017 and December 2019. All unique reviews were
included, except for orders that resulted from previous ASP
intervention (eg, if a patient was initiated on piperacillin-
tazobactam and the ASP team recommended change to ceftri-
axone, we excluded subsequent review[s] of ceftriaxone for this
admission). For each included order, we classified it by antimi-
crobial class/spectrum of activity, route of administration and
dose, and season. Antimicrobial classifications were selected
based upon antimicrobial stewardship and clinical relevance,
and decisions were completed prior to data analysis

(Supplementary Table 1). We batch-extracted additional
EMR data for each order: (1) patient encounter and demo-
graphic data (eg, age, sex); (2) clinical and provider data (eg,
service, provider-entered clinical indication for antimicrobials,
whether the patient received an ID consult); (3) location data
(eg, prescribing unit, whether the unit staffs a clinical pharma-
cist); (4) and patient antimicrobial treatment and resistance
history (eg, prior antimicrobial therapy, drug allergies,
multidrug-resistant organism history). From our PAF data-
base, we also extracted data capturing whether there was a pos-
itive culture at the time of review (as recorded by the ASP
member contemporaneously with review). Because an impor-
tant goal of the study was to develop a model for prospectively
predicting antimicrobial orders to bypass from review, we re-
stricted to information that was available at or before the review
day. This study was determined to be exempt human subjects
research by the University of Maryland School of Medicine
Institutional Review Board.

Outcome and Statistical Methods

The primary study outcome was whether a review resulted in
ASP intervention (ie, feedback to the treating provider). The re-
lationship between each covariate and ASP intervention was
evaluated using univariable and multivariable logistic regres-
sion models with general estimating equations to account for
repeat observations by patient. Results were summarized by
odds ratios (ORs) and corresponding 95% confidence intervals
(CIs). Variables found to have a P value < .10 on univariable
analysis were evaluated in a multivariable model.
To evaluate the discrimination of themultivariablemodel, we

refit the model on an 80% random cohort sample (training set).
We generated a receiver operating characteristic curve and cal-
culated the C-statistic using the remaining, held-out 20% of the
cohort (validation set). Given the intended real-world use of our
models, we also evaluated “workflow simplified” models using
the same process; thesemodels used only statistically significant
variables from the full multivariable model that would also be
rapid to ascertain at review, without requiring extensive chart
review. All tests were 2-tailed, and P values ≤ .05 were used
for statistical significance testing. Analyses were performed us-
ing SAS version 9.4 (SAS Institute) and Stata 15.0 (StataCorp)
software.

Sensitivity Analyses

To address clinical importance and generalizability consider-
ations, we performed 3 prespecified sensitivity analyses. First,
we evaluated an alternative outcome that restricted to de-
escalation and escalation interventions, arguably the most
“high-impact” interventions [6]; this outcome excluded
interventions for dosing/route optimization, ID consult recom-
mendations, and therapeutic duration/other modifications.
Second and third, a relatively high percentage of UMMC
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Table 1. Patient Demographic, Clinical, and Antimicrobial Characteristics in a Cohort of Antimicrobial Stewardship Program–Reviewed Antimicrobial
Orders at the University of Maryland Medical Center (2017–2019)

Characteristic
Total

(n=17 503)
No Intervention
(n=13 284)

Resulted in Intervention
(n= 4219)

Patient demographic and history characteristics

Male sex 10 126 (58) 7723 (58) 2403 (57)

Age >55 ya 9974 (57) 7459 (56) 2515 (60)

EMR-documented antibiotic allergy 9015 (52) 6862 (52) 2153 (51)

Prior MDRO historyb 5778 (33) 6862 (52) 2153 (51)

Patient clinical and treatment characteristics

Provider-entered clinical indication for antimicrobial orderc

Sepsis/bacteremia 3375 (19) 2633 (20) 742 (18)

Bone/joint 865 (5) 718 (5) 147 (4)

Central nervous system 350 (2) 302 (2) 48 (1)

Cardiac/vascular 578 (3) 522 (4) 56 (1)

Gastrointestinal 1844 (11) 1387 (10) 457 (11)

Genitourinary 1185 (7) 738 (6) 447 (11)

Respiratory 2951 (17) 2135 (16) 816 (19)

Nonsurgical prophylaxis 150 (1) 118 (0.9) 32 (0.8)

Skin and soft tissue infection 2794 (16) 2065 (16) 729 (17)

Mycobacterial infection 493 (3) 391 (3) 102 (2)

Neutropenia 627 (4) 556 (4) 71 (2)

Surgical prophylaxis 715 (4) 386 (3) 329 (8)

None provided 1576 (9) 1333 (10) 243 (6)

Immunosuppressedd 2607 (15) 2151 (16) 456 (11)

Received ID consulte 12 830 (73) 10 435 (79) 2395 (57)

Clinical pharmacist–staffed unit 10 056 (58) 7877 (59) 2179 (52)

Antimicrobial order characteristicsf

Antimicrobial class

Narrow-spectrum agents 1252 (7) 999 (8) 253 (6)

Antiviral agents 227 (1) 197 (2) 30 (1)

Broad-spectrum agents 2674 (15) 2066 (16) 608 (14)

Antifungal agents 1472 (8) 1158 (8) 314 (7)

Other 1954 (11) 1433 (11) 521 (12)

First-line antipseudomonal agents 4218 (24) 3132 (24) 1086 (26)

Protected agents 1500 (9) 1138 (9) 362 (9)

Anti-MRSA agents 2769 (16) 2144 (16) 625 (15)

Clostridioides difficile agents 506 (3) 453 (3) 53 (1)

Fluoroquinolones 931 (5) 564 (4) 367 (8)

Fall/winter season of order 10 430 (60) 8049 (61) 2381 (56)

Positive culture by time of ASP review 8289 (47) 6642 (50) 1647 (39)

Data are presented as No. (%). Percentages may not sum to 100% due to rounding.

Abbreviations: ASP, antimicrobial stewardship program; EMR, electronic medical record; ID, infectious disease; MDRO, multidrug-resistant organism; MRSA, methicillin-resistant
Staphylococcus aureus.
aThe variable for patient age was dichotomized at the mean age of the cohort, which was 55 years, for ease of implementation, internal validity, and generalizability considerations in the
prediction models. Continuous variables such as age will require initial exploratory data analysis to confirm that regression assumptions are met in the data. Because age will not
necessarily demonstrate log-linearity with the outcome of intervention at other hospitals, and not all ASPs are likely equipped to perform lengthy exploratory data analysis prior to
model-building, we felt that dichotomization offered a preferred parameterization for this variable. Moreover, our dataset included unique antimicrobial orders, but not unique patients. We
used general estimating equations in our logistic regression models to account for repeat observations by patient, and tested performance on held-out data, but highly granular variables
like age could still pose some risk of overfitting in prediction models that include multiple observations per patient. Use of a less granular, dichotomized age variable helps to decrease
this risk. An alternative option would be categorization into age brackets. The median age in our cohort was 57 (interquartile range, 44–67) years.
bAs defined by an infection control banner flag forMRSA, vancomycin-resistant enterococci, carbapenem-resistant Enterobacterales, an extended-spectrum β-lactamase–producing organism,
multidrug-resistant Acinetobacter baumannii, or an otherwise-not-specific multidrug-resistant gram-negative organism.
cWe restricted to the provider-entered clinical indication, even when this indication was later corrected during review by the ASP team, to ensure that the prediction models only considered
information that was available at or before review. Otherwise, allowing the model to consider the corrected indication would contaminate the model with information that only became
available during or following order review.
dDefined as patient presence on an oncology or solid-organ transplant unit at the time of antibiotic order.
eBy the time of ASP team review.
fSee Supplementary Table 1 for the list of agents included in each antimicrobial class.
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patients receive ID consults, and some UMMC units also staff
dedicated clinical pharmacists that round with the primary care
team and often take on an antimicrobial stewardship role; these
characteristics may not be widely generalizable. We therefore
performed analyses restricting to patients who did not receive
ID consults and to patients who received neither ID consults
nor had a clinical pharmacist involved in their care.

Machine Learning–Based Predictive Modeling

We also developed a prediction model for ASP intervention us-
ing random forests, a machine learning algorithm [7–9].

Because random forest algorithms accommodate high
predictor-to-outcome ratios, collinearities, and interaction ef-
fects by default [10, 11], we provided all variables to the algo-
rithm during model-building, including permutations (eg, a
composite multidrug-resistant organism [MDRO] history var-
iable and MDRO history variables by organism, an alternative
antimicrobial classification system developed byMoehring et al
[12]) (see Supplementary Materials). We fit our model using
500 bootstrapped decision trees and calculated the sensitivity
and specificity, the C-statistic, the out-of-bag error rate, and
variable importance rankings. Machine learning analyses

Figure 1. Heatmaps of antimicrobial stewardship programs, by antimicrobial class and intervention type, on absolute (A) and relative (B) bases. Antimicrobial classifica-
tions are mutually exclusive. *“Antipseudomonal” refers to first-line antipseudomonal agents (see Supplementary Table 1 for all antimicrobial classifications). Abbreviations:
C. difficile, Clostridioides difficile; ID, infectious disease; MRSA, methicillin-resistant Staphylococcus aureus.
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Table 2. Association Between Patient Demographic, Clinical, and Antimicrobial Characteristics and Antimicrobial Stewardship Program Intervention in
Univariable and Multivariable Modelsa

Characteristic
OR (95% CI)
(n=17 503) P Value

Adjusted OR (95% CI)
(n=17 503) P Value

Patient demographic and history characteristics

Male sex 0.95 (.88–1.03) 0.21 …

Age >55 yb 1.16 (1.07–1.25) <.001 1.06 (.98–1.15) .15

EMR-documented antibiotic allergy 0.99 (.92–1.07) .81 …

Prior MDRO historyc 0.69 (.64–.75) <.001 0.81 (.74–.89) <.001

Patient clinical and treatment characteristics

Provider-entered clinical indication for antimicrobial orderd

Sepsis/bacteremia Ref Ref Ref Ref

Bone/joint 0.73 .002 0.68 (.54–.84) <.001

Central nervous system 0.55 <.001 0.53 (.38–.75) <.001

Cardiac/vascular 0.39 <.001 0.43 (.31–.58) <.001

Gastrointestinal 1.14 .07 0.86 (.74–1.01) .06

Genitourinary 2.10 <.001 1.67 (1.42–1.98) <.001

Respiratory 1.35 <.001 1.07 (.94–1.22) .28

Nonsurgical prophylaxis 0.97 .89 0.56 (.36–.85) .01

Skin and soft tissue infection 1.22 .002 1.00 (.87–1.15) 1.00

Mycobacterial infection 0.91 .47 0.68 (.52–.90) .01

Neutropenia 0.49 <.001 0.50 (.38–.65) <.001

Surgical prophylaxis 2.93 <.001 1.87 (1.53–2.29) <.001

None provided 0.65 <.001 0.65 (.52–.81) <.001

Immunosuppressede 0.64 (.57–.72) <.001 0.78 (.68–.90) <.001

Received ID consultf 0.37 (.34–.40) <.001 0.44 (.40–.48) <.001

Clinical pharmacist-staffed unit 0.76 (.70–.82) <.001 0.83 (.76–.90) <.001

Antimicrobial order characteristics

Antimicrobial classg

Narrow-spectrum agents Ref Ref Ref Ref

Antiviral agents 0.61 (.40–.93) .02 1.38 (.85–2.25) .19

Broad-spectrum agents 1.13 (.96–1.34) .14 1.16 (.97–1.37) .10

Antifungal agents 1.17 (.97–1.41) .10 1.93 (1.58–2.36) <.001

Other 1.45 (1.23–1.71) <.001 1.90 (1.57–2.29) <.001

First-line antipseudomonal agents 1.37 (1.17–1.60) <.001 1.91 (1.62–2.27) <.001

Protected agents 1.32 (1.10–1.59) .003 2.54 (2.08–3.10) <.001

Anti-MRSA agents 1.18 (1.00–1.39) .05 1.94 (1.63–2.32) <.001

Clostridioides difficile agents 0.48 (.36–.65) <.001 1.11 (.76–1.63) .57

Fluoroquinolones 2.61 (2.15–3.16) <.001 3.22 (2.63–3.96) <.001

Fall/winter season of order 0.85 (.79–.92) <.001 0.84 (.78–.91) <.001

Positive culture by time of ASP review 0.64 (.60–.70) <.001 0.80 (.73–.88) <.001

Abbreviations: ASP, antimicrobial stewardship program; CI, confidence interval; EMR, electronic medical record; ID, infectious disease; MDRO, multidrug-resistant organism; MRSA,
methicillin-resistant Staphylococcus aureus; OR, odds ratio; Ref, reference group.
aAssociationswere evaluated using logistic regressionmodelswith generalized estimating equations to account for repeat observations by patient. Variableswith P values< .10 on univariable
analysis were evaluated in the multivariable model. Using these criteria, variables excluded from the multivariable model are denoted in the table by “…”.
bThe variable for patient age was dichotomized at the mean age of the cohort, which was 55 years, for ease of implementation, internal validity, and generalizability considerations in the
prediction models. Continuous variables such as age will require initial exploratory data analysis to confirm that regression assumptions are met in the data. Because age will not
necessarily demonstrate log-linearity with the outcome of intervention at other hospitals, and not all ASPs are likely equipped to perform lengthy exploratory data analysis prior to
model-building, we felt that dichotomization offered a preferred parameterization for this variable. Moreover, our dataset included unique antimicrobial orders, but not unique patients. We
used general estimating equations in our logistic regression models to account for repeat observations by patient, and tested performance on held-out data, but highly granular variables
like age could still pose some risk of overfitting in prediction models that include multiple observations per patient. Use of a less granular, dichotomized age variable helps to decrease
this risk. An alternative option would be categorization into age brackets. The median age in our cohort was 57 (interquartile range, 44–67) years.
cAs defined by an infection control banner flag forMRSA, vancomycin-resistant enterococci, carbapenem-resistant Enterobacterales, an extended-spectrum β-lactamase–producing organism,
multidrug-resistant Acinetobacter baumannii, or an otherwise-not-specific multidrug-resistant gram-negative organism.
dWe restricted to the provider-entered clinical indication, even when this indication was later corrected during review by the ASP team, to ensure that the prediction models only considered
information that was available at or before review. Otherwise, allowing the model to consider the corrected indication would contaminate the model with information that only became
available during or following order review, which might artificially inflate predictive performance and would pose threats to internal validity.
eDefined as patient presence in an oncology or solid-organ transplant unit at the time of antibiotic order.
fBy the time of ASP team review.
gSee Supplementary Table 1 for a list of antibiotics included in each antimicrobial class.
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were performed using the randomForest package (version 4.6–
14) in R version 4.1.2. To enable other institutions to perform
similar analyses on their own data, we have provided statistical
and machine learning programming code and implementation
suggestions in the Supplementary Materials and
Supplementary Appendix 1.

RESULTS

During the July 2017–December 2019 study period, the ASP
team conducted 19 852 antimicrobial order reviews, 17 503 of
which were included in the final study (Supplementary
Figure 1). The 17 503 included reviews, conducted a mean of
3.7 days from antimicrobial order (standard deviation, 1.19),
came from 9865 unique inpatient admissions and 8226 unique
patients. Reviews of first-line antipseudomonal agents were
most common (n= 4218 [24%]), followed by anti–methicillin-
resistant Staphylococcus aureus (MRSA) agents (n= 2769
[16%]) and broad-spectrum agents (n= 2674 [15%]) (Table 1).

Twenty-four percent (4219) of reviews resulted in an inter-
vention. Supplementary Figure 1 reflects the distribution of in-
tervention types; recommendations to de-escalate were the
most common (2690 [64%]), followed by recommendations
to optimize route or dosing (995 [24%]). Figure 1 reflects a
heatmap of ASP intervention by antimicrobial class and

intervention type (see Supplementary Figures 2–4 for frequen-
cy counts by cell, and for heatmaps by provider-entered clinical
indication). The ASP team intervened most frequently to rec-
ommend de-escalation of first-line antipseudomonal agents,
corresponding to 766 interventions and 18% of all reviews of
these agents. The ASP team also intervened a similarly high
percentage of the time to de-escalate protected agents (18%
of all protected agent reviews) and to de-escalate or to optimize
dosing of fluoroquinolones. However, on an absolute basis
these interventions were much fewer in number, due to less fre-
quent use of protected agents and fluoroquinolones in the
cohort. Intervention was generally rarest for antivirals and
anti–Clostridioides difficile agents.

Relationship Between Antimicrobial, Patient Demographic, and Clinical
Characteristics and ASP Intervention

In univariable analyses, many antimicrobial, patient, and clin-
ical characteristics were associated with ASP intervention at an
α level of .10 (Table 2). Apart from age, all variables remained
significantly associated with ASP intervention in a multivari-
able model (Table 2). Presence of a clinical pharmacist on the
ordering unit or receipt of an ID consult were independently
associated with 17% and 56% lower odds of intervention, re-
spectively (adjusted ORs [aORs], 0.83 [95% CI, .76–.90] and
0.44 [95% CI, .40–.48]; P≤ .001 for both). By antimicrobial

Table 3. Sensitivity, Specificity, and Caseload Reduction at Various Probability Cutoffs From the 2 Highest-Performing “Workflow Simplified” Models

Probability Cutoff Threshold (ie, Review Only
Those Orders With a Predicted Intervention
Probability of the Below Value) Sensitivity Specificity

Total No. of Reviews Bypassed
Using This Cutoffa (of a
Possible 3435 Reviews)

% Reduction in
PAF Review
Caseloada

No. of “Missed”
Interventionsa (of a Possible

849 Interventions)

Model A: Antimicrobial class+ clinical indication variables

≥0% 100.0% 0.0% 0 0% 0

≥10% 99.2% 2.1% 60 2% 7

≥20% 85.4% 32.0% 952 28% 124

≥21%b 81.0% 38.8% 1163 34% 161

≥30% 29.0% 88.2% 2884 84% 603

≥40% 12.7% 94.9% 3194 93% 741

≥50% 4.2% 98.5% 3360 98% 813

≥60% 0.1% 99.9% 3431 100% 848

>60% 0.0% 100.0% 3435 100% 849

Model B: Antimicrobial class+ ID consult variables

≥0% 100.0% 0.0% 0 0% 0

≥10% 98.9% 4.0% 112 3% 9

≥19%b 79.9% 34.1% 1053 31% 171

≥20% 69.7% 48.5% 1511 44% 257

≥30% 45.1% 79.3% 2516 73% 466

≥40% 21.0% 92.0% 3049 89% 671

≥50% 5.3% 98.5% 3352 98% 804

>50% 0.0% 100.0% 3435 100% 849

Abbreviations: ID, infectious disease; PAF, prospective audit with feedback.
aData are from the held-out testing set (n=3435).
bProbability cutoffs were discretized by decile for initial evaluation. After identifying the upper and lower decile bands that would contain the acceptable sensitivity and caseload reduction
values for our project (which we identified as approximately ≥70% sensitivity and ≥20% reduction in caseload), we evaluated single percentage-point cutoffs between these 2 deciles
(results unshown, except for the selected cutoff in bold). For example, for model A we identified that the optimal probability cutoff would fall between 20% and 30%, and we evaluated
cutoffs at 21%, 22%, etc, through to 29% (results unshown, except for the final selected cutoff in bold). For each model, the bold text represents the cutoff thresholds that we felt
optimized the balance between sensitivity and caseload reduction, but other antimicrobial stewardship programs could choose different cutoffs depending upon their needs and preferences.
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class, fluoroquinolones and protected agents had the highest
and second-highest relative adjusted odds of intervention, re-
spectively, with intervention odds that were 3.22 (95% CI,
2.63–3.96) and 2.54 (95% CI, 2.08–3.10) times that of narrow-
spectrum agents (Table 2). Relative to a provider-entered indi-
cation of sepsis or bacteremia, only genitourinary and surgical
prophylaxis indications had higher adjusted odds of interven-
tion (aORs, 1.68 [95% CI, 1.42–1.98] and 1.87 [95% CI, 1.53–
2.29], respectively).

Multivariable Logistic Regression Model Performance for Predicting ASP
Intervention

The C-statistic (area under the curve [AUC]) for the full mul-
tivariable logistic regression model on the held-out validation
set was 0.70 (95% CI, .68–.72). Using the intercept and coeffi-
cients from this model, a predicted probability of intervention
was computed for each antimicrobial order in the validation
set. Supplementary Table 2 shows model sensitivity, specificity,
and the caseload reduction at each probability cutoff, by decile.
At a review threshold of≥20% probability (ie, review only those
orders with a 20% or greater probability of intervention), the
ASP team would reduce its review caseload by 44% while con-
tinuing to review three-fourths of all orders that result in inter-
vention (model sensitivity: 76%). We selected this probability
threshold because we believed that it represented the best bal-
ance between optimizing sensitivity and reducing review case-
loads; however, other institutions could choose different
thresholds.

Our “workflow simplified” logistic regression models only
included variables that do not require extensive chart review;
because variables’ ease-of-extraction likely varies across institu-
tions, we evaluated 3 permutations: Each model included

antimicrobial class, plus either provider-entered clinical indica-
tion (model A: validation set AUC [vAUC], 0.65 [95% CI,
.63–.67]), whether the patient had an ID consult (model B:
vAUC, 0.65 [95% CI, .63–.67]), or whether there was a positive
culture at review (model C: vAUC, 0.59 [95% CI, .57–.61]).
Focusing on the first 2 models, which had the highest discrim-
ination, reviews could be reduced by approximately one-third
(34% and 31%, respectively) while still achieving sensitivities
≥80%. The coefficients and sensitivities/specificities at various
probability threshold cutoffs for these models are presented in
Table 3.
Finally, in a sensitivity analysis predicting only de-escalation

and escalation interventions, model performance was similar to
the primary model for predicting any intervention (vAUC, 0.69
[95% CI, .67–.72]). In sensitivity analyses predicting any inter-
vention but restricting to patients who did not receive ID con-
sults or who had neither ID consults nor clinical pharmacists
involved in their care, AUCs were somewhat lower (0.64 and
0.65, respectively). In both instances, however, the number of
reviews could be reduced by one-third (33%) while maintaining
the same or higher sensitivities as the full cohort (80% and 76%,
respectively).

Machine Learning–Based Modeling for Predicting ASP Intervention

The random forest model had a C-statistic of 0.76 (95% CI,
.75–.77), with a sensitivity and specificity of 78% and 58%, re-
spectively (model parameters were weighted to prioritize sensi-
tivity). Using this model would reduce review caseloads by
49%. The 2 most important predictors of ASP intervention
were (1) clinical syndrome, which was a more granular param-
eterization of provider-entered clinical indication that also in-
corporated culture results (see Supplementary Appendix 2 for

Figure 2. Variable importance plot from the random forest model, displaying the 10 most important variables for predicting antimicrobial stewardship program (ASP) in-
tervention, in descending order of importance. Importance is measured by the mean decrease in model accuracy, which is roughly analogous to the loss in classifier accuracy
when a given variable is excluded (ie, more important predictors will cause greater decreases in model predictive accuracy when they are removed from consideration during
model-building). Some predictors may be collinear or represent similar concepts. For example, both our antimicrobial classification schemaa and an alternative Duke/Centers
for Disease Control and Prevention antimicrobial classification schemab that we also provided to the model [12] both made it into the top 10 predictors list. This suggests that
regardless of the exact classification schema used, antimicrobial class is an important variable for predicting which antimicrobial order reviews will result in ASP intervention.
Abbreviations: ASP, antimicrobial stewardship program; CDC, Centers for Disease Control and Prevention; ID, infectious disease.
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further description); and (2) primary hospital service at order
(Figure 2). These variables were not evaluated in logistic regres-
sion models due to collinearity and high-dimensionality con-
cerns (eg, hospital service had 47 unique values). The next 3
most important predictors were provider-entered clinical indi-
cation, antimicrobial class, and whether the patient had re-
ceived an ID consult. Incidentally, these were the same
variables included in the 2 best-performing “workflow simpli-
fied”models, suggesting that despite their simplicity, these sim-
plified models included strong predictors.

DISCUSSION

National guidelines recommend PAF as a core component of
ASPs [2]. However, manually reviewing antimicrobial orders
for appropriateness—the bedrock of PAF programs—is highly
resource-intensive. These resource constraints create barriers
to the successful implementation and sustainability of PAF pro-
grams in US hospitals. We hypothesized that by identifying in-
tervention “hotspots,” PAF review caseloads could be safely
reduced while maintaining high impact. Evaluating >17 000
PAF reviews across a 2.5-year period, we found that many clin-
ical and antimicrobial characteristics were significantly associ-
ated with PAF intervention; these variables may help identity
targets for increasing antibiotic order appropriateness.
Moreover, predictionmodels built using these and other demo-
graphic, clinical, and antimicrobial characteristics substantially
reduced PAF review caseloads while maintaining high sensitiv-
ities, including when using simplified models that are readily
implementable with minimal to no automation.

Understanding which variables are independently associated
with ASP intervention can highlight where we might intervene
to reduce antimicrobial order inappropriateness. Holding other
factors constant, presence of a clinical pharmacist on the order-
ing unit or receipt of an ID consult were associated with 17%
and 56% lower odds of intervention, respectively. Our ID con-
sult findings comport with previous research by our group link-
ing ID consults to a higher likelihood of antibiotic
appropriateness [4], as well as to research in pediatric popula-
tions [13] and in specific ID syndromes (eg, Staphylococcus au-
reus bacteremia) [14]. Similarly, clinical pharmacists are primed
to engage in antimicrobial stewardship activities with a focus on
optimization such as duration, dosing, and administration route
adjustments, as well as de-escalation. Prior reports have identi-
fied positive impacts from non-ID-trained clinical pharmacists
on antibiotic prescribing, including decreases in antibiotic utili-
zation and antibiotic-associated costs [15, 16]. As such, clinical
pharmacists provide a critical role in antimicrobial stewardship,
and it is not surprising that ASP interventions were less likely in
patients with clinical pharmacist oversight.

To predict which orders should be bypassed from ASP re-
view, we evaluated multiple models using statistical and

machine learning approaches. The highest-performing model
(AUC, 0.76) was a machine learning–based classifier, which
halved ASP review caseloads while achieving 78% sensitivity,
that is, ensuring that nearly 8 of every 10 orders that result in
intervention would still get reviewed by the ASP team. A full
multivariable logistic regression model had somewhat lower
discrimination (AUC, 0.70) but still reduced caseloads by
44% while maintaining 76% sensitivity. In a sensitivity analysis
predicting only escalation or de-escalation interventions, mod-
el discrimination was very similar. Thus, there is no evidence
that ASPs adopting this model would disproportionately miss
the most high-impact interventions.
The previous work that is most similar to the current study

was performed by Bystritsky et al at the University of
California San Francisco Medical Center. Using a 2015–2017
cohort, they also developed a machine learning and a multivar-
iable logistic regressionmodel to predict ASP intervention [17].
Interestingly, although they used a different machine learning
approach and their cohort restricted to patients receiving
broad-spectrum antibiotics, our respective machine learning–
based classifiers performed similarly (AUC, 0.75 vs 0.76 in
our study). As the authors acknowledged, however, both of
their models were highly complex: each included numerous
time-varying variables, such as vitals and laboratory measure-
ments, and implementation would almost certainly require so-
phisticated embedding within the electronic health record
(EHR) operating environment [17]. Because our models in-
cluded fewer and simpler variables, we expect that they would
be more feasible to implement, including by ASPs at nonaca-
demic medical centers. Nevertheless, they would still require
sophisticated and automated implementation (the machine
learning model) or somewhat lengthy manual calculations
(the full multivariable logistic regression model).
To circumvent these limitations, we also built “workflow

simplified” predictionmodels that included only 2, easily ascer-
tainable variables: antimicrobial class, plus either provider-
entered clinical indication (model A) or whether the patient
received an ID consult (model B). When applied to held-out
data, each model achieved sensitivities >80% while decreasing
reviews by roughly one-third. Of all the models we developed,
these may offer ASPs an optimal balance between predictive ac-
curacy and practicality. To illustrate their real-world potential,
provider-entered clinical indications appear alongside antimi-
crobial orders in our ASP database. It would be relatively
straightforward and rapid for an ASP team member to manu-
ally calculate an order’s model A–predicted intervention prob-
ability using these 2 variables. Alternatively, automating model
A within this database would only require minimal, relatively
rudimentary programming (and could even be achieved using
Excel formulas). We spend approximately 4 hours daily/19.5–
20 hours weekly reviewing orders, which is similar to the
ASPs nationally [18]. Therefore, an automated implementation

8 • OFID • Goodman et al



of model A would save our ASP roughly 6.6 and 28 person-
hours weekly and monthly, respectively (ie, a one-third reduc-
tion in reviews and, thus, review time). Time saved can be re-
allocated to other important ASP interventions and policies,
such as education and quality improvement projects that offer
sustainable impact and engage front-line providers [19].
Time-saving strategies became especially important during
the pandemic, when shifting of clinical duties to coronavirus
disease 2019 (COVID-19) therapeutics left ASPs deprioritizing
stewardship activities [20]. Prediction models can keep ASP
priorities durable despite new demands.

Alternative or adjunctive strategies for optimizing ASP
workflows are EHR-automated scoring systems, which assign
points to antimicrobial orders (ie, higher scores receive higher
priority) and generate ASP alerts [21]. These decision support
modules have been successfully implemented in other centers
[22]. However, to perform well, they generally require substan-
tial, front-end customization and build-times of 1–2 years,
which is not practical for many institutions [22]; otherwise, as-
signed points can be somewhat arbitrary and not necessarily
relevant to specific hospitals. Moreover, as “rule-based” sys-
tems, these scoring modules require ASP/programmer teams
to specify review targets a priori (eg, patients with methicillin-
susceptible S aureus on vancomycin). In contrast, our data-
driven approach can uncover previously unknown patterns
and intervention hotspots—for example, surgical prophylaxis
and genitourinary indications in our institution. Therefore,
even for ASPs that already use EHR scoring systems, incorpo-
rating data-driven approaches may further improve workflows.

This study is subject to several limitations. First, this was a
single-center study at an academic medical center. To increase
generalizability, we evaluated models on held-out, unseen data,
and we performed multiple sensitivity analyses to ensure rele-
vance to smaller and nonacademicmedical centers, for example
where ID consults may be less common. Nevertheless, these
hospitals may differ in other, unmeasured ways that could af-
fect model generalizability. For this reason, we encourage exter-
nal validation of our models. To achieve maximal site-specific
performance, we also encourage ASPs to develop models using
their own data; to this end, we have provided programming
code in the Supplementary Materials, along with implementa-
tion pointers and practical suggestions for replicating our ap-
proach. Second, we found that holding other factors constant,
antimicrobial orders for patients who had received ID consults
were significantly less likely to trigger intervention. However,
we recognize that an ASP may be less likely to recommend sec-
ond ID consults in patients who have already received initial ID
consults; because ID consult recommendations were an inter-
vention type, albeit a rare one (<6%), in our cohort, this could
bias the ID consult effect estimate below the null. To assess this
possibility, we refit the model on a subcohort that excluded rec-
ommendations for ID consults (results unshown), and receipt

of an ID consult remained strongly protective against interven-
tion (aOR, 0.58 [95% CI, .53–.64]). Third, our cohort preceded
the COVID-19 pandemic, which precipitated important chang-
es in inpatient antimicrobial prescribing [23–26]. It is unclear
how our models would generalize to periods of high
COVID-19 inpatient volumes, and whether optimal models
would require COVID-19-specific predictors. With the ap-
proaches we have outlined and the programming tools that
we provide, however, other ASPs can tailor models to
COVID-19 populations and time periods as needed.
Overall, in this study of >17 000 antimicrobial orders, pre-

diction models substantially reduced PAF caseloads while
maintaining high sensitivities. By identifying orders that can
be safely bypassed from ASP review, these models may help en-
sure that PAF programs are not curtailed or abandoned due to
resource constraints. This workflow optimization can also en-
able ASPs to focus on other high-impact, but time-consuming,
stewardship activities [19]. Our models should generalize well
to other institutions with similar characteristics, but our ap-
proach and programming code also provide other ASPs a blue-
print to undertake similar prediction model–building exercises
on their own data.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases

online. Consisting of data provided by the authors to benefit the reader, the
posted materials are not copyedited and are the sole responsibility of the
authors, so questions or comments should be addressed to the correspond-
ing author.
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