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Abstract

Chronic spinal cord injury (SCI) results in an accelerated trajectory of several cardiovascular disease (CVD) risk factors and
related aging characteristics, however the molecular mechanisms that are activated have not been explored. Adipokines
and leptin signaling are known to play a critical role in neuro-endocrine regulation of energy metabolism, and are now
implicated in central inflammatory processes associated with CVD. Here, we examine hypothalamic adipokine gene
expression and leptin signaling in response to chronic spinal cord injury and with advanced age. We demonstrate significant
changes in fasting-induced adipose factor (FIAF), resistin (Rstn), long-form leptin receptor (LepRb) and suppressor of
cytokine-3 (SOCS3) gene expression following chronic SCI and with advanced age. LepRb and Jak2/stat3 signaling is
significantly decreased and the leptin signaling inhibitor SOCS3 is significantly elevated with chronic SCI and advanced age.
In addition, we investigate endoplasmic reticulum (ER) stress and activation of the uncoupled protein response (UPR) as
a biological hallmark of leptin resistance. We observe the activation of the ER stress/UPR proteins IRE1, PERK, and eIF2alpha,
demonstrating leptin resistance in chronic SCI and with advanced age. These findings provide evidence for adipokine-
mediated inflammatory responses and leptin resistance as contributing to neuro-endocrine dysfunction and CVD risk
following SCI and with advanced age. Understanding the underlying mechanisms contributing to SCI and age related CVD
may provide insight that will help direct specific therapeutic interventions.
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Introduction

Traumatic spinal cord injury (SCI) initiates a myriad of primary

and secondary mechanisms [1,2] causing neuronal damage and

death, sustained neurological deficits, autonomic and immune

dysfunction, and significantly high risk of morbidity and mortality

[3]. With major advancements in medical practices [4] including

operative and non-operative treatment strategies [3,5] and

primary rehabilitation [6], there has been a dramatic increase in

the long-term survival rates of persons with SCI [7,8]. As such,

a consequential shift from mortality in SCI related to acute-phase

renal, uroseptic, and respiratory complications, to that of

chronically acquired all-cause cardiovascular disease (CVD) has

become pervasive [6–11]. Several risk factors for CVD and related

neuro-endocrine/metabolic disorders, described as the cardiometa-

bolic syndrome, are prevalent in SCI, and include central obesity

[12–15], significant dyslipidemia [16–22] and depressed plasma

HDL-C [16–21,23,24], as well as impaired fasting glucose and

increased prevalence of diabetes mellitus [6,25]. Moreover, these

risk factors are observed earlier in the lifespan and at increased

frequencies in SCI [26], and current evidence suggests an

accelerated trajectory of aging of body systems [27–30] and

specifically premature aging of the cardiovascular and neuro-

endocrine systems [31]. Although substantial evidence supports

that CVD risk factors and related nuro-endocrine/metabolic

disorders are prevalent in SCI, the biological mechanisms

contributing to these comorbidities have yet to be explored.

It is well understood that adipose-derived peptide hormones,

described as adipokines, contribute to both peripheral and central

neuro-endocrine regulation of energy metabolism [32,33], and

that dysregulated expression of several of these factors promote

pro-inflammatory responses and metabolic dysfunction [34] and

are implicated in the pathogenesis of obesity, diabetes mellitus and

CVD [35]. Increasing evidence support that several adipokines,

including fasting-induced adipose factor (FIAF) and resistin (Rstn)

are expressed in various regions in the central nervous system

(CNS), and exhibit significant changes in mRNA expression

following modeled CNS injury [36,37]. FIAF and Rstn have been

found in key hypothalamic areas responsible for energy balance

[37], however, their signaling and physiological effect are poorly

understood, and importantly, their role in central inflammatory

and metabolic processes with chronic SCI or with advanced age

are not defined.

It has been established that the adipokine leptin governs

physiological effects on energy homeostasis through hypothalamic
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pathways mediated by its cognate long form receptor (LepRb)

[36,38–42]. LepRb initiates Jak2/Stat3 signaling pathways in

subpopulations of neurons in the arcuate nucleus (ARC) of the

hypothalamus, activating the transcription of the precursor poly-

peptide proopiomelanocortin (POMC) which in turn triggers

neuro-endocrine pathways associated with metabolic rate, mobi-

lization of energy stores as well as many other growth related

processes [42–46]. Importantly, prolonged LepRb activation and

Jak2/Stat3 signaling induces suppressor of cytokine signaling 3

(SOCS-3) expression mediating feedback inhibition [47,48], which

is now understood as a mechanism contributing to acquired leptin

resistance and subsequent disruption of neuro-endocrine/meta-

bolic function [49,50].

Hypothalamic inflammation associated with leptin resistance

[51–54] has been linked in part to endoplasmic reticulum (ER)

stress [54,55], where several (ER) stress transducers have been

defined. Phosphorylation of ER transmembrane proteins inositol-

requiring protein-1 (IRE1), protein kinase RNA (PKR)-like ER

kinase (PERK) and its downstream effector eukaryotic translation

initiation factor-2 (eIF2a) contribute to transcriptional activation

of a complex signaling network, termed the uncoupled protein response

(UPR) [56]. Moreover, reduced ER capacity or increased levels of

ER stress induce a higher degree of obesity when experimentally

challenged with a high fat diet [54,57,58]. Although these

mechanisms have been implicated in metabolic dysfunction,

whether or not dysregulated leptin signaling and acquired leptin

resistance are induced by chronic SCI or advanced age, has yet to

be explored.

Here we investigate central mechanisms that may contribute to

over-arching SCI pathophysiology as it relates to CVD risk and

neuro-endocrine/metabolic dysfunction, and explore phenotypic

similarities with advanced age. We provide evidence that

hypothalamic adipokine gene expression is significantly altered

chronically following SCI and with advanced age, as well as

significant attenuation of hypothalamic LepRb expression and

Jak2/Stat3 signaling. In addition, mobilization of the ER stress

response and UPR is observed in both conditions. These findings

provide evidence for leptin resistance following chronic SCI and

with advanced age, which may contribute to neuro-endocrine/

metabolic dysfunction, obesity and CVD risk.

Materials and Methods

All animal protocols were approved by the University of Miami

Institutional Animal Care and Use Committee (IACUC) and are

in accordance with National Research Council guidelines for the

care and use of laboratory animals. Young (2–4 months) and aged

(13–15 months) C57Bl/6 female mice were used in all experi-

ments described.

Traumatic SCI
Surgeries were performed at the Animal and Surgical Core

Facility of the Miami Project to Cure Paralysis according to

protocols approved by the IACUC of the University of Miami.

Contusion injury was induced with the Infinite Horizon device

adapted to the mouse. In brief, mice were anesthetized with an

intraperitoneal injection of ketamine (80–100 mg/kg) and xylazine

(10 mg/kg). Complete anesthetization was determined by the lack

of a stereotypical retraction of the hindpaw in response to

a nociceptive stimulus. Mice were then subjected to a laminectomy

at vertebrae T9 and the exposed spinal cord was injured at

a predetermined impact force of 70 kdynes (severe injury). Sham-

operated animals underwent all surgical procedures, including

laminectomy, but their spinal cords were not injured. After

surgery, animals were housed separately and treated with sub-

cutaneous lactated Ringer’s solution to prevent dehydration.

Manual bladder expression was performed twice daily. Pro-

phylactic antibiotic gentamicin was administered daily for 7 days

to prevent urinary tract infections. Animal tissue was harvested 4-

weeks post SCI.

Total ribonucleic acid (RNA) isolation and Quantitative
RT-PCR

Total RNA was isolated from mice hypothalamus using the

Qiagen RNAeasy mini kit according to the manufacturer’s

instructions. Two mg of RNA were reverse transcribed using

omniscript reverse transcriptase (Qiagen). Real-time PCR was

performed with the Rotor-Gene 3000 Real Time Cycler (Corbett

Research) on cDNA samples amplified with TAQurate GREEN

Real-Time PCR MasterMix (Epicentre Biotechnologies) and

primers for FIAF, Rstn, LepRb and SOCS3 (Table 1). Relative

expression was calculated by comparison with a standard curve

after normalization to b-actin. Between group differences in

mRNA expression levels were analyzed using one-way analysis of

variance (ANOVA), followed by Tukey post hoc comparison

(GraphPad, Prism) and reflect percent change from naı̈ve young

(NY) control animals. Single group comparison of sham-operated

young and aged animals were analyzed using a two-tailed student’s

t-test (GraphPad, Prism) and reflect percent change from

appropriate naı̈ve control animals. Data are expressed as mean

6 SEM. A significance level of p,0.05 was accepted as different

from control. n = 5 for each group, and each sample was run in

triplicate.

Protein extraction and immunoblot analysis
Mice hypothalami were harvested and homogenized in

a Dounce homogenizer with extraction/lysis buffer (w/v)

(20 mM Tris–HCl, pH: 7.5, 150 mM NaCl, 1% Triton X-100;

1 mM ethylenediaminetetraacetic acid, 1 mM ethylene glycol

tetraacetic acid, 2.5 mM pyrophosphate, 1 mM b-glyceropho-

sphate) containing protease and phosphatase inhibitor cocktails

(Sigma) and then centrifuged at 15, 3006 g for 2 minutes. Lysates

were mixed with 2x Laemmli loading buffer. Equal amounts of

protein were resolved on 10–20% gradient Tris-HCl Criterion

pre-casted gels (Bio-Rad, Hercules, CA), to separate proteins with

a wide range of molecular weights, transferred to polyvinylidene

fluoride (PVDF) membranes and placed in blocking buffer (0.1%

Tween-20, 0.4% I-block in PBS) overnight (38). Membranes were

then incubated with primary antibodies followed by the appro-

priate HRP-conjugated secondary antibody. Visualization of the

signal was enhanced by chemiluminescence using a Phototope-

HRP detection kit (Cell Signaling). Quantification of bands

corresponding to changes in protein levels was made using

scanned densitometric analysis and NIH Image Program 1.62f,

and normalized to b-Actin or Jak2, Stat3, IRE1, PERK, eIF2a,

where appropriate. Between group differences in immunoblots

were analyzed using one-way analysis of variance (ANOVA),

followed by Tukey post hoc comparison (GraphPad, Prism) and

reflect percent change from naı̈ve young (NY) control animals.

Single group comparison of sham-operated young and aged

animals were analyzed using a two-tailed student’s t-test

(GraphPad, Prism) and reflect percent change from appropriate

naı̈ve control animals. Data are expressed as mean 6 SEM. A

significance level of p,0.05 was accepted as different from control.

n = 8 for each group, and each sample was run in triplicate.

Adipokines and Leptin Signaling in SCI and Age
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Perfusion Fixation
4-weeks post-SCI, animals were anesthetized as described

above, then received an intracardial injection of heparin (0.1 cc)

and perfused transcardially with physiological saline, followed by

100 ml of 4% paraformaldehyde in phosphate-buffered saline

(PBS). The brains were removed and placed in 4% para-

formaldehyde at 4uC for overnight, then transferred to 20%

sucrose in 0.1 M PBS until sectioned.

Immunohistochemistry
Animals were perfused with 4% paraformaldehyde solution as

described above, and brains were processed for cryostat sectioning

(Leica SM 2000R sliding microtome). Serial coronal sections

(50 mm) (20.7 mm to 22.4 mm Bregma) [59] were stored in free-

floating cryostat media (30% ethylene glycol, 30% sucrose, 0.1 M

PBS, pH 7.4) at 220uC then rinsed with 0.1 M PBS (pH 7.4)

Tissue sections were blocked/permeabilized by treatment with 5%

normal goat serum (Vector Laboratories Inc., Burlingame, CA,

USA) and 0.4% Triton X-100 (Sigma). Sections were incubated

for 48 hours at 4uC with either LepRb or NeuN primary

antibodies (1:200). Primary antibody binding was detected with

Alexa Fluor secondary antibody conjugates (1:500, Molecular

Probes, Eugene, OR, USA). Controls lacking the primary

antibody were run in parallel. Sections were counterstained with

DAPI and coverslipped with Vectashield mounting medium

(Vector Laboratories Inc., Burlingame, CA, USA) for confocal

analysis (Olympus, FluoView 1000, scanning confocal micro-

scope).

Antibodies
Rabbit polyclonal anti-Leptin Receptor (long-form, 1:500,

Abbiotec), rabbit polyclonal anti-Jak2P (1:1000, Cell Signaling),

rabbit polyclonal anti-Jak2Total (1:1000, Cell Signaling), rabbit

polyclonal anti-Stat3P (1:1000, Cell Signaling), rabbit polyconal

anti-Stat3Total (1:1000, Cell Signaling), rabbit polyclonal anti-

SOCS3 (1:500, AbCam), mouse monoclonal anti-b-Actin (1:2000,

Cell Signaling), mouse monoclonal anti-PERKP (1:1000, Cell

Signaling), rabbit polyclonal anti-PERKTotal (1:1000, Cell Signal-

ing), rabbit polyclonal anti-IRE1P (1:1000, AbCam), rabbit

polyclonal anti-IRE1Total (1:1000, AbCam), rabbit polyclonal

anti-eIF2aP (1:1000, Cell Signaling), rabbit polyclonal anti-

eIF2aTotal (1:1000, Cell Signaling).

Results

Adipokine, LepRb, and SOCS3 gene expression are
significantly altered following SCI and with advanced age

Adipokines modulate central inflammatory responses and

metabolic pathways. To investigate whether chronic SCI or

advanced age affect central adipokine levels and LepRb signaling

intermediates, FIAF, Rstn, LepRb, and SOCS3 gene expression

levels were examined using quantitative rt-PCR of hypothalamic

extracts from the naı̈ve young (NY), SCI young (SCIY), naı̈ve aged

(NO) and SCI aged (SCIO) condition (Figure 1). We observed that

FIAF mRNA is significantly increased in the SCI young, naı̈ve

aged, and SCI aged animals when compared to naı̈ve young

control, and SCI results in significant increases above both the

naı̈ve young and naı̈ve aged mice (Figure 1A). Importantly, sham-

operated young and aged animals also exhibit significantly

increased FIAF mRNA levels when compared to naı̈ve control

(Figure S1A), indicating that the differences observed in the SCI

condition may not reflect SCI independently. Both naive aged and

SCI aged animals show a significant increase in Rstn mRNA

levels, when compared to the naı̈ve young control, with no

significant difference observed in the SCI young compared to

naı̈ve young control (Figure 1B). In addition, the relative amount

of LepRb mRNA is significantly reduced in SCI young, naı̈ve aged

and SCI aged animals when compared to the naı̈ve young control

(Figure 1C), whereas mRNA for the leptin signaling inhibitory

intermediate SOCS3 is significantly increased in SCI young, naı̈ve

aged and SCI aged animals. (Figure 1D). Sham-operated animals

showed no significant difference in Rstn, LepRb, and SOCS3

mRNA level when compared to appropriate naı̈ve control

(Figure S1A). These results provide evidence that the hypotha-

lamic adipokine genes and related leptin signaling genes are

significantly changed following SCI and with advanced age, which

may affect central inflammatory and pathological processes.

Chronic SCI and advanced age induce a significant
decrease in LepRb protein expression, Jak2/Stat3
signaling and concomitant significant increase in SOCS3
protein expression

Since LepRB mediates the anorexigenic effect of leptin in the

CNS, we next examined whether chronic SCI or advanced age

affected hypothalamic LepRb signaling (Figure 2). Consistent with

our mRNA data, we observed that LepRb protein expression is

significantly reduced in SCI young, naı̈ve aged, and SCI aged

animals when compared to naı̈ve young control. Similarly, Jak2

tyrosine phosphorylation and Stat3 tyrosine phosphorylation are

also significantly reduced in SCI young, naı̈ve aged, and SCI aged

conditions. In contrast, the expression of the leptin signaling

Table 1. Gene Primers for Quantitative RT-PCR.

Gene Genebank # Primer Pairs Tm/Product

LepRb NM_146146 Forward: 59- ACTCTGGTCAGCAACGATAAACTA
Reverse: 59- GAAAAATGTCTGGGCCTCTGTCTC

53.2uC/150 bp

FIAF AF278699 Forward: 59- GCCACCAATGTTTCCCCCAATG
Reverse: 59- TACCAAACCACCAGCCACCAGAGA

57.7uC/118 bp

Rstn NM_022984 Forward: 59- CTTTCATTTCCCCTCCTTTTCCTT
Reverse: 59- AGTCTTGTTTGATCTTCTTGTC

50uC/109 bp

SOCS3 NM_007707 Forward: 59- TCTTTGCCACCCACGGAACC
Reverse: 59- CTCGCCCCCAGAATAGATGTAGTA

57.1uC/108 bp

doi:10.1371/journal.pone.0041073.t001
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inhibitor SOCS3 is significantly increased with SCI young, naı̈ve

aged, and SCI aged animals, when compared to naı̈ve young

control, also consistent with our mRNA data. Sham-operated

animals showed no significant difference in LepRb, Jak2

(phosphorylated), Stat3 (phosphorylated), and SOCS3 protein

expression when compared to appropriate naı̈ve control (Figur-

e S1B). These data suggest that hypothalamic leptin signaling

through LepRb is significantly reduced with chronic SCI and

advanced age, and may contribute to impaired hypothalamic

leptin signaling associated with leptin resistance.

Hypothalamic ER stress and activated UPR following SCI
and with advanced age

ER stress and the UPR have been shown to play a central role

in hypothalamic leptin resistance [54]. Therefore, we analyzed the

activation of the ER stress response and the UPR in hypothalami

of naı̈ve young control, SCI young, naı̈ve aged, and SCI aged

animals (Figure 3). The three cellular stress transducer proteins,

IRE1, PERK and eIF2a showed significantly increased phosphor-

ylation in SCI young, naı̈ve aged, and SCI aged animals when

compared to naı̈ve young control, indicating increased ER stress

and an activated UPR. Sham-operated animals showed no

significant difference in IRE1 (phosphorylated), PERK (phosphor-

ylated), and eIF2a (phosphorylated) protein expression when

compared to appropriate naı̈ve control (Figure S1C). These data

show significantly increased ER stress in the hypothalamus, and

provide evidence for central leptin resistance following chronic

SCI and with advanced age.

LepRb localize in subpopulations of cells corresponding
to the arcuate nucleus (ARC) of the hypothalamus and
are significantly reduced following chronic SCI and with
advanced age

It is well established that the arcuate nucleus (ARC) located

within the medio-basal hypothalamus contains subpopulations of

leptin responsive neurons [60–62] that mediate downstream

neuro-endocrine signaling pathways responsible for metabolic

control. Confocal images (Figure 4) illustrate the regional

distribution and cell type expression of LepRb. Here we show

that hypothalamic ARC neurons are positively immunostained

with LepRb (red) and the neuronal marker NeuN (green) (Row 1)

in the naı̈ve young control. Higher magnification images (Row 2)

show that LepRb immunostaining is contained within subpopula-

tions of NeuN positive cells, and that LepRb localizes to somatic

peripheral membrane regions. In SCI young (Row 3), ARC

neurons had substantially less intense LepRb (red) immunoreac-

tivity, also evident at higher magnification (Row 4). Similarly, in

naive aged animals (Row 5), LepRb (red) immunoreacivity was

substantially reduced when compared to the naı̈ve young control,

and is evident at higher magnification (Row 6). Thus, this supports

our molecular and biochemical data showing that LepRb

expression is significantly reduced following chronic SCI and with

advanced age, and additionally, provides evidence that these

changes occur in subpopulations of hypothalamic ARC neurons,

known to contribute to neuro-endocrine signaling involved in

metabolic control.

Figure 1. mRNA analysis of FIAF, Rstn, LepRb, and SOCS3 in hypothalamus from naı̈ve young (NY), SCI young (SCIY), naı̈ve aged
(NO) and SCI aged (SCIO) mice. Quantification of mRNA expression levels show that FIAF is significantly increased in SCIY, NO and SCI O animals
compared to NY control. SCIY and SCIO are also significantly increased when compared to NO (A). Rstn mRNA levels are significantly increased in
SCIY, NO and SCIO animals compared to NY control. NO and SCIO are also significantly increased when compared to SCIY (B). LepRb mRNA levels are
significantly reduced in SCIY, NO and SCIO when compared to NY control (C). SOCS3 mRNA levels are significantly greater in SCIY, NO and SCIO when
compared to NY control (D). Statistics are according to data analysis methods described. p#0.05. n = 5 for each group.
doi:10.1371/journal.pone.0041073.g001
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Discussion

Here we show that gene products for the adipokines FIAF, Rstn,

and the leptin signaling intermediates LepRb and SOCS3 are

present in the mouse hypothalamus, and their expression is

significantly altered with either chronic SCI or advanced age.

Further, we identified significantly attenuated lepRb protein

expression in areas corresponding to the hypothalamic ARC,

reduced Jak2/Stat3 signaling, concomitant increases in the leptin

signal inhibition protein SOCS3 and activation of the ER stress

and UPR proteins IRE1, PERK, and eIF2a. These findings

support the idea of adipokine mediated central inflammatory

processes and provide evidence for leptin resistance following

chronic SCI and with advanced age.

The physical limitations inherent with SCI, as related to

movement, musculoskeletal activity and weight bearing contribute

to accelerated pathology in cardiovascular and neuro-endocrine

health. With these limitations there are subsequent alterations in

body composition typified by rapid and long-term declines in

muscle mass and increases in central adiposity, which has resulted

in the prevalence of obesity with chronic SCI [63], and predictive

for cardiometabolic syndrome and CVD [64,65]. CVD has

emerged as the leading cause of mortality in chronic SCI [9,10],

with greater prevalence of several CVD risk factors compared to

the able bodied population [9,10,66]. Moreover, CVD mortality is

significantly greater at earlier ages compared with able-bodied

control [10], supporting SCI pathology as mediating an acceler-

ated trajectory of cardiovascular aging [30,63]. A myriad of

physiological changes associated with the neurologic injury and

impairment contribute to immediate and long-term effects on

body systems [28,67]. Earlier age related functional declines

following chronic SCI have been observed in both the cardiovas-

cular and neuro-endocrine systems. For example, plasma homo-

cysteine [68–70] and C-reactive protein (CRP) [71,72] markers of

vascular disease and atherogenesis, are significantly elevated in

chronic SCI compared to the able-bodied population, and may

contribute to pathological changes in cardiovascular health. Both

the extent and neurological level of injury contribute to the

development of CVD risk factors in SCI, including dyslipidemia

and significant autonomic dysfunction [17,23,73,74]. With this,

Figure 2. Immunoblot analysis of LepRb and SOCS3 and Jak2/Stat3 signaling in hypothalamus from naı̈ve young (NY), SCI young
(SCIY), naı̈ve aged (NO) and SCI aged (SCIO) mice. LepRb expression is significantly decreased in SCIY, NO and SCIO animals when compared to
the NY control. Similarly, Jak2 phosphorylation and Stat3 phosphorylation are both attenuated in SCIY, NO and SCIO when compared to the NY
control. Conversely, the expression level of SOCS3 is significantly elevated in SCIY, NO and SCIO when compared to the NY control. Jak2Total and
Stat3Total were used as internal standards. b-Actin was used as a protein loading control. Statistics are according to data analysis methods described.
p#0.05. n = 8 for each group.
doi:10.1371/journal.pone.0041073.g002

Figure 3. Immunoblot analysis of ER stress and UPR activation in hypothalamus from naı̈ve young (NY), SCI young (SCIY), naı̈ve
aged (NO) and SCI aged (SCIO) mice. IRE1 phosphorylation, PERK phosphorylation and eIF2a phosphorylation are each significantly increased in
SCIY, NO and SCIO when compared to the NY control. IRE1Total, PERKTotal, and eIF2aTotal were used as internal standards. Statistics are according to
data analysis methods described. p#0.05. n = 8 for each group.
doi:10.1371/journal.pone.0041073.g003
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there is extant imbalance in parasympathetic and sympathetic

regulation of cardiovascular control [75] and may involve

cardiovascular nuclei within the CNS, which receive neuronal

projections from cortical, mesencephalic, as well as hypothalamic

regions [76–79]. In this regard, the regulation of energy balance

and metabolism via specific hypothalamic nuclei, through both

neurological innervation and endocrine function, may be greatly

affected following SCI. Elevated serum insulin-like growth factor

1(IGF-1) [27,80], reduced testosterone and human growth

hormone [80–83] and premature type II Diabetes Mellitus [84]

suggest an hastened decline in neuro-endocrine dysfunction. With

growing evidence that centrally-derived adipokine gene expression

is sensitive to both peripheral and central inflammatory stimuli

[85–87], it is likely that multiple mechanisms contribute to their

signaling dysfunction. Our findings extend previous reports that

changes in hypothalamic adipokines may contribute to the

activation of signal transduction pathways involved in metabolic

dysfunction and consequent CVD with chronic SCI and advanced

age.

It has been well established that adipokine signal integration

function in metabolic homeostasis, and pathological dysfunction in

their gene products, signaling, and coordination are implicated in

obesity, diabetes and CVD [35]. FIAF is associated with

inflammation of the cardiovascular system, particularly endothelial

cells [88] and cardiomyocytes [89]. However, FIAF has also been

shown to have beneficial effects on triglyceride lipid metabolism

[90], fatty acid oxidation and lipolysis [91] as well as plasma

glucose levels and glucose tolerance [92], suggesting an important

role in peripheral metabolic homeostasis. Recent evidence has

shown FIAF mRNA in the mouse hypothalamus [93] as well as

cultured hypothalamic neurons [36], and that hypothalamic FIAF

participates in central regulation of energy metabolism through

AMP kinase-mediated signaling [88]. Importantly, hypothalamic

FIAF gene expression is significantly increased in models of brain

injury and inflammation [94], suggesting a signaling role in these

pathological processes. Similarly, Rstn has been implicated in

a variety of conditions related to the metabolic syndrome,

however, the exact mechanism by which Rstn exerts its biological

effect are not completely understood. Rstn has been shown to

confer glucose intolerance and insulin resistance [95,96], and

although no receptor for Rstn has been identified, induction of

SOCS3 intracellularly has been suggested as a potential mecha-

nism by which Rstn inhibits insulin signaling [97]. Additionally,

Rstn gene expression levels are significantly upregulated in Apo E

2/2 mice [98], and are associated with pro-inflammatory

markers of atherosclerosis in humans [99], implicating a role in

inflammatory processes involved in atherosclerosis. Importantly,

Rstn has previously been identified within the murine ARC,

colocalizing with POMC neurons, with marked reduction in leptin

deficient mice [85], suggesting signaling interaction with leptin in

the hypothalamus. Our data show for the first time that chronic

SCI and advanced age induces a significant increase in hypotha-

lamic FIAF gene expression. It is important to indicate that sham-

operated animals also exhibit significant increases in FIAF, and

thus it is remiss to attribute the observed increase in FIAF in the

SCI condition solely to SCI pathology. Notwithstanding, the SCI

administered is more reflective of the clinical condition, mostly

associated with spinal column fracture or dislocation [100,101],

and in this regard, the results reported may in fact represent an

important actuality following SCI. Additionally, we observe

significantly greater changes following SCI than with advanced

age, suggesting that pathological processes involved in SCI have

a greater effect on FIAF than processes associated with advanced

age. As well, we report for the first time that chronic SCI and

advanced age result in significant increases in Rstn gene

expression. Interestingly, there is a significantly greater effect with

age when compared to SCI, suggesting that processes associated

with age have a greater effect on Rstn that pathological processes

associated with SCI. Further experiments identifying specific

signaling will be necessary to elucidate both physiological function

as well as pathological contribution to metabolic dysfunction.

Leptin effects through hypothalamic-mediated pathways are

now well characterized, and dysregulation in signaling and

subsequent leptin resistance is implicated in chronic inflammation

associated with CVD progression. Leptin activates a complex

neural network with component orexigenic and anorexigenic

signaling, and includes mesolimbic dopaminergic and brainstem

integration involved in feeding, satiety and metabolic homeostasis

[102,103]. Both humans and mice with genetic loss of function

mutations in either leptin or LepRb manifest severe early onset

obesity ([104–108], insulin resistance [109,110], dyslipidemia

[111] and other metabolic, neuro-endocrine and immune

dysfunctions. Further, evidence has been reviewed [112] in-

dicating that leptin contributes to the pathogenesis of atheroscle-

rotic vascular disease, with positive correlates between plasma

leptin levels and arterial distensibility [113], intima-media

thickness of the common carotid artery [114], and coronary

artery calcification [115]. In fact, in clinically defined coronary

atherosclerosis, leptin was determined an independent predictor of

future cardiovascular events [116]. As well, leptin has been shown

to influence myocardial metabolism and function [117–120], and

that hypothalamic leptin signaling may normalize myocardial fatty

acid oxidation [121]. These reports demonstrate the importance of

leptin-mediated signaling in metabolic regulation and overall

cardiovascular health. Our data provide evidence that patholog-

ical processes involved with chronic SCI and advanced age result

in significant dysfunction in hypothalamic leptin signaling,

although we do not observe significantly greater leptin signaling

deficits in the SCI aged condition when compared to SCI young or

naı̈ve aged animals. Reasonably, this may be due to the fact that

with advanced age, leptin signaling is substantially hindered that

ancillary SCI has insignificant effects. In fact, as the advanced age

phenotype represents a progressively and significantly changed

metabolic environment, other mechanism may be more promi-

nent with an accompanying SCI. Here we provide evidence of

this, illustrating that FIAF gene expression is increased to a greater

extent following SCI when compared to advanced age. We also

show significantly reduced hypothalamic LepRb gene product and

protein expression with chronic SCI and advanced age in areas

localized to hypothalamic ARC. Further, our observations of

Figure 4. Confocal images of LepRb localization in hypothalamic ARC neurons in naı̈ve young (NY), SCI young (SCIY) and naı̈ve
aged (NO) mice. Mouse brain coronal sections (50 mM; 20.7 mm to 22.4 Bregma) were immunostained with LepRb (Red), the neuronal marker
NeuN (Green) and counterstained using DAPI (Blue). In NY mice, brain regions corresponding to hypothalamic ARC (Row 1, Blue) are positively
immunostained with LepRb (Row 1, Red) and NeuN (Row 1, Green). Higher magnification (Row 2), confocal images show LepRb (Row 2, Red)
immunoreactivity is contained within subpopulations of NeuN (Row 2, green) positive cells and LepRb localizes to peripheral membrane regions on
the soma of NeuN positive cells (Row 2, Merged). SCIY mice (Row 3, Row 4) have substantially reduced LepRb (Row 3, 4, Red) immunoreactivity in
hypothalamic ARC neurons compared to NY control. Similarly, NO mice (Row 5, 6) display substantially less LepRb (Row 5, Row 6, Red)
immunoreactivity in hypothalamic ARC neurons compared to NY control. Scale Bars = 50 mM (Row 1, 3, 5), 10 mM (Row 2,4,6).
doi:10.1371/journal.pone.0041073.g004
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reduced jak2/stat3 in their phosphorylated (or active) state, and

increased SOCS3 expression strengthen that LepRb-mediated

signaling is attenuated in chronic SCI and with advanced age.

More recent evidence has shown a direct involvement of ER

stress and activated UPR in leptin resistance. The maturation and

appropriate folding of proteins occurs through the ER luminal

system, and is responsive to programs of cell differentiation,

environment, and physiological dynamics [56]. Under patholog-

ical conditions, the capacity of the ER is exceeded, initiating

concurrent signaling cascades, aimed at reducing protein load in

the ER, and transcriptionally activating UPR target genes to

participate in protein folding and repair. Specifically, the ER

trans-membrane proteins IRE1 and PERK, and the signal

transducer eIF2a are activated under ER-stress and initiate the

transcription of UPR genes [122,123]. Both in vitro and in vivo

experiments have demonstrated that ER stress and the activated

UPR directly effects leptin signaling and induces leptin resistance.

For example, cell lines treated with multiple ER stress inducers,

significantly inhibited leptin-induced LepRb, jak2 and stat3

phosphorylation [51,54]. In addition, ER stress has been observed

as a prominent feature in the hypothalamus of obese mice, and

experimentally induced ER stress and the activated UPR result in

leptin resistance in lean mice [54]. Conversely, enhancement of

ER capacity augments leptin-stimulated LepRB activation [54],

and increases insulin sensitivity and type 2 diabetes in obese mice

[124]. These data link obesity, hypothalamic ER stress and the

activated UPR, to leptin signaling dysfunction and ultimate leptin

resistance, and in this manner, provide biological evidence for

leptin resistance in these conditions. We show the induction of ER

stress and the activated UPR with chronic SCI and advanced age,

although we do not observe significantly greater ER stress and

activated UPR in the SCI aged condition when compared to the

SCI young and naı̈ve aged condition. In a similar manner to our

findings regarding leptin signaling, ER stress and the activated

UPR associated with advanced age may reflect a threshold such

that accompanying SCI may not incite a significantly greater

effect.

We demonstrate the novel findings that chronic SCI and

advanced age induce modifications in hypothalamic adipokine

genes, dysfunction in LepRb mediated signaling, increased ER

stress and activation of the UPR, providing evidence for leptin

resistance, which may contribute to metabolic dysfunction and

CVD risk in these conditions. Developing an understanding of

centrally derived adipokine signaling will help elucidate their

physiological role in inflammatory processes, as well as define their

contribution to dysfunction under pathological conditions. In

particular, leptin signaling involves many central and peripheral

processes and tissues, and further experiments will be necessary to

define phenotypic changes with chronic SCI and advanced age,

and may provide insight into leptin mediated mechanisms

involved in metabolic dysfunction and CVD risk and the

development of appropriately directed therapeutic countermea-

sures

Supporting Information

Figure S1 Naı̈ve and sham-operated young and aged
analysis of hypothalamic adipokine mRNA, leptin
signaling intermediates, ER stress and UPR activation.
Quantification of mRNA expression levels show that FIAF is

significantly increased in sham-operated young (SY) compared to

naı̈ve young (NY) control and in sham-operated aged (SO)

compared to naı̈ve aged (NO) control (A). Rstn, LepRb and

SOCS3 mRNA expression levels are not significantly different in

sham-operated young and aged animals when compared to

appropriate control (A). LepRb expression, Jak2/Stat3 phosphor-

ylation, and SOCS3 expression are not significantly different in

sham-operated young and aged animals when compared to

appropriate naı̈ve control (B). IRE1, PERK, and eIF2a phos-

phorylation is not significantly different in sham-operated young

and aged animals when compared to appropriate control (C).

Jak2Total, Stat3Total, IRE1Total, PERKTotal, and eIF2aTotal were

used as internal standards. b-Actin was used as a protein loading

control. Statistics are according to data analysis methods de-

scribed. p#0.05. n = 5 for each group.

(TIF)
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