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The common marmoset (Callithrix jacchus) is a small-bodied, popular New World monkey and is used
widely in reproductive biology, neuroscience, and drug development, due to its comparative ease of
handling, high reproductive efficiency, and its unique behavioral characters. In this review, we discuss the
marmoset models in Parkinson’s disease (PD), which is a neurological movement disorder primarily
resulting from a degeneration of dopaminergic neurons with clinical features of tremor, rigidity, postural
instability, and akinesia. The most common PD models involve the administration of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine to study the pathogenesis and to evaluate novel
therapies. Following the systemic or local administration of these neurotoxins, the marmosets with very
severe Parkinson's symptoms are recommended to be placed in an intensive care unit with artificial
feeding to increase survival rate. All procedures with MPTP should be conducted in a special room with
enclosed cages under negative-pressure by trained researchers with personal protection. Behavioral tests
are conducted to provide an external measure of the brain pathology. Along with several biomarkers,
including α-synuclein and DJ-1, non-invasive neuroimaging techniques such as positron emission
tomography and magnetic resonance imaging are used to evaluate the functional changes associated with
PD. With the recent growing interest in potential and novel therapies such as stem cell and gene therapy
for PD in Korea, the marmoset can be considered as a suitable non-human primate model in PD research
to bridge the gap between rodent studies and clinical applications.
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Parkinson’s disease (PD) is one of the most common

neurodegenerative movement disorder, and affects

~2% of the world’s population aged over 65 [1]. It is

characterized by insufficient production of dopamine

(DA) from the substantia nigra (SN) area of the brain,

leading to asymmetric onset of bradykinesia, resting

tremor, rigidity and postural instability. Pathologically,

the hallmarks of PD are evolutional nigrostriatal DA

neurodegeneration in the brain and the presence of

cytosolic filamentous inclusions known as Lewy bodies

(LBs) and Lewy neurites in surviving nigral DA cells [2-

4]. Recent findings indicate that the mechanisms of DA

neuron degeneration and death have been linked to

mitochondrial dysfunction, oxidative stress, inflammation,

and apoptosis [2,5]. In addition, PD also affects many

other brain regions, such as the dorsal motor nucleus of

the vagus, the nucleus basalis of Meynert, and the locus

coeruleus [6,7].

PD is a result of complex interactions between

environmental and genetic factors associated with a

pathogenic mechanism and thus cannot be well studied

using simple in vitro models [8]. For the past several
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decades, animal models of PD with their own strengths

and weaknesses have been widely used to investigate the

pathogenesis as well as possible innovative therapeutic

approaches for this neurodegenerative disorder [9].

Experimental models of PD should reflect pathological,

biochemical, and clinical features of PD including the

lesions in both DA and non-DA systems. Although none

of the current models show all the features of PD, animal

models have contributed significantly to our current

understanding of the pathological mechanisms of the

disease and to the development of new therapeutic

strategies in PD [10]. In this review, we examine the use

of the common marmoset (Callithrix jacchus) (Figure

1A) treated with systemic or local administration of

neurotoxins as an animal model to bridge the gap

between rodent studies and clinical applications for the

purpose of studying the pathogenesis and evaluating

novel therapies for PD.

Characteristics of the Marmoset

The marmoset is a small New World primate that is

originally from the Amazon basin of Brazil [11]. It is a

relatively small animal, with an average height of 20-30

cm and weigh of 200-600 g (10-15-fold less than the 5-

10 kg macaque). According to the United States National

Research Council’s ‘‘Guide for the Care and Use of

Laboratory Animals’’, a small cage (Figure 1B) with a

minimum height of 76.2 cm and a minimum floor area

of 0.20 m2 is recommended for a breeding pair of

marmosets. According to the European guidelines,

marmosets should be kept in controlled facilities (23-

28oC, 45-70% humidity, and 12 h light/dark cycle) since

the animals originate from tropical rain forests [12].

The marmosets eat fresh fruit, bread, eggs, and nuts,

and have high protein intake. Along with biscuits and

condensed milk as remuneration food, a commercial diet

must be supplemented with vitamin D
3
 since they

require a large amount of vitamin D
3
 (e.g. ‘‘New World

Primate Diet’’ by Harlan Teklad) [12]. The marmosets

have high reproductive efficiency, with similarities to the

human ovarian cycle (approximately 28 days), an early

onset of puberty (around 1.5 years old), a relatively short

gestation period (145-148 days), a relatively large litter

sizes (2-3 offspring per delivery), and a relatively large

number of deliveries (twice a year) [11]. They live in

stable families of 1-2 breeding females, a breeding male,

their offspring, and their adult relatives [13]. For

toxicokinetic or clinical pathology studies, blood

samples are usually collected via the femoral vein and

occasionally the tail vein. Less than 15% of the

circulating blood volume is recommended for blood

collection within one month for the marmoset [12].

Because of its small size, ease of handling, and unique

biological characteristics [14], the marmoset has become

an important primate model in various areas of

biomedical research such as neuroscience, toxicology,

reproductive biology and regenerative medicine [15].

Importantly, the use of marmosets can lead to significant

reductions in material requirements due to its small size

[12].

Figure 1. The marmoset in a housing facility. A marmoset (A) and examples of a cage (B), an enclosed cage under negative-
pressure (C), and an intensive care unit with tightly controlled temperature, humidity, and oxygen concentration (D).
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Marmoset Model of PD

Transient parkinsonian-like states have been generated

in various animal species from drosophila [16], to mice

[17], rats [18], cats [19], minipigs [20], sheep [21], New

World [22-24], and Old World monkeys [4]. For many

researchers, the mouse is a popular choice for behavioral

assessments and screening for the effects of drug

treatments due to a lack of resources and trained

personnel for the monkey model. Monkeys have many

similarities to humans in terms of developmental

processes, brain anatomy/function, and social behaviors,

hence, research on monkeys play an important role in the

preclinical development process between rodent studies

and controlled clinical trials [25-27]. In particular, the

use of the marmoset monkey requires less ethical

justification than the larger ‘‘Old World monkeys’’ [12].

For this reason, there has been increasing interest in the

marmoset monkey as a popular monkey species for the

development of novel treatments for PD such as

neurotrophic factors [28], DA reuptake inhibitors [29],

and neurotransplantation [30].

Current animal models of PD include genetic and

neurotoxic models. The genetic models are created

primarily based on genes identified in potential mechanisms

involved in the onset and propagation of PD in humans

[9,31]. Over-expression of proteins such as á-synuclein

and DJ-1 using viral vectors results in great practical

significance of PD symptoms, leading to preclinical

evaluations of various therapies for PD [9,32]. Recently,

several genetically modified non-human primate (NHP)

models were developed through the introduction of

exogenous genes into NHP genomes or the alteration of

endogenous NHP genes [33,34]. This progress in

knowledge and technology enable the production of

transgenic marmoset models with clear PD phenotypes,

which will have great practical significance for under-

standing PD pathophysiology. However, studies on the

pathogenesis of the marmoset PD models can take a long

time due to the long lifespans of the marmosets compared

with rodents. Currently available genetic models do not

completely induce appreciable neurodegeneration and

PD phenotypes [35], whereas the neurotoxic models are

used to damage the nigrostriatal pathway [10]. The

marmoset model is a recognized model of PD using

neurotoxins that induce the selective degeneration of

nigrostriatal neurons [22,36,37]. The most commonly

used toxins are 1-methyl-4-phenyl-1,2,3,6-tetrahydro-

pyridine (MPTP) and 6-hydroxydopamine (6-OHDA),

which reproduce the pathological and behavioral

changes of the human disease in rodents or NHPs. These

models can be developed by the systemic or local

administration of neurotoxins depending on the type of

agent used and the species involved [9].

MPTP

MPTP was found to be a DA neurotoxin in the early

1980s when Langston et al. [38] described the occurrence

of severe symptoms similar to PD in several young

Californian intravenous drug users following the

injection of an analogue of the narcotic meperidine that

contained MPTP [39]. The identification of a specific

neurotoxin, MPTP, that induces neural damage and other

signs of PD in humans [39] has led to the development

of valuable mammalian models, including sheep, dogs,

guinea pigs, cats, mice, rats, and monkeys, for research

on the pathophysiology, etiology, and pathogenesis of

PD [40,41]. The MPTP-primate model using baboons

[42], macaques [4], velvet monkeys [43], squirrel monkeys

[44] and marmosets [22-24] remains the best model for

preclinical evaluation of the efficacy of anti-parkinsonian

therapy although most studies on PD research have been

performed in mice due to a lack of resources and trained

personnel for monkey models [10,45].

Since MPTP is a highly lipophilic compound, it can

rapidly cross the blood-brain barrier (BBB). The

mechanism underlying MPTP toxicity is the conversion

of the MPTP by monoamine oxidase B into the final

active toxin cation, 1-methyl-4-phenylpyridinium ion

(MPP+), which can enter DA neurons in the substantia

nigra pars compacta (SNpc) through the dopamine

transporter (DAT). MPP+ induces neurotoxicity primarily

by blocking mitochondrial complex I activity, leading to

Table 1. MPTP regimens for the common marmoset in PD
model

MPTP
References

Dose Duration Site

2 mg/kg 5 days SC

Fox et al. (2010)23

Hansard et al. (2002)29

Eslamboli (2005)49

Fox et al. (2002)50

Hansard et al. (2002)51

van der Stelt et al. (2005)52

1 mg/kg 8 days SC Philippens et al. (2013)24

2 mg/kg 4 days IP Jenner et al. (1984)22

2-2-3-3-3 mg/kg 5 days IP Rose et al. (1993)53



158 Jun-Won Yun et al.

Lab Anim Res | December, 2015 | Vol. 31, No. 4

ATP depletion and increased oxidative stress [46,47]. In

general, a pathological limitation of the mouse MPTP

model is the lack of LBs, which is the neuropathological

landmark of PD [10], although a few reports have

investigated the expression of a LB major constituent (á-

synuclein) by modifying the MPTP treatment regimens

[9]. Forno et al. [48] also described intraneuronal

inclusions reminiscent of LBs in MPTP-injected monkeys.

Several MPTP dosing regimens (Table 1) have been

used in many studies [22-24,29,49-53].

In comparison to other available PD models, the

MPTP model does not require skilled stereotaxic surgery

and is known to have the greatest similarity with human

PD symptoms biochemically, anatomically and behaviorally

[49]. However, in comparison to the 6-OHDA model,

the MPTP model shows a dose-dependent risk of

mortality from cardiotoxicity within 24 h of the first dose

[54]. In addition, strict safety procedures are required

with appropriate laboratory safety equipment since

systemic MPTP treatment is a severe safety hazard to the

personnel handling the animals [41]. Although MPTP

itself is not directly harmful, its metabolite MPP+ is

tremendously toxic. Since MPTP metabolites are excreted

up to 3 days post administration [55], researchers should

wear personal protection during all procedures involving

MPTP including the preparation, injection, and 3-5 days

post injection. Furthermore, all procedures involving

MPTP should be conducted in a special room with a

fume hood and enclosed cages under negative-pressure

(Figure 1C) due to the MPTP aerosols generated from

bedding, excreta and animal fur [41].

6-OHDA

A catecholamine neurotoxin 6-OHDA is a hydroxylated

analogue of DA with high affinity for DAT, which

transports the toxin into DA neurons [9], and it can cause

selective degeneration of sympathetic adrenergic nerve

terminals [56]. The mechanism of 6-OHDA neuro-

toxicity has often been involved in the production of the

reactive oxygen species, H
2
O

2
, resulting from the

autoxidation of 6-OHDA [9]. It has also been reported

that 6-OHDA can accumulate in the mitochondria,

where it inhibits the mitochondrial respiratory enzymes

(chain complex I), resulting in a damaging depletion of

intracellular ATP and consequently cell death [9,57]. 6-

OHDA has been used in rats, cats, guinea pigs, dogs, and

monkeys [31,40]. Since 6-OHDA does not cross the

BBB, direct injection into the region of interest in the

brain is required to target specific neurons, with several

dosing regimens and different injection sites (Table 2)

[58-62]. Despite the difficulty in targeting small brain

structures, the SN is usually targeted for 6-OHDA

injection to create a more selective animal model of PD

[60]. 6-OHDA lesions can also be made by targeting the

striatum or the medial forebrain bundle (MFB). 6-OHDA

injection into the striatum induces slow, progressive and

partial damage of SNpc neurons over a period of up to

3 weeks, which is less marked than the effects of intra-

MFB injection. In contrast, when injected into the MFB,

which conveys the efferent fibers from nigral cell bodies

to the striatum, 6-OHDA produces a rapid and massive

degeneration in the nigrostriatal pathway. When injected

into the nigra, a significant loss of striatal DA terminals

is established within 2-3 days post-injection [9,10].

The administration of 6-OHDA is more complicated

and time-consuming due to the necessity of stereotaxic

surgery (Figure 2) and the difficulty in targeting small

brain structures such as the SN or MFB. Additionally, 6-

OHDA-treated animals fail to develop LBs, which are

eosinophilic inclusions that contain ubiquitinated proteins

such as α-synuclein [63]. Unilaterally lesioned animals

have been used more often because bilateral injections

can induce a far more severe phenotype with marked

adipsia, aphagia, and high mortality. The major advantage

of the unilateral 6-OHDA model is its feasibility for

assessing a variety of different behaviors such as fine

motor skills, sensorimotor neglect and body asymmetries.

Also, the unilateral injection of 6-OHDA into one

Table 2. 6-OHDA regimens for the common marmoset in PD model

6-OHDA
References

Dose Injection site

2 µL/site at a concentration of 4 µg/µL (unilaterally) 9 sites (Striatum) Eslamboli et al. (2003)58

2-3 µL/site at a concentration of 4 µg/µL (unilaterally) 5 sites (MFB) Annett et al. (1995)59

2.5 µg/site at a concentration of 3 µg/µL (unilaterally) 4 sites (MFB, SNpc) Henderson et al. (2005)60

28 µg/site at a concentration of 4 µg/µL (unilaterally) 1 site (MFB) Svenningsson et al. (2002)61

2-3 µL/site at a concentration of 8 µg/µL (unilaterally) 4 sites (MFB) Garea-Rodriguez et al. (2012)62



Use of marmoset for Parkinson’s disease 159

Lab Anim Res | December, 2015 | Vol. 31, No. 4

hemisphere in the animals leaves the unlesioned side as

an internal control, hence, fewer animals are needed in

experiments to analyze behavioral deficits [9]. Along

with less postoperative care for animals, local 6-OHDA

treatment can minimize the risk of inadvertent toxic

exposure for researchers associated with systemic MPTP

treatments [49,64,65].

Rotenone

Rotenone is a flavonoid found in several plants and is

a broad-spectrum pesticide used to kill insects. Like

MPTP, it is highly lipophilic, so it readily crosses the

BBB and diffuses into cells. Mitochondrial complex I

inhibition, selective nigrostriatal neurodegeneration, and

α-synuclein-positive cytoplasmic inclusions, which have

been reported as key pathological features of clinical PD,

were demonstrated in the rotenone model. Therefore,

there has been interest in the PD model using rotenone

[10,66]. However, Betarbet et al. [66] indicated that

rotenone displays systemic toxicity and subsequent high

mortality rates (~30% of animals) regardless of the

administration route. The main limitations of the

rotenone model are variability in terms of the percentage

of animals that develop a nigrostriatal DA lesion, the

extent of the lesion, and the lesion distribution within the

striatum [67]. Some animals can be resistant to rotenone

(~50% of treated animals display neurodegeneration).

This low success rate for the animal model of rotenone

makes it necessary to use a larger number of animals at

the start of any study. Nonetheless, the PD model involving

systemic intravenous delivery of rotenone using osmotic

pumps replicates many aspects of the pathology of

human PD. Also, chronic intraperitoneal injection of

rotenone causes locomotor impairment and neurobehavioral

abnormalities characteristic of PD [68,69]. Rotenone has

been shown to induce DA neurodegeneration and

Parkinson-like behavior through many pathogenic pathways

including massive reactive oxygen species formation,

proteosome activity inhibition, proteolytic stress, α-

synuclein phosphorylation and aggregation and Lewy

pathology [9,70]. Therefore, rotenone model can be used

for the marmosets along with other classical PD models,

MPTP and 6-OHDA.

Development of Parkinsonian 
Symptoms in the Marmosets

Clinical signs, artificial feeding, and intensive care

In order to identify the effects of parkinsonian agents

or anti-parkinsonian treatments, body weight, complete

blood count, serum biochemistry, gross and microscopic

examination of tissues can be measured [71]. Following

the induction of Parkinsonian symptoms, there is a

critical need for daily management of the marmosets due

to potential health threats (adipsia, aphagia, loss of body

weight). Usually, the marmosets are allowed to have access

to specially formulated pellets, fresh fruits, vegetables

and water ad libitum. However, in order to maintain the

body weight, welfare and survival of the animals

displayed a stable level of akinesia following neurotoxin

administration, artificial feedings consisting of a highly

nutritious solution made from egg white, sucrose, infant

formula, banana, multivitamins, and powdered marmoset

pellets should be introduced on a daily basis by trained

staffs until the marmosets are able to feed themselves.

Also, the marmosets with very severe Parkinson’s

symptoms can be placed in an intensive care unit with

tightly controlled temperature, humidity, and oxygen

concentration (Figure 1D) until the marmosets are

capable of maintaining food and water intake on their

own. However, euthanasia is recommended for animals

showing significant body weight loss (>20%) and

anorexia.

Behavioral assessment

In order to cure Parkinsonian symptoms, highly

reproducible animal models of PD should be developed

to address all PD-related questions including pathological

changes in the brain. First, the occurrence of typical PD

symptoms can be recorded using a clinical rating scale

(apathy, immobility, muscle rigidity, tremors and inadequate

grooming) and for the purpose of scoring abnormal

involuntary movements (facial behaviors, full body

behaviors, and general severity of involuntary movements

and incapacitation due to these movements) (Table 3)

[36,58,72,73]. These clinical measurements can be

Figure 2. The marmoset in a stereotaxic frame for 6-OHDA
injection.
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performed in a double-blind manner by watching post

hoc video-recordings of the animals accompanied by

recording spontaneous locomotor activity in the lesioned

animals [74]. Behavioral tests provide an external

measure of PD-like pathology when assessing PD

lesions in animals [71]. Evaluation of Parkinsonian

features in marmosets can be conducted by a variety of

behavioral tests ranging from simple food-retrieval task

to a comprehensive neuropsychological assessment,

including cylinder test, tower test (Figure 3), bungalow

test, hand-eye coordination test, fear-potentiated startle

response, rotation test, conveyor belt test, adhesive

labels, reaching into tubes, staircase, hourglass test, bar

grip power, and treadmill test (Table 4) [58,75-83].

Positron emission tomography (PET)

PET imaging is a relatively non-invasive neuro-

imaging technique that can be used to elucidate the

functional changes associated with PD (Figure 4) and to

provide diagnostic information by evaluating the integrity

of the nigrostriatal DA system [4,84,85]. In particular, a

microPET scanner has been designed for the imaging of

small-bodied animals, such as the marmoset. Under

isoflurane anesthesia, the marmosets should be kept in a

stereotaxic unit throughout the scanning process. Tracer

compounds labeled with positron-emitting radioisotopes,

including 18F-DOPA, 18F-FP-CIT, 11C-FP-CIT, 11C-CFT,

Table 3. Overview of several disability examinations in PD model

Santana et al. (2015)36 Eslamboli et al. (2003)58 Ando et al. (2008)72 Pearce et al. (1999)73

Tremor at rest
Tremor in motion

Freezing
Gait and locomotion

Fine motor skills
Bradykinesia
Hypokinesia

Rigidity
Body balance

Posture
Startle response

Climbing
Gross motor skills
Facial expression

Vocalization

Akinesia
Impaired climbing
Abnormal posture

Tremor
Clumsiness
Bradykinesia
Poor balance

Staying on the floor
Hypoactivity

Abnormal limb position
Abnormal body position

Bent tail
Dirty fur

Excessive eye-blinking
Lack of stimulus tracking

No biting
Lack of facial expression

No squeaking
Resting tremor
Moving tremor

Non-smooth movement
Immobility
Catalepsy

No food approach
No food taking
No food eating

Alertness
Reaction to stimuli

Blinking
Checking movement

Posture
Motility

Vocalization
Tremor

Fur condition

Figure 3. The marmoset in the tower setup.

Table 4. Overview of several behavioral tests in PD model

Behavioral test References

Locomotor activity assessment Roberts et al. (1994)74

Object retrieval task Eslamboli et al. (2003)58

Cylinder test Przybyszewki et al. (2006)76

Tower test
Verhave et al. (2009)75

Palmer et al. (2012)77

Bungalow test Philippens et al. (2000)78

Hand-eye coordination test Philippens et al. (2000)78

Fear-potentiated startle response Philippens et al. (2000)78

Rotation test
Annett et al. (1994)79

Henderson et al. (1998)80

Conveyor belt test Annett et al. (1994)79

Adhesive labels Annett et al. (1994)79

Reaching into tubes
Annett et al. (1994)79

Henderson et al. (1998)80

Staircase

Eslamboli et al. (2003)58

Henderson et al. (1998)80

Montoya et al. (1990)82

Montoya et al. (1991)83

Hourglass test Verhave et al. (2009)75

Bar grip power Yamane et al. (2010)81

Treadmill test Yamane et al. (2010)81
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11C-PE2I, 18F-AV-133, 11C-DTBZ, and 11C-raclopride,

should be administered to image and measure biochemical

processes in vivo (Table 5) [4,37,84-91].

PET studies with 18F-DOPA [84,87-89] have been

used to examine the dysfunction of the nigrostriatal DA

system. 11C-raclopride [85,86] specifically binds to

dopamine D
2
 receptors. Also, 18F-AV-133 [4] and 11C-

DTBZ [84,87,88] target the vesicular monoamine

transporter type 2 (VMAT2), which is a vesicular

membrane protein that transports monoamines (including

DA, norepinephrine, and serotonin) into synaptic vesicles.

DATs are located on DA nerve terminals. The DAT-

selective ligands 18F-FP-CIT [90], 11C-FP-CIT [90], 11C-

CFT [88,91], and 11C-PE2I [37,85] have been used as a

marker of DA nerve degeneration. When DA nerve

terminals in the nigrostriatal system degenerate in PD,

DAT is not available to bind to these ligands.

Magnetic resonance imaging (MRI)

The rapid advancement in functional and structural

brain imaging has made it feasible to quantify specific

changes in brain function within the larger perspective of

whole-brain systems [92]. MRI is far more widely

available than PET and is the most commonly used

system for anatomical imaging of the entire brain in vivo.

It can non-invasively acquire functional images showing

openings in the BBB, the presence of lesions caused by

the Parkinsonian agent [93,94]. Marmosets, which are a

suitable species for PD research, have been increasingly

studied with MRI. Unlike larger monkeys, MRI scans

are not needed for the marmoset because a standard

frame-based stereotactic apparatus fitted with a small

primate head-holder for a variety of neurosurgical procedures

is sufficient to perform reproducible intracerebral surgeries

[49,95]. MR spectroscopy can also be utilized as a non-

invasive tool to assess in vivo dynamic changes associated

with neurodegeneration and anti-Parkinsonian treatments

by measuring the presence and concentration of certain

metabolites, especially in MR spectra acquired at high

magnetic field strengths and with short echo times

[96,97].

Biomarkers for PD

Biomarkers are needed as indicators for the diagnosis

and monitoring of disease progression in PD. DJ-1, a

redox-sensitive molecular chaperone protein, appears to

be linked to PD with oxidative stress in the mitochondria

and nucleus [9]. Also, a pathological sign of PD is the

presence of intracellular proteinaceous inclusions, LBs,

which are composed mainly of α-synuclein [37].

Consequently, DJ-1 and α-synuclein are considered

helpful diagnostic markers for PD in human cerebrospinal

fluid as well as in plasma or serum [98] although the use

of plasma DJ-1 and α-synuclein as biomarkers is

controversial [99]. As tyrosine hydroxylase (TH) catalyses

the formation of L-DOPA associated with the biosynthesis

of DA [100], immunostaining for TH-positive neurons

and DAT have been used to assess nigral DA neuron

death after MPTP administration [45]. It has also been

reported that significant increases in the pro-inflammatory

cytokines IFN-γ and TNF-α in the blood serum samples

of MPTP-treated monkeys were observed with ELISA

measurements, indicating a critical role in stimulating

and maintaining glial cell activation in the SNpc as well

as contributions to DA neuronal degeneration and motor

impairment Parkinsonism [101].

Figure 4. Representative 18F-FP-CIT PET images from
marmosets.

Table 5. The tracers for functional PET imaging in PD model

Tracer Biological marker References

Dopaminergic cell 18F-DOPA

Blesa et al. (2010)84

Collantes et al. (2009)87

Brown et al. (2012)88

Doudet et al. (1998)89

Presynaptic 
dopamine 
transporter

(DAT)

18F-FP-CIT Lundkvist et al. (1997)90

11C-FP-CIT Lundkvist et al. (1997)90

11C-CFT
Brown et al. (2012)88

Saiki et al. (2010)91

11C-PE2I
Ando et al. (2012)37

Nagai et al. (2012)85

Type-2 vesicular 
monoamine 
transporter 
(VMAT2)

18F-AV-133 Liu et al. (2014)4

11C-DTBZ

Blesa et al. (2010)84

Collantes et al. (2009)87

Brown et al. (2012)88

D
2
 receptor 11C-raclopride

Nagai et al. (2012)85

Alexoff et al. (2003)86
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Animal Models for Assessing
Novel Treatments

A number of anti-Parkinsonian drugs, including DA

drugs (apomorphine, pramipexole, ropinirole, pergolide,

bromocriptine and cabergoline), muscarinic antagonists

(benztropine and trihexyphenidyl), monoamine oxidase-

B inhibitors (selegiline and rasagiline), and catechol-O-

methyltransferase inhibitor (tolcapone), are in current

clinical use for PD. These drugs have shown different

levels of predictive validity for efficacy depending on

the animal models, which reflect different degrees of the

pathology and biochemical changes associated with PD

[63]. To determine the appropriateness of the model for

the discovery of novel treatment for PD symptoms, the

similarity of the model with the human disease is

especially important. On a basis of the strengths and

weaknesses of the respective available models, the

researchers should select optimal experimental animal

models of PD depending on different target mechanisms

to find potential drugs for therapy. In this respect,

primate (marmoset) models are particularly useful. More

importantly, the fact that the MPTP model possesses the

greatest similarity to the clinical features of human PD

disease such as tremors, rigidity, akinesia, and postural

instability can lead researchers to consider it the most

clinically-relevant model for late phase preclinical

assessment of a novel treatment [37,49]. However, the 6-

OHDA model also has an advantage associated with the

unilateral lesion to dissociate different symptoms of DA

loss [63]. With the growth of biotechnology-derived

products, stem cell therapy and gene therapy can be

considered potential and novel therapies that provide a

more permanent remedy than current drug treatments.

Takagi et al. [102] reported that the transplantation of

DA neurons generated from monkey ES cells resulted in

attenuation of MPTP-induced neurological symptoms in

the primate MPTP model for PD as evidenced by

behavioral studies and functional imaging. In addition,

Kikuchi et al. [103] demonstrated that human induced

pluripotent stem cell-derived neural progenitor cells

survived for six months as DA neurons in the brain of

the primate MPTP model for PD. Lentiviral delivery of

glial cell line-derived neurotrophic factor into the

striatum and SN has been shown to reverse functional

deficits and to prevent nigrostriatal degeneration in the

primate MPTP model for PD [104].

Conclusion

In general, research laboratories and pharmaceutical/

biotechnology companies follow a sequence of steps for

the research and development of treatments related to a

variety of important human diseases. An important stage

in this process includes the determination of appropriate

animal models for predicting the effectiveness of the

treatment strategies in clinical trials. Although animal

models may not sufficiently reflect the features of the

human disease, they can be used to analyze particular

aspects and pathogenic mechanisms of the disorder

which cannot be fully studied using simple in vitro

models. Interest in NHPs is increasing since they are the

only relevant species that show high similarity to

humans for preclinical assessment prior to clinical trial.

At the preclinical stage, use of the marmoset as an

experimental model offers several considerable advantages

such as smaller size, early sexual maturation, and rapid

breeding in pharmaceutical product development, resulting

in reduced test material requirements and earlier

assessment of product candidates in adults. In particular,

the marmoset can be used as an appropriate PD model

that reflects various aspects of the human disease as well

as an experimental subject for adequate safety or efficacy

assessments of the therapeutic treatment, especially with

stem cell therapy and gene therapy for PD. Currently, the

significant progress in the production of transgenic

marmoset models for PD is being made. However, the

neurotoxic models are relatively easy to induce parkinsonism

in NHPs including the marmosets although the animals

with severe symptoms following the systemic or local

administration of the neurotoxins need the intensive care

with artificial feedings. By providing an overview of the

models, methods, and animal care procedures associated

with PD research, this article may help researchers with

the selection of appropriate animal PD models depending

on the specific objectives and aims of their study.
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