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Abstract: Fixation time measures have been widely adopted in studies with infants and young
children because they can successfully tap on their meaningful nonverbal behaviors. While recording
preverbal children’s behavior is relatively simple, analysis of collected signals requires extensive manual
preprocessing. In this paper, we investigate the possibility of using different Machine Learning (ML)—a
Linear SVC, a Non-Linear SVC, and K-Neighbors—classifiers to automatically discriminate between
Usable and Unusable eye fixation recordings. Results of our models show an accuracy of up to the 80%,
suggesting that ML tools can help human researchers during the preprocessing and labelling phase of
collected data.
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1. Introduction

Developmental studies, particularly those with preverbal young children, pose a unique challenge
in that participants are unable to provide an oral account of their decision or preferences. Noninvasive
techniques which do not require verbal abilities, such as pupil dilation and fixation time measures,
have been successfully employed in studies with infants and young children to gain insight into their
cognition [1–6]. One looking time method taps on young children’s spontaneous responses to events which
violate their expectations given their understanding of the world [7–9]. In Setoh et al. [6], for example,
eight-month-old infants’ looking time was used as a measure to investigate their abstract biological
expectations about animals. The violation-of-expectation (VOE) paradigm has also been used to examine
infants’ understanding of basic numeracy [10], false beliefs [11], and even whether objects can fly [12].
This paradigm has even been successfully utilised in infant studies on newborns as young as four days
old [13]. The VOE framework is based on the premise that young children tend to fixate at events that
violate their expectation for a longer amount of time than at events that do not. In both adult [14] and
infant [15] populations, contemporary researchers have used eye-tracking technology to measure changes
in the eyes, such as fixation timing and pupil dilation, in response to experimental tasks. For instance,
pupil dilation and constriction in adult participants varied as a function of the presentation of pictures
with different emotional valence [16]. Moreover, a recent review by Moch et al. [17] found that duration,
as well as location of eye fixations can be reliable indices of underlying numerical processing in adults.
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Employing methods based on habituation and VOE, researchers have been able to investigate preverbal
children’s moral understanding. Similar methods have been employed to show that preverbal toddlers
disapprove of disgusting acts [18], show prosocial behavior [19,20], differentiate between good and
evil [21,22], and display empathy and compassion [23].

Despite the benefits of the approach, fixation time paradigms present some limitations. In a
recent ethnographic study, Peterson [24] discussed the problems related to the VOE paradigm. In VOE
experiments, infants or young children’s attention is typically measured as the interval of time that occurs
between the offset of presentation of a stimuli to the moment in which the infant or child loses interest
towards the scene [5]. Children’s looking time at the scene is used as an indicator of the attention [25].
Although eye-tracking devices can be employed to automatically record looking time, a visual inspection
of recorded videos is usually performed to manually verify the usability of a sample. This is because
testing children presents its own set of challenges. While it is possible to ask adult participants to stay still
after the eye-tracking machine has been calibrated, the same cannot be expected for infants and toddlers.
For example, a child may look away frequently because he is distracted, but the sample will be reported
by the eye-tracking device as acceptable if each fixation away from the screen is shorter than a preset
look-away threshold, which is usually set at 2 s [5]. Another scenario could be that a sample may be
reported as unusable if the child moved away from the eye-tracker calibration point despite being attentive.
The manual inspection stage is generally performed by trained researchers and is often conducted by
multiple individuals in order to ascertain observer reliability. The problem with manual inspection and
selection of samples after data collection is not only in the additional time incurred but also that these
judgements of what makes a sample usable or unusable may not be reproducible or consistent across
different studies or different laboratories [24,26]. As pointed out by Peterson [24], working with young
children requires researchers to practice constant and active decision making, in both the execution of the
experiment and coding of the children’s behavioural recordings. Despite the wide adoption of the VOE
paradigm in infant and child studies, standardised impartial methods to code for inclusion or exclusion of
samples based on behavioural measures have not been developed.

Previous works have shown that Machine Learning (ML) models can be successfully employed
to study neurophysiological signals. In Gabrieli et al. [27], for example, different machine learning
models were tested to verify the possibility of classifying infants’ vocalisations while in other works the
technique was shown to be suitable for the automatic identification of physiological signal quality [28,29].
Li et al. [29], for example, employed Support Vector Machines (SVM) models to distinguish between
clean and noisy electrocardiogram (ECG) recording. For what concerns SVMs application to eye-tracking,
Pauly et al. Pauly and Sankar [30] demonstrated the suitability of the models for the detection of drowsiness
from adults’ eye-tracked blinks. Similarly, Kang et al. [31] employed SMV classifiers to distinguish
between autistic versus typically developing three to six year old children using eye-tracking and EEG
recordings. In an analogue way, different studies employed a Linear SVM for different classification
tasks involving eye-tracking data. Dalrymple et al. [32], for example, successfully employed Linear SVM
classifiers on eye-tracking data to identify the age of toddlers, while Wang et al. [33] used Linear SVM,
in combination with gaze data to quantify atypical visual saliency in children diagnosed with autism
spectrum disorder. Linear and Non-Linear SVM are not the only classifiers that have been successfully
employed on eye-tracking data. K-nearest neighbor (kNN) classifiers have been widely employed to make
classification out of eye-tracking and gazing data. Zhang et al. [34], Kacur et al. [35] used a kNN classifier
to diagnose schizophrenia disorders using an eye-tracking system during Rorschach Inkblot Test [36].

It is therefore possible that ML models can be employed to objectively classify the usability of infants’
and young children’s fixation time recordings, and in doing so, reduce the subjectivity of behavioural
codings as decided by researchers themselves.
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Here we aim at testing three different classifiers: a Linear SVM, a Non-Linear SVM, and a kNN
classifiers. Our method involves a binary classification task, where data of one trial have to be classified as
usable or unusable. For each trial, three repetitions are conducted with each child, therefore resulting in a
dataset with a small number of features. Given the typical number of participants of toddlers’ studies,
the total number of samples within the database is expected to be small. Typical of this type of data, it is
expected that different trials in toddlers’ VOE studies have similar duration—which is the time elapsed
between the onset of a stimuli and the moment in which the toddler loses focus on the stimuli. If the
duration of the trials is similar, and it is longer for valid trials—which is when toddlers are looking at the
stimuli—and given the small dimensionality of the dataset, we should expect a classifier based on a Linear
SVM to be suitable for the task. The limitations with this approach are that the assumption of linearity
does not take into account the possibility that subsequent trials may be valid but have different duration,
such as in the case in which one trial is significantly longer than the previous or subsequent one, nor does
it take into account the effect of repetitions. While we can expect a novelty effect on the first trial, the effect
will be reduced on subsequent trials. For these reasons, a SVM based on a non-linear kernel may provide
better performances, as compared to a SVM classifier that employs a linear kernel. Additionally, given the
nature of the data, we expect high similarity between valid and invalid trials between different participants
in toddlers’ VOE studies. For this reason, it is well-founded to assume that to obtain a classifier that can be
easily extended to future studies, a nonparametric classifier which is less influenced by autocorrelation
and multicollinearity should be preferred over a parametric classifier [37]. Therefore, we decided to test a
kNN classifier, which is a nonparametric instance-based learning classifier that can be effectively deployed
and integrated with other tools.

Aim and Hypothesis

In this work, we investigated the possibility of using ML models on toddlers’ fixation time data to
automatically separate usable from unusable trials. More specifically, we hypothesise that novel machine
learning models can be trained on human-labelled fixation signal trials to predict the usability of these
trials at a greater than chance level.

2. Materials and Methods

2.1. Analytic Plan

In this work, fixation signals and their quality (usable vs. unusable) are drawn from a dataset collected
previously for a study on young children’ expectations about the behaviours of leaders [38]. The dataset
contains fixation data as well as an estimation of the signal usability made by the researcher based on both
the signal and the behaviour of the children during the experimental sessions. Additional details about
the original work, such as the sample size, are reported in Section 2.2. After dividing the available samples
into two sets, Training and Test, the Training set is first processed using an Additive White Gaussian Noise
(AVGN) data augmentation algorithm in order to increase the number of available samples and to balance
the number of samples per class [39]. This is to avoid any possible bias due to the difference in the number
of elements per class. Then, three different machine learning classifiers—a Liner SVC, a Non-Linear SVC,
and a Nearest Neighbors Classifier—are tested to verify their performances in an automatic labelling
task. A 80/20 Train/Test splitting is first performed, while a 5 fold cross validation is employed to verify
the generalizability of the model. A visual representation of the overall process is displayed in Figure 1.
The plan has been preregistered on the Open Science Framework (OSF), using the OSF preregistration
template, which covers aspects of the sample size and demographics, data preprocessing, and ML analysis.
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The complete preregistration of this work can be found online at osf.io/ewy7z. Additionally, a statistical
comparison of models’ performances is conducted by mean of a McNemar’s Test [40].

Figure 1. Summary of the steps employed for data augmentation, training, and hypertuning of the models.

2.2. Data

The dataset employed in this work is drawn from a previous investigation conducted by Zhang [38].
In this work, three studies on toddlers’ expectations about leaders’ behaviour were conducted. In general,
it was predicted that toddlers expect leaders to be fair and helpful but held no such expectations for
nonleaders [41,42]. In Study 1, toddlers were presented with a scene in which the leader distributes two
items to nonleaders with one of three outcomes: the leader is fair—she distributes two items equally
to both nonleaders; the leader is unfair—she gives two items to one nonleader and none to the other
nonleader; or the leader is selfish—she takes both items for herself and gives none to the nonleaders.
If toddlers expect leaders to be fair as opposed to being selfish or unfair, they should look for longer
fixation time at the unfair and selfish events. The longer looking time is interpreted as the events violating
toddlers’ expectations. In Study 2, the leader either helps or is unhelpful to a nonleader. If children have
the expectation that leaders should be helpful, they will look longer at the unhelpful than the helpful
condition. Study 3 presented the same scenario, except that the roles of leader and nonleader were reversed.
In Study 3, a nonleader either helps or is unhelpful toward the leader. If children expect leaders to be
beneficient but have no such expectations of nonleaders, they will not find either the helpful or nonhelpful
behaviour of the nonleader towards the leader unexpected. The protocol of the studies was approved by
the Institutional Review Board of the Nanyang Technological University (IRB-NTU) and informed consent
was obtained from the parents before each experimental session. Further details about the methodology
employed in the original work can be found in Zhang [38].

The initial dataset used in the current work consisted of two hundred and fifty-one samples (N = 251)
collected from one hundred and twelve participants (N = 112, Mean age = 25.7 ± 5.3 months). Before each
recording, the eye-tracking device was calibrated. After recording, a manual inspection of the signals

osf.io/ewy7z


Sensors 2020, 20, 6775 5 of 13

was conducted by the researcher involved in the original study to assess the quality and usability of the
recordings. This assessment was not exclusively based on the raw signal but also on observations made
on the behaviour of the toddlers (e.g., “Distracted and bored at the third video, turn around and fidget”) [43].
During this phase, the signals were either labelled as Usable or Unusable. The breakdown of the sample
into the two classes investigated (Usable/Unusable) for each study is reported in Table 1. The final dataset
therefore consists of three features—Repetition 1, Repetition 2, Repetition 3—that correspond to the
duration, in seconds, of each repetition of the trial. These three features are the independent variables used
for Training and Testing of the model. The dependent target variable is a binary variable that indicates the
usability of each Trial, that can be either Usable or Unusable. A copy of the dataset is available online on
the data repository of the Nanyang Technological University (DR-NTU Data) [43].

Table 1. Participants’ demographic information and number of usable and unusable samples per Study
included in this work.

Study Participants Age (Months) Usable Samples Unusable Samples Total Number of Samples

Study 1 48 24.6 ± 4.5 71 26 97
Study 2 32 26.9 ± 4.9 60 17 77
Study 3 32 26.7 ± 6,2 69 8 77

2.3. Data Augmentation

Given the unbalanced number of samples per class, as well as the overall low number of samples,
a data augmentation technique, Additive White Gaussian Noise (AVGN), was employed to increase
the number of Unusable samples. This was also done to reduce the impact of the unbalanced number of
samples per class on the training of the kNN classifier. The technique consisted of generating new synthetic
samples by adding white noise to a copy of the whole or of a subset of the original sample [39,44,45].
The technique has been shown to be suitable for ML analysis and classification of different type of
signals, including neurophysiological signals [27,46], and it has been successfully employed to enhance
the accuracy of ML classifiers [39,47].

Here an AWGN (±1σ) [27] was applied to the features extracted from signals labelled as unusable
in the Training set to balance the ratio between Usable and Unusable trials. The final dataset therefore
consisted of three hundred and eighty three samples (N = 383, N = 200 Usable signals, N = 136 Unusable
signals). A complete breakdown of the number of Usable and Unusable samples by set and study is reported
in Table 2.

Table 2. Usable and Unusable Samples in Training and Test Score by Experiment.

Study
Training Set Test Set

Usable Unusable Unusable after AGWN Usable Unusable

Study 1 57 21 84 14 5
Study 2 47 15 13 13 2
Study 3 52 8 32 17 0

2.4. Classification

For classification, three different models were employed: a linear Support Vector Machine, a non-linear
Support Vector Machine, and a K-Neighbour classifier. The models were implemented in Python, using the
Numpy [48], Pandas [49], and Scikit-learn [50] packages and trained on the High-Performance Computing
(HPC) Gekko Cluster of the Nanyang Technological University (Python v. 3.7.4, Numpy v. 1.17.4,
Scikit-learn v. 0.21.3, Pandas v. 0.25.1). A 80/20 Train/Test split was performed, while a 5-fold cross
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validation was employed for the training of each model. Script employed for analysis, as well as the full
parameters grid used for the hyperparameters’ tuning, can be found in the data repository of the Nanyang
Technological University (DR-NTU Data) [43]. In addition to the classifiers’ accuracy, precision, and recall
scores, the F1 scores and the Matthew Correlation Coefficients (MCC) measures are reported [51]. Accuracy,
which is the ratio between correctly classified samples and the total number of samples, was biased for
unbalanced dataset, as the metric provides an overoptimistic estimation of the classifier ability [52,53].
Multiple alternative metrics, such as the F1, which is the harmonic mean of precision and recall, has been
widely employed in ML studies. Despite the general consensus toward the employment of F1 in both
binary and multiclass classification task, F1 is not class-independent, meaning that it produces different
results according to which class is labelled as positive and which is labelled as negative. Moreover,
because F1 does not take into account samples correctly classified as negative recall scores, both the F1
scores and the Matthew Correlation Coefficients (MCC) measures are reported [51] . As an alternative
measure to F1, the MCC, a special case of the φ coefficient, was introduced [54]. Introduced as a ML
metric in 2000 [55], MCC takes into account all of the four confusion matrix categories (true positives,
false negatives, true negatives, and false positives), as well as the proportion between positive and negative
elements in the dataset. Moreover, the metric is not influenced by the assignment of positive and negative
classes, meaning that it will produce consistent results when classes are swapped [56]. The MCC returns a
value between −1 and +1, where a coefficient of +1 indicates a perfect prediction, 0 a prediction no better
than chance, and −1 indicates a disagreement between observation and prediction. Therefore, the higher
the MCC score, the better the performance of the model.

3. Results

Results of models’ performances on the validation—with the best set of parameters obtained during
the hyperparameters tuning procedure—and on the test set are reported in Table 3. The best set of
parameters, selected through the hyperparameter tuning phase, are reported in Appendix A.

Results show that all the employed classifiers achieved an accuracy above chance level
(Accuracy > 0.5). In terms of Accuracy and Recall on the test set, the Nearest Neighbors classifier
outperformed the models based on Linear and Non-Linear SVC. A comparison of the models based on the
McNemar’s test (Python 3.8.5, statsmodels 0.12.0), revealed significant differences in the performances of
the Linear-SVC models with both the Non-Linear SVC (χ2 = 7.0, p = 1.07 × 10−6) and the K-neighbors
(χ2 = 7.0, p = 1.21 × 10−7) classifiers; however, no significant differences are present between the
performances of the Non-Linear SVC and the K-neighbors classifiers (χ2 = 0.0, p = 0.125).

Additionally, the K-Neighbors classifiers scored higher on both the F1 Score and the MCC measures
(F1 = 0.875, MCC = 0.493), as compared to the Linear (F1 = 0.676, 0.262) and Non-Linear SVC (F1 = 0.795,
MCC = 0.492) Classifiers, as shown in Table 3.

For what concerns the importance of employed features, both an analysis conducted using a
Permutation Features importance model on the best kNN estimator and an inspection of SVC’s coefficients
reveals how the third repetition ("Repetition 3") is the most predictive feature, followed by the second
repetition ("Repetition 2"), and finally by the first ("Repetition 1"). Details about the results are reported in
Appendix B.

Table 3. Model’s scores (Accuracy, Precision, Recall, F1, and MCC) by type of classifier and test set.

Classifier Train_MCC Train_Acc. Accuracy Precision Recall F1 MCC

Linear SVC 0.207 0.602 0.576 0.958 0.523 0.676 0.262
Non-Linear SVC 0.491 0.810 0.706 1.00 0.659 0.795 0.492

K-neighbors 0.533 0.810 0.803 0.972 0.795 0.875 0.493



Sensors 2020, 20, 6775 7 of 13

4. Discussion

In this work, we tested the possibility of using different machine learning models to discriminate
between usable and unusable fixation time signals collected from young children. Results of three models—a
Linear SVC, a Non-Linear SVC, and a K-Neighbors, reported in Table 3 confirm the possibility of adopting
ML models for the automatic classification of fixation time signals quality. More specifically, our results
suggest that ML classifiers could be successfully employed to support researchers in the coding of the
usability of toddlers’ fixation time recordings, for example in VOE studies. Performances of the different
models, reported in Table 3, suggest that the Non-Linear SVC and and kNN are performing better
than the Linear SVC Classifier. In our dataset, the binary classification has been conducted in such a
way that the usable samples were labelled as positives, while unusable samples as negative. Therefore,
Precision and Recall scores reflect respectively the ratio between True Positive, which are truly usable
samples, against True and False positive, and True positive and False negative respectively [57].

Additionally, both the F1 scores and the MCC measures, which should be more accurate for binary
classification [51], support the finding that the kNN classifier provides the best performances for the task
despite not performing significantly differently from the Non-Linear SVC classifier. Overall, these results
confirm our hypothesis that ML models can be employed to help researchers and clinicians automatically
discriminate between usable and unusable fixation time recording. However, our results are not able
to confirm, from a statistical point of view, that the kNN classifier is performing significantly better
than the Non-Linear SVM Classifier. With regards to the adoption of one classifier versus another,
some considerations should be thoughtfully evaluated, such as the computational power of employed
machines, possibility of retraining the model continuously with the addition of new samples, and the
possibility of implementing the model within eye-tracking software of hardware devices.

With regards to Precision and Recall, all of our classifiers performed better in Precision than Recall.
Taken together, these findings suggest that there are a low number of False Positives (unusable samples
identified as usable) identified by the models, but the classifiers were missing usable samples by classifying
them as unusable. This bias led our model to be highly selective. By reducing the number of False
Positives, the classifiers can be successfully employed with the assumption that, if a trial as been classified
automatically as usable, it most probably is. This suggests that classifiers can produce datasets that contain
almost exclusively usable samples and that can therefore be automatically used by non expert users
or raters to rapidly generate a subset of usable samples for hypothesis testing, piloting, testing of new
analysis algorithm, or for other purposes that require the selection of usable samples. On the other hand,
the classifier was discarding some samples or trials that were labelled by the human researcher as usable.
Given the nature of toddler studies, which are difficult to conduct and that are usually conducted on a
small number of participants, maximising the number of usable samples becomes critical. We can conclude
that models can be successfully employed to identify a subset of usable samples from the total sample,
with very low risk of selecting unusable samples. At the same time, a manual screening on samples
that have been deemed as unusable by the classifier could be necessary to increase the number of usable
samples. Assuming a scenario like the one presented with our three studies, with a ratio of unusable
samples between the 15% and 40%, will result in the necessity of manually inspecting only between the
30% and 45% of the full recordings, assuming the recall rate of the kNN Classifier (Recall = 0.795). Overall,
this results in a large reduction of the time necessary to manually label a collection of recordings.

Our findings can be useful for the development of smart tools to support researchers and especially
coders working with behavioural and signal quality in young children’s fixation time studies. Future works
may replicate the analysis with other types of pupillary measures, such as the pupil size, and may
investigate the possibility of integrating a tool based on ML models directly into eye-tracking devices’
recording software. Future studies may investigate the possibility of adopting Cloud-Based Machine
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Learning Models to deploy the model as a software that can be integrated into different data analysis
pipelines [58,59] or to devices connected to the Internet [27].

Limitations

Despite these promising results, this study has some limitations. The dataset here used for training
and testing of the models was based on three different studies recorded with the same instruments, and it
contained a limited number of samples. Future studies should replicate this analysis by training and testing
the models on more samples, collected from multiple projects. This would also allow for the testing of
different classifiers that perform better on datasets containing higher number of samples, such as Decision
Tree Classifiers. Moreover, our models are based on features already extracted and have no knowledge
about the setup and the participants. Future studies may investigate the possibility of using Artificial
Intelligence model that mingles estimated features with video recordings of the sessions to improve the
accuracy of the models in automatically separating Usable from Unusable trials.

5. Conclusions

In this work, we investigated the possibility of using machine learning models to automatically
separate Usable from Unusable toddlers’ fixation time samples.

Although the data were originally collected for a different purpose, and despite the relatively small
number of samples available, our classifiers obtained promising results. We envision the possible adoption
of ML models to support researchers in the manual preprocessing and labelling of collected fixtation
time data.

Future studies should verify whether other models can outperform the models here trained by
employing larger samples obtained by different studies, as well as testing different sets of features and
measures, such as pupil size measures.
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Appendix A. Models’ Parameters

Models have been trained and tested in Scikit-learn v. 0.21.3. After hypertuning, the models with the
best parameters used for testing were:

Table A1. Best hyper-parameters for the trained models.

Classifier Best Parameters

Linear SVC ‘C’: 30, ‘random_state’: 1, ‘tol’: 0.1
Non-Linear SVC ‘C’: 40, ‘decision_function_shape’: ‘ovo’, ‘gamma’: ’scale’, ‘kernel’: ‘rbf’,

‘random_state’: 0, ‘tol’: 0.1
K-Neighbors ‘leaf_size’: 1, ‘n_neighbors’: 8

Appendix B. Features’ Relevance

Appendix B.1. kNN

A permutation feature importance conducted on the best estimator of the kNN classifier is
here reported.

Table A2. kNN features predictive weight (Importance Mean) obtained through permutation
feature importance.

Repetition 1 Repetition 2 Repetition 3

−0.0151 0 0.1265

Figure A1. kNN features predictive weight (Importance Mean) obtained through permutation
feature importance.

Appendix B.2. SVM

Features importance based on our SVM best estimator’s coefficient are here reported and illustrated.

Table A3. SVM features’ predictive weights.

Repetition 1 Repetition 2 Repetition 3

−0.05269684 0.00185775 0.26624044
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Figure A2. SVM features predictive weight.
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Prosody, Poznań, Poland, 13–16 June 2018; Volume 2018, pp. 621–625.

46. Um, T.T.; Pfister, F.M.; Pichler, D.; Endo, S.; Lang, M.; Hirche, S.; Fietzek, U.; Kulić, D. Data augmentation of
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