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Using higher-order Markov models 
to reveal flow-based communities 
in networks
Vsevolod Salnikov1, Michael T. Schaub1,2 & Renaud Lambiotte1

Complex systems made of interacting elements are commonly abstracted as networks, in which 
nodes are associated with dynamic state variables, whose evolution is driven by interactions mediated 
by the edges. Markov processes have been the prevailing paradigm to model such a network-based 
dynamics, for instance in the form of random walks or other types of diffusions. Despite the success of 
this modelling perspective for numerous applications, it represents an over-simplification of several 
real-world systems. Importantly, simple Markov models lack memory in their dynamics, an assumption 
often not realistic in practice. Here, we explore possibilities to enrich the system description by means 
of second-order Markov models, exploiting empirical pathway information. We focus on the problem of 
community detection and show that standard network algorithms can be generalized in order to extract 
novel temporal information about the system under investigation. We also apply our methodology 
to temporal networks, where we can uncover communities shaped by the temporal correlations in 
the system. Finally, we discuss relations of the framework of second order Markov processes and the 
recently proposed formalism of using non-backtracking matrices for community detection.

Dynamics on complex networks, such as the diffusion of information in social networks, are commonly modelled 
as Markov processes. An advantage of this approach is that for every (static) network with positive edge-weights 
we can define a corresponding Markov process by interpreting the network as the state space of a random walker, 
and assigning the state-transition probabilities according to the link weights. This direct correspondence between 
the state space of the Markov process and the network enables us to examine the interplay between structure and 
dynamics from two sides. On the one hand, one can assess how the topological properties of a network influence 
the dynamical process. On the other hand, this coupling between topology and dynamics allows us to explore 
the structure of a network by means of a dynamical process. Specifically, for a linear Markov process the impact 
of the network structure on the dynamics will be mediated by the spectral properties of the matrix governing the 
time-evolution of the process, e.g. the adjacency matrix or the Laplacian1,2. Vice versa, spectral properties can be 
used to uncover salient structural properties of a network, such as modular organisation3–5.

While simple Markov models have been very successful in modelling dynamics of complex systems and found 
many applications, they have one obvious disadvantage. In this class of models, the future state of the system only 
depends on its current state and does not account for its history. In a diffusion process, for instance, the next 
position of a random walker only depends on the currently occupied node and its outgoing links, but not on any 
of the previously visited nodes. However, as it has been emphasised recently, for a broad range of networked sys-
tems, flows tend to exhibit a temporal path dependence6,7. Think of human mobility: the places a person is likely 
to visit next, depend in most cases strongly on where the person came from. For instance, a person coming to 
work from home is likely to return home afterwards8. Other examples of processes with temporal memory 
include web traffic, journal citation flows and email cascades. Such processes therefore cannot be reproduced 
accurately by simple Markov models. However, the impact of this temporal correlations can often be already 
well-approximated by second-order Markov ( 2 ) models6. Importantly, the transition probabilities to define 
these models can be obtained empirically by measuring pathways of interaction cascades, rendering such an 
approach suitable for applications like information spreading or human mobility.
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In the standard Markovian network model (1), the elementary states are identified with the nodes of the 
original network (see Fig. 1). In the 2  model, elementary states correspond to sequences of two nodes, and thus 
can be identified with directed edges in the original network (see Fig. 1). Therefore we may think of a 2  model 
alternatively as a random walk between directed edges of the original network. The state space of the 2  model 
defines a new network describing the observed dynamics, which we call here the 2  or memory network. The 
structural properties of the memory network can now be studied by many tools of network science, allowing us 
to uncover interesting patterns of flow in an 2  model.

The purpose of this paper is to highlight how the formalism of higher order Markov models provides a simple 
means to extend network theoretic tools to take into account important dynamical properties as encoded in the 
2 representation. Indeed many network theoretic tools may be understood as the outcome of a matrix iteration 
or eigenvector computation9, which can be naturally associated to a dynamical process.

In this paper we focus on the problem of community detection, though higher-order models can be equally 
applied to other problems, including the assessment of node centralities6,9 or the speedup (or slowdown) of 
spreading processes7. While Ref. 10,11 discussed how the map equation can account for higher-order flows in 
community detection, here our main example will be the Markov stability3,12,13 formalism, as it incorporates many 
commonly used community detection measures as special cases, notably, the concept of Modularity14, diverse 
Potts models15, and spectral clustering16,17. We thereby highlight that all these classical algorithms can indeed be 
naturally generalised to account for memory effects by using 2  networks, showing that these representations 
provide a general tool for the analysis of a dynamics occuring on a latent network structure. Moreover, as spectral 
clustering can be shown to be a special case of the Markov Stability formalism for long times, we can draw con-
nections to recently proposed techniques of graph partitioning based on non-backtracking random walks18, and 
discuss how these can be understood from the point of view of second order Markov processes. We remark that 
as clustering an 2 network is equivalent to finding a partition of the edges of the original system, it naturally 
leads to the detection of overlapping communities in the same way as the analysis of line graphs19. This can be a 
highly desirable feature, especially when analysing social networks, which tend to be organised in overlapping 
social circles20,21.

The remainder of this article is organised as follows. Initially, we review the Markov stability formalism for 
community detection, a general framework to detect flow-based communities in complex networks, and particu-
larly emphasise its properties in the case of directed networks2. We show how this quality function can be natu-
rally generalised for the analysis of 2  networks, which we illustrate by studying a flight network of the United 
States from the perspective of second order Markov models. In this context, we also discuss the possibility to 
generate realistic pathway data using models of second-order Markov processes, even if only time aggregated 
network information is available. Subsequently, we propose a mechanism to extract pathway statistics to build 
second-order models from event-based, temporal network data, which do not contain pathway statistics a priori. 
Using computer-generated data and time-resolved interactions records of school-children, we demonstrate how 
we can uncover communities which capture important flow-constraints imposed by the temporal activation 

Figure 1.  Schematic – dynamics on networks as Markov processes. A process on a physical network (left) 
may be abstracted in a number of different ways – often this is done via a Markov model. In a first order Markov 
model 1 (right side, top panel), the state space is isomorphic to the physical network: every node corresponds 
to one state, every link indicates a transition between those states. In a second order Markov model the state 
space is structured like a directed line-graph of the original network. The states in this 2  network can be 
identified with the directed edges in the original network and are connected if it is possible to traverse from one 
edge to another edge in the original directed network. Note that, when projecting back these 2  dynamics onto 
the physical network, the probability to move from one node to another will thus appear non-Markovian.
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patterns of the links. Finally, we draw connections between the 2 network representation and non-backtracking 
random walks to uncover communities in sparse networks.

Markov Dynamics and Community Detection
Random walks on directed networks.  Let us consider a continuous-time random walk on a network 
with N nodes, governed by the following Kolmogorov forward equation:

∑= − + .p t p t p t
A

k
( ) ( ) ( )

(1)j j
i

i
ij

i
out

Here pj(t) denotes the probability of a walker to be present on node j at time t; Aij is the weight of the link from 
node i to node j, i.e., A is the (weighted) adjacency matrix; finally, kj

out is the weighted out-degree of node j.
Clearly this dynamics is driven by the normalised Laplacian matrix L, defined as δ= − +L A k/ij ij ij i

out. The 
Perron-Froebenius theorem guarantees that a unique stationary solution exist for the above dynamics if the net-
work is strongly connected. For an undirected network, this stationary solution is πj =  kj/2M, where 
= =k k kj j j

out in
 is the node degree and M is the total weight of the undirected links. For a general directed net-

work the stationary solution is given by the dominant (left) eigenvector of L, which depends on the global net-
work properties and cannot be expressed by a simple analytical formula.

Making the dynamics ergodic (when it is not).  Note that for the continuous-time random walk defined above, a 
strongly connected graph implies an unique stationary distribution and an ergodic dynamics. These criteria are a 
common requirement for dynamics-based methods for network analysis3,10. However, in a majority of real-world 
systems the system contains not just one but several strongly connected components (SCCs), whose sizes typ-
ically have different orders of magnitude. A standard solution is to address this issue by either neglecting some 
nodes and focusing on the largest SCC only, or by making the system strongly connected through random tele-
portations22. The first solution has the advantage of not distorting the dynamics, while the second allows for the 
analysis of the whole system. When analyzing real-world systems in the following, we will for these reasons use 
the first solution if the vast majority of nodes belongs to the largest SCC, while we will opt for the second solution 
if the system comprises a large number of disconnected components.

Community structure from a dynamical viewpoint.  The structure of a network has a strong effect on 
the dynamics of a diffusing random walker: in unstructured (random) networks, the diffusion process will evolve 
almost isotropically and the walker will quickly reach its stationary distribution. However, if the network contains 
structure, a walker can get trapped inside a group of nodes for a time far longer than expected. Such groups of 
nodes thus constitute flow-retaining, dynamical communities in the network. Hence a random walk dynamics can 
effectively be used to define a quality function for a network partition based on the persistence of the diffusion 
inside the groups. By optimising such a quality function, we can therefore search for a modular partition of the 
network. Important examples for such an approach include the map equation10 and the Markov stability frame-
work3, which we consider in this paper. Note that, as highlighted in refs 4 and 10 this notion of community is 
markedly different to the commonly considered structural viewpoint of communities, in that we are interested in 
flow-retaining, rather than densely (homogeneously) connected substructures.

The Markov stability of a partition   is defined as:



∑= − ∞
∈

R t P C t P C( , ) ( , ) ( , )
(2)C

where P(C, t) is the probability for a walker to be in community C initially and at time t, for a system at station-
arity. Note that as all information about the initial position is lost after infinite time, P(C, ∞ ) also describes the 
probability of two independent walkers to be in C.

For the process (1), the Markov stability quality function can be written explicitly as:
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where etL denotes the matrix exponential. Intuitively, with increasing time the walker will be able to explore larger 
and larger parts of the graph. The larger the time, the larger the modules that will be found in general. By ‘zoom-
ing’ through different Markov times one can thus reveal adequate scales of robust community structure, which 
manifest themselves as plateaux in time where the same partitions are found consistently4,23. In the limit t →  ∞ , 
it can be shown by eigenvalue decomposition that R t( , )  is maximised by a bi-partition in accordance with the 
normalised Fiedler eigenvector, a classic method in spectral clustering17. Interestingly, the expression for Markov 
stability can be rewritten as the Newman-Girvan modularity14 of a different network, whose adjacency matrix is 
given by

π π= 
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Here πi(etL)ij is the flow of probability from i to j after a time interval t at stationarity. In this new network Y, 
the weight of a connection between two nodes is thus modulated according to its importance for the diffusion 
dynamics. This rewriting of Markov stability as the modularity of a different network enables us to use any 
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modularity based algorithm for the optimization of Markov stability, too. For the results in the present manu-
script, we have made use of the Louvain algorithm24, a fast greedy optimisation heuristic that has been shown to 
have a good performance in the literature.

In practice, it can be more efficient to consider (3) in the limit of small times t →  0. Performing a Taylor 
expansion and keeping only linear terms in t results in the linearised Markov stability:
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Note that for an undirected network, we have πi =  ki/2M and =k ki i
out , and one recovers the modularity of the 

original network for t =  1 as well as the Potts-model heuristic15 for other Markov times (see Ref. 3,12 for details). 
However, for directed networks (5) is not equivalent to the directed modularity of the original network, but is 
given by:
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Interestingly, similar adjusted adjacency (or Laplacian) matrices have been proposed as means for community 
detection in the literature based on different reasoning24,25.

Note that, as with all applications of unsupervised algorithms, care is needed when interpreting the results. 
For instance, the optimisation of Markov Stability for a fixed Markov time inherits the limitations of modularity 
maximisation, such as a resolution limit27, and a high degeneracy of optimial solutions28. Nevertheless, this class 
of methods has been applied successfully in numerous applications29. Indeed, some of these problems can be 
circumvented by carefully sweeping through different resolution parameters4,29 and finding partitions that are 
robust over a range of parameters4,13,23,31. Most importantly, however, the notion of community inherent to the 
methods presented here is based on flows3,4,10. This is in contrast to methods like stochastic blockmodels (SBM), 
see e.g. refs 32–34, which employ a generative model for the whole network and aim at finding patterns of pair-
wise connections in the system, though very recent work aims to incorporate dynamical aspects within the SBM 
framework35.

Dynamical Community Detection using Higher-Order Markov Models
From first to second order Markov models.  Let us now show how we can incorporate second-order 
Markov models into the Markov stability framework. As higher-order Markov models provide more faithful 
representations of the dynamics observed in real world systems, this enables us to capture more of the real flow 
constraints in the uncovered communities. For simplicity let us initially consider undirected networks composed 
of N nodes and M links. The dynamics of a second order Markov process are encoded by the transition matrix 
→
→
→

T ij jk( ), which describes the probability that a walker moves from node j to node k if it came from i in the 
previous step. By definition, this transition matrix is normalised such that ∑ →

→
→
=T ij jk( ) 1k .

As sequences of two vertices in our original network correspond to the nodes in the 2  network, the entries 
in T describe precisely the transitions from 2-node →ij  to 2 -node 

→
jk. The (second-order) 2  process on the 

original network is thus equivalent to a first-order Markov process, albeit on a different network: namely, the 2  
network composed of 2M nodes. As each undirected link of the original network can be traversed in two distinct 
directions (from i to j, and vice versa) it accounts for 2 nodes in the 2  network, →ij  and →ji . This implies that the 

2  network is directed even if the original network is undirected. To see this, observe that if k ≠  i, there cannot 
be a link between 

→
jk and →ij , even if a transition between →ij  and 

→
jk exists. Henceforth we use Greek letters to 

denote 2 nodes, and Latin characters to denote the nodes in the original 1 network.
Similarly to (1), we can define a continuous-time random walk on the 2  network as:

∑= − +β β
α
α αβp t p t p t T( ) ( ) ( ) ,

(7)

where pα(t) is the probability of finding a walker on 2  node α at time t. Likewise the stationary distribution πα 
of this process is given by the left eigenvector of the corresponding Laplacian, associated with eigenvalue 0:

∑π δ− = .
α
α αβ αβT[ ] 0

(8)

Note that we can also observe how a simple 1  Markov dynamics evolves from the point of view of an 2 
network, i.e., we can view the 1 dynamics from the point of view of transitions between the (directed) edges of 
the graph. As this is equivalent to lifting the 1 dynamics into the larger 2 state-space, we will denote this 
representation as a 1expanded network. In this case it can be shown easily that πα =  wα/W, where wα is the weight 
of edge α and = ∑α αW w 2,6. The transition probability to any out-neighbour of α on the 1expanded network is 
simply

 β σ
=



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Here σα
out is the set of out-neighbours of α, and = ∑α β σ β∈k wout out  is the out-strength of α. Note that, since the 

original network has been undirected we have =αk k j
out , where j is the endpoint of memory node (the directed 

edge) α = →ij .

Models of second-order Markov processes.  While second order transition matrices T can be directly 
generated from temporal pathway data, in some cases only information about the aggregated (first-order) net-
work might be available. However, in such cases we can still create 2  networks using a simple memory model, 
calibrated by the pathway statistics of similar datasets for which this temporal information is obtainable. For 
instance, the temporal information pathways of one Email dataset may be used to fit model-parameters to gener-
ate a second-order model for different email communication network, where only aggregated information is 
obtainable.

The key idea underpinning the model is to weight different types of transitions between two directed edges. As 
illustrated in Fig. 2, we define three different types of transitions6.

1.	 A return step, in which a walker coming from →ij  jumps to →ji . In other words: a walker coming from node i 
to j returns to node i.

2.	 A triangular step, in which a walker coming from →ij  moves to edge 
→
jk, where k ≠  i is a neighbor of i.

3.	 An exploratory step, in which the walker moves from →ij  to an edge 
→
jl , whose endpoint l is neither i, nor any 

of the neighbors of i.

To account for their relative importance we assign positive weights r2, r3 and r>3 to the different types of tran-
sition as follows. Let us denote the adjacency matrix of the directed line graph associated with our network by G. 
Then we can decompose G into three matrices Gret (return links), Gtri (triangular), and Gexp (exploratory) each 
containing only the links of the respective type. To obtain a weighted memory model we now define the weighted 
2M ×  2M adjacency matrix:

= + +αβ αβ αβ αβ>G r G r G r G , (10)
mem

2
ret

3
tri

3
exp

from which we can compute the associated second order transition matrix Tmodel simply by normalising each row 
to sum to 1.

As can be easily verified, this definition implies that when we project the resulting walk onto the node space, 
we obtain a (first order) Markov process when r2 =  r3 =  r>3 =  const. We further remark that if the dynamics is 
ergodic on a graph for any set of parameters, it will remain ergodic for any value of r2, r3 and r>3, provided each 
parameter is strictly positive.

Higher order Markov dynamics reveal communities in a network of flight pathways.  Let us now 
demonstrate how second-order Markov dynamics can help to uncover the organisation of systems where pathway 
data are available, and compare their outcome with the community structure obtained by first-order dynamics 
and by simplified models of second-order Markov dynamics, as defined in in the section above. To do so, we 
consider a flight network in the United States. The data used to construct the network consists of individual flight 
trajectories of people navigating between different airports in the US. From these trajectories one can directly 
obtain a 1  or 2 network as discussed above and in Ref. 6. The main purpose of our analysis here is to illustrate 

Figure 2.  Construction of a 2  network using a second-order transition model. From each directed edge in 
the original network a walker can in principle perform three types of moves, which get weighted according to 
the parameters ri: a return step (r2), a triangular step (r3) and an exploratory step (r>3). The picture shows these 
different options for a generic network edge.
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the differences that may arise in community detection when considering the same mobility data from different 
modelling perspectives.

We analysed the modular structure of this system for the following three scenarios: i) a first order Markov 
network (1expanded), viewed from the perspectives of the edges; ii) a second order Markov network ( 2 ) where 
the transition probabilities are directly obtained from empirical data; iii) a second order Markov network 
(2model), where transitions are approximated by a simple second-order transition matrix Tmodel (see text), whose 
parameters have been fitted from the data. In each case, optimising the linearised stability for these different 
Markov models yields a clustering of the edges, which can be interpreted in terms of an overlapping community 
structure at the airport level. To compare the different scenarios we concentrate on the results obtained for 
Markov time t =  1 (see Fig. 3). Let us also note that, for each network, only few hardly active airports do not 
belong to the largest SCC. For this reason, we restrict the scope to nodes in this SCC. To be more precise, we 
restrict the scope to the intersection of the largest SCCs of the three processes, in order to ensure that the Markov 
stability is well-defined for each of them.

In order to compare the communities associated to each Markov process, we first calculate the normalised 
variation of information36 between the three different partitions of 2 nodes obtained by optimising stability at 
t =  1. By construction, smaller values of variation of information indicate more similar community structures. We 
obtain a variation of information of 0.42 between 2  and 1expanded , 0.36 between 2 and 2model, and 0.38 
between 1expanded  and 2model. These results confirm that the clusters obtained from 2model  provide an inter-
mediate solution between 2  and 1expanded, with the advantage of requiring far fewer parameters than in the 
2 case.

After having found the edge-communities in each scenario, each node can be characterised by the set of group 
labels of its incident edges. In order to quantify the apparent difference between the covers, we measure for each 
node the entropy of its associated group labels:

∑= −S p c p c( )ln ( ),
(11)i

c
i i

where pi(c) is its fraction of edges assigned to community c. A value Si =  0 indicates that the node is associated to 
a single community, while higher values indicate a more diverse participation. The level of overlap of an edge 
partition can now be characterised by the distribution of entropy values on the set of nodes. We observe in Fig. 3 
that analyzing the 2 network results in more overlapping communities than the expanded first-order model, 
while the 2model network is characterized by intermediate participation values. Similarly as observed for the 
map equation6, accounting for memory via second order dynamics therefore uncovers communities with a 
stronger overlap, in agreement with empirical observations that higher-order dynamics tends to constrain flows 
within these modules.

Analyzing Time-Stamped Temporal Networks without Pathway Data.
Second-order Markov models of time-stamped temporal networks.  Node or link activity in net-
worked systems often exhibits non-trivial temporal patterns, such as heterogeneous inter-event times and correla-
tions between activation times of neighbouring edges37. Different network representations of such temporal data 
can be adopted, each associated to a different notion of temporal community. A first, ‘naive’ approach is to neglect 
the edge-timings and work with a static network representation, where the weight of each edge corresponds to 
an aggregation of the activity over the whole observed time interval. In this case, community detection aims at 
grouping nodes which have the aggregated edge-weight concentrated inside modules.

Alternatively, one can represent the system by a set of (coupled) adjacency matrices At, where each At repre-
sents the system in a short-time frame of the whole observation period. By applying community detection to this 
representation one tries to uncover meaningful structures in each time window, while enforcing some continuity 
between different time intervals38. This approach accordingly aims at tracking the evolution of communities in 
the course of time.

As we now discuss, a third notion of community is naturally associated to the representation of dynamics 
on temporal networks as a second-order Markov process. In situations when the activations of neighbouring 
edges present temporal correlations, the dynamics of a random walker is expected to be poorly reproduced by a 
first-order Markov process7. However, by finding a second-order representation of the temporal data and using 
the methodology introduced above, one can capture the observed temporal constraints on flow, including causal 
paths and a high levels of synchrony between edge activity.

The mapping from a time series into a second-order Markov model is realized as follows. We consider a  
system described by an ordered set of adjacency matrices At defining the connections between nodes at time 
t ∈  [1, T], where T is the number of observations. The static representation of the temporal network is provided by 
the adjacency matrix = ∑A At tstatic . Each directed edge within Astatic defines a 2 node. The connection strength 
between 2 nodes is now obtained by simulating pathways of a random walk process on the temporal network 
as follows. A walker is initially randomly assigned to a node. At every time step the walker waits until at least one 
edge is available for transport. If an edge becomes available, the walker leaves the node with probability (1 −  ps) 
and remains on its current node with probability ps. If there are multiple possible transitions, the walker takes 
each edge with a probability proportional to its weight. This process is repeated multiple times for the observed 
interval [1, T] in order to generate sufficiently many trajectories. From these trajectories, one can simply construct 
a 2  network by evaluating the transition frequencies between different edge pairs.

We remark here that several other procedures could be defined to generate 2 networks, too. For instance, we 
could account for the duration of the intervals between time steps, or define the walker’s leaving probability to be 
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proportional to the number of available contacts. Note that in the above construction, when ps =  0, the walker 
always takes the first available edge, and one recovers the dynamics studied in e.g. ref. 39. The use of non-zero 

Figure 3.  Clustering analysis of a passenger traffic-network between airports in the US. (a) Results based on 
clustering the 1expanded system representation. (b) Clustering results obtained from the 2 system 
representation. In (a,b) each airport is represented by a pie chart indicating the participation of the airport in 
different communities. For visual clarity, nodes with a community participation entropy smaller than one are 
displayed as smaller nodes. (c) Distributions of the community participation entropy across the network for the 
1expanded (left), 2model (middle) and 2 (right) network. All maps are created with https://github.com/
andrea-cuttone/geoplotlibGeoplotlib using map tiles and data from https://www.mapbox.com/map-feedback/
Mapbox and http://www.openstreetmap.org/copyrightOpenStreetMap, © OpenStreetMap contributors.

https://github.com/andrea-cuttone/geoplotlibGeoplotlib
https://github.com/andrea-cuttone/geoplotlibGeoplotlib
https://www.mapbox.com/map-feedback/Mapbox
https://www.mapbox.com/map-feedback/Mapbox
http://www.openstreetmap.org/copyrightOpenStreetMap
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values of ps introduces a source of randomness in the dynamics, which can prevent spurious effects such as an 
overly strong tendency for backtracking as observed in Ref. 40. However, with increasing values of ps, the original 
ordering of events becomes less important, and the impact of the exact timings is expected to be diluted41.

Community detection in 2  networks constructed from temporal data: an illustrative example.  
Let us now show that a 2 representation helps at uncovering hidden structures in temporal networks. As a first 
illustrative example, we consider a computer-generated benchmark of a social network defined as follows. The 
underlying structure is a complete graph, where the (directed) social interactions are divided into g different, 
non-overlapping types, e.g., work relations, friends, etc. Fig. 4. A shows such a network with N =  10 nodes and 
g =  3 edge types. We assume that different types of relationships dominate at different times, as often observed in 
empirical data42. Therefore, at each time, all edges of one single group are simultaneously active. Initially, a ran-
domly chosen group is active. At each step, the currently active group remains active with probability pk; with 
probability 1 −  pk, a new active group is randomly selected among all groups (including the currently active one). 
For the parameters considered here, the walker thus has three outgoing edges available for transport at each step 
(see Fig. 4). It is important to note that for the generation of trajectories on this temporal network, a change of the 
probability for the walker to stay at its node ps is effectively equivalent to a change in pk. For the sake of simplicity, 
we therefore set ps =  0 here.

Clearly, the trajectories of the random walker and the corresponding structure of the 2 network are affected 
by the value of pk. When pk =  0, a new active group is randomly selected at each step of the random walker. In this 
limit, the average dynamics is equivalent to a first-order random walk on a fully connected network, and thus no 
underlying structure can be found. Increasing pk implies that the random walker remains for longer time periods 
inside one group of edges before leaving, and it is thus possible to uncover the group structure. The extreme case 
pk =  1 is again trivial: the initial group remains active for all times. This case is therefore not considered in the 
following. The results of our analysis are summarised in Fig. 4, where we compare the uncovered communities 
with the planted solution into groups by means of normalised variation of information (VI). Our observations are 
twofold. First, for values of t slightly larger than t =  1, we find the planted partition with high accuracy. Second, 
one observes that the underlying communities can be successfully found when the value of pk is sufficiently large, 
with a clear transition around pk =  0.4 (see inset in Fig. 4).

A real-world case study: analyzing temporal interaction pattern of school children.  To demon-
strate the utility of our approach with a real-world example, we have considered an empirical dataset from the 
SocioPatterns project43. The data, described in detail in44, consists of time-dependent face-to-face contacts, cap-
tured by wireless wearable sensors, between children and teachers in a primary school. In total, the dataset is 
made of 77,602 contact events between 242 individuals during two consecutive days. As the children belong to 
10 different classes, we expect to find strong structural communities associated to these classes in the dynamic 
contact network. In the following analysis, the pathways were generated with a probability for the walker to stay at 
his node at each step set to ps =  0.05, but similar results were obtained when varying this parameter.

By scanning through Markov times we can find several persisting partitions. As validation we first identified 
the Markov time tC=10 ≈  0.631 around which the algorithm robustly detects 10 communities, and verified that the 

Figure 4.  Analysis of an example temporal network with 10 nodes and 3 groups. (a) Shows a complete graph 
with 10 nodes, whose (directed) edges are divided into 3 groups, such that each node has exactly 3 outgoing 
edges of each type. At each time-step only edges belonging to one group are active and available for transport. 
The currently active group ceases to be active with probability 1 −  pk, and is replaced by a randomly selected 
group. A random walker traversing the network is thus more likely to remain within the same group, the higher 
the probability pk. In panel (b), the variation of information between the planted structure and the partition 
found by Markov stability in the 2 network is displayed as a function of Markov time. We can see that there is 
a plateau for values of time slightly larger than t =  1. As shown in in the inset, the method successfully uncovers 
the organisation into 3 modules for sufficiently large values of pk, i.e., when the groups remain active long 
enough in time such that the walker remains trapped inside a community for non-negligible periods.
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communities overlap with the partition into classes of the students. One should note here that the partition into 
classes can in fact be uncovered even from the aggregated, weighted network associated to the data44.

The advantage of our approach becomes apparent when looking at further stable partitions found for smaller 
Markov times. For instance, we find another robust split of the 2 network at Markov time t =  0.56 into 15 com-
munities. For this partition most communities are still identified with classes, as can be seen in Fig. 5. However, 
there are also additional modules in which students from different classes are mixed. These modules display 
activity patterns which are highly localized in time and therefore are bound to get lost when averaging over the 
temporal dimension in the data. Interestingly, these latter communities correspond in fact to interactions taking 
place between students during lunch breaks. Notably, these interaction are not detectable from the aggregate 
network or when using a memoryless representation of the dynamics (e.g., the 1expanded  network). By using the 
approach outlined here, we can thus not only detect ‘structural’ communities, in which actors maintain a higher 
amount of interactions between each other throughout time, but also ‘temporally localized’ communities, which 
are associated to groups that interact with each other strongly over certain time-periods.

Second-Order Models, Non-Backtracking Walks and Spectral Clustering
Recently, there has been an increased interest in spectral methods based on the so-called non-backtracking 
matrix of a network. While standard spectral algorithms for graph partitioning tend to fail when applied to very 
sparse networks, Krzakala et al.18 demonstrated how the non-backtracking matrix can be used to design spectral 
algorithms which behave optimally right until the theoretical limit of detectability of a stochastic block model. As 
the name suggests, the non-backtracking matrix is intimately related to the non-backtracking random walk on a 
network. The non-backtracking random walk is a diffusion process in which a particle behaves just like a simple 
random walker on the network, albeit with one additional constraint: after arriving at a node the walker is not 
allowed to immediately return to the node from which she originated (she cannot ‘backtrack’).

Interestingly, this non-backtracking random walk can be simply phrased in terms of a memory dynamics. 
Following the notation of section the non-backtracking matrix is defined on the set of 2 -nodes and may be 
simply written as

= + .B G G (12)tri exp

Figure 5.  Analysis of the temporal community structure of a school network. Two types of communities can 
be found by analyzing the 2  network generated with pstay =  0.05. Around Markov time equal to t =  0.56 we 
find a robust of the directed edges into 15 communities. 10 of these communities are ‘single class communities’, 
in the sense that most connections are concentrated in one single class (cm2a in the example shown in (a)). 
These communities do not display a particular temporal structure in their activation patterns. This is clear from 
the temporal profile of activity (bottom panel in (a)), which displays the number of active links as a function of 
time, averaged over 2 days. (b) The remaining 5 communities are temporally localized ‘lunchtime communities’. 
While they extend over a range of class labels, connecting pupils from different groups, they are highly coherent 
and synchronised in time. These communities represent the lunch-time interactions between students of 
different classes.
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Clearly this matrix describes the line graph for a memory walker with parameters set to r2 =  0, r3 =  1, r>3 =  1 (see 
section). The associated transition matrix TB of the non-backtracking random walk is simply obtained through 
normalisation:

=α β
αβ

α
T

B
k

,
(13)

B
, out

where αk out is the weighted out-degree of 2 -node α. As this is just a diagonally scaled version (by the degree) of 
the non-backtracking operator, we may employ the flow based transition matrix TB for spectral partitioning of the 
nodes45. In fact, TB is just one particular instance of a whole continuum of possible transition matrices, each with 
varying amounts of memory. We can thus assess the effect the introduced memory has on the clustering by vary-
ing the parameters ri and performing a spectral clustering analysis.

Like in Ref. 18, we consider the problem of spectral clustering here in the simplest possible setup, which is 
the detection of a bipartition of equally sized groups in a large, sparse network. The networks we consider here 
consist of N =  104 nodes, divided into two groups according to a simple stochastic block model18. We denote the 
average degree of each node by c, the average degree to nodes inside its group by cin, and the average degree to 
nodes outside its own group by cout. Note that these quantities are coupled by the simple relation c =  (cin +  cout)/2.

Similar to Ref. 18, while keeping the ratio cout/cin =  0.3 fixed, we vary the average degree c and observe the 
results we obtain from different operators via spectral clustering. Now, each node is grouped using the following 
protocol18,45. We first compute the second dominant (left) eigenvector of the respective matrix operator. Second, 
for each node we sum over the eigenvector components corresponding to all of its incoming links. The nodes 
are grouped according to the sign of this sum: if is is positive the node is assigned to the first group, if not to the 
second group. In case the respective matrix operator is directly defined on the node space, the nodes are simply 
partitioned according to the signs of the eigenvector. Note that in contrast to the problems considered above we 
here look at the problem of community detection from the perspective of a hard clustering of the nodes rather 
than the edges and moreover assume that there is a fixed, known number of non-overlapping node-communities. 
We thus do not expect that using second-order transition matrices will necessarily improve the performance (for 
the non-overlapping node-clustering), indeed accounting for memory can also be detrimental for this purpose 
as we will see in the following. However, our main purpose here is not to design an improved node clustering 
algorithm but to better understand the connection between spectral clustering and memory matrices.

In Fig. 6a, we initially perform a spectral clustering analysis the non-backtracking matrix B18, the adjacency 
matrix A, the normalised Laplacian matrix = − − −I D AD1/2 1/2 . As has been observed by Krzakala et al., the 
clustering based on the backtracking matrix B performs clearly better than the one based on the adjacency or 
Laplacian matrix, in particular when the graph becomes very sparse (see Fig. 6a). Figure 6b shows the results for 
the spectral clustering based on the memory walk matrices T r{ }i

 with various parameter settings ri. There appears 
to be a clear trend: the more weight there is assigned to exploratory steps, the easier it appears to decide on the 
node groupings. Spectral clustering based on the non-backtracking second-order transition matrix T(r2 =  0, 
r3 =  1, r>3 =  1) performs almost as well as the clustering based on B for very sparse networks. For networks with 
a higher average degree (c ≈  8), the results are even slightly better. As the second eigenvector of T, which is used 
for the clustering, describes the approach of a memory dynamics towards stationarity it should not be too surpris-
ing that the results deteriorate if more memory is introduced: as very sparse graphs have a tendril like structure, 
additional memory can lead to a localisation of the dynamics in parts of the graph which correspond to strong 
‘local’ bottlenecks. Stated differently, the slowest time-scale of the diffusion may not be correlated with moving 
from one planted (node) community to the other, but local obstacles become more important making the second 
eigenvector a bad predictor of the bi-partition.

This is in particular interesting, as for most memory dynamics reported6 the return flow appears to be signifi-
cantly large, which would imply that the dynamical constraints on the flow are much more pronounced on a local 
level than one may expect from the perspective of an aggregated network. This observation appears to be aligned 
with the fact that many real-world systems tend to be composed of overlapping communities21.

Conclusions
Network-based models have been extremely successful for the analysis of complex systems, and have led to the 
discovery of structural features with profound impacts on its dynamics46. However, to accurately capture the 
complexity of real-world interacting systems, simple network models are often not sufficient. For this reason, 
different approaches have been proposed recently, which increase the model dimension and enrich the network 
paradigm. One approach that has gained prominence in the literature, is to account for the different types of 
interactions present in the system by means of multiplex or multilayer networks47. Our approach developed in the 
work presented here proceeds in a similar spirit: by providing a larger state space representation in the temporal 
dimension, we aim to obtain new insights about the dynamical processes taking place in the system. Despite their 
similarities (see Ref. 2), multiplex networks and higher-order Markov models differ, as the former model tends to 
emphasise differences in the connections of the system, while the latter emphasises pathways.

In this paper, we have focused on the applicability of second-order Markov dynamics in the context of 
flow-based community detection. Second-order Markov dynamics model real-world temporal dynamics more 
accurately, so the found communities are expected to better capture the actual flow constraints in the system. In 
particular, we have shown how the Markov stability framework, and thus techniques like Potts models and spec-
tral clustering, can be based on a second-order Markov dynamics, which is equivalent to considering transitions 
between directed edges in the original network. As clustering of second order models yields a partition of the 
edges, one can readily interpret the results as an overlapping clustering of the nodes in the original system, which 
is a beneficial feature of the approach.
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Some practical concerns are associated with moving to a second-order model. Naturally, there is an increased 
computational cost, as the number of nodes in the second-order model is equivalent to the number of directed 
edges in the original network. However, as most networks are sparse, this cost tends to be outweighed by the 
benefits gained from a higher-order dynamical representation. Another practical issue is that pathway statistics, 
needed to construct a second-order transition matrix directly from data, may not always be immediately acces-
sible. To make the toolkit of second order models available in such scenarios, we have presented two different 
strategies. First, we have analysed a simple model able to generate realistic second-order dynamics, which can 
be calibrated from similar datasets. Second, we have demonstrated how to represent temporal network data as a 
second order network. We have tested these two strategies by focusing on a flight network in the United States, 
and a (temporal) social interaction network in a school environment, respectively. In both cases, the second order 
dynamics, even approximated, allowed us to extract temporal patterns in the data that would have been missed 
by an aggregated first-order model.

Finally, we have highlighted the relationship between second-order Markov models and the recently intro-
duced spectral clustering formalism based on the non-backtracking matrix. Interestingly, the non-backtracking 
matrix corresponds to a scaled version of the transition matrix of a non-backtracking random walk, which is 
a special case of the second order dynamics discussed in this manuscript. As we have demonstrated, this con-
nection opens up the possibility to investigate further second order Markov processes and their relationships to 
spectral clustering. Investigating these issues in more detail will be the subject of future work.
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