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Abstract. Bruxism is a non‑functional involuntary muscle 
activity that affects more than one‑third of the population 
at some point in their lives. A number of factors have been 
found to be related to the etiopathogenesis of bruxism; 
therefore, the condition is considered multifactorial. The 
most commonly accepted factor is stress. Stress has long 
been considered to increase muscle tone and to reduce the 
pain threshold. Current evidence indicates that exposure to 
chronic stress, distress and allostatic load ignite neurological 
degeneration and the attenuation of critical neuronal pathways 
that are highly implicated in the orofacial involuntary muscle 
activity. The present review discusses the negative effects that 
chronic stress exerts on certain parts of the central nervous 
system and the mechanisms through which these changes 
are involved in the etiopathogenesis of bruxism. The extent 
of these morphological and functional changes on nerves and 
neuronal tracts provides valuable insight into the obstacles 
that need to be overcome in order to achieve successful treat‑
ment. Additionally, particular emphasis is given on the effects 
of bruxism on the central nervous system, particularly the 
activation of the hypothalamic‑pituitary‑adrenal axis, as this 

subsequently induces an increase in circulating corticosterone 
levels, also evidenced by increased levels of salivary cortisol, 
thereby transforming bruxism into a self‑reinforcing loop.
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1. Introduction

Bruxism is defined as a repetitive jaw muscle activity charac‑
terized by clenching or grinding of the teeth and/or bracing or 
thrusting of the mandible (1‑3); however, it is not regarded as 
a movement disorder or a sleep disorder in otherwise healthy 
individuals (4). Bruxism is considered a very common condi‑
tion, being present in 60‑70% of the population; however, only 
1 in 4 individuals with associated symptoms are aware of 
the condition (5). Based on the time of occurrence (circadian 
manifestations), two types of bruxism have been described 
thus far: i) Sleep bruxism, which is characterized by rhythmic 
masticatory muscle activity and occasional grinding; and 
ii) awake bruxism, characterized only by a clenching or 
bracing‑type activity (1,6). Numerous researchers support a 
different etiology among the two types of bruxism, although 
no consensus has yet been reached regarding the mechanism. 
In a previous systematic review by Manfredini et al (7), it was 
reported that the prevalence of awake bruxism ranged from 22 
to 31%, whereas the prevalence of sleep bruxism was 12,8%. 
Additionally, the condition appears to be more prevalent 
among females as compared to males, at a ratio of 5:1 (8,9).

A notable degree of controversy has surrounded the possible 
causes of bruxism over the years. Although the distinction 
between sleep and awake bruxism shows the time of occur‑
rence, the actual difference between these two manifestations 
relies on the etiology. The definition of the condition based on 
etiology may be peripheral, due to peripheral reasons, such as 
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occlusion, trauma, peripheral fiber neuropathy, or central, due 
to neurotransmitter perturbations and/or neuronal pathway 
malfunction (10). Nonetheless, according to a number of 
epidemiological studies, the majority of bruxists fall into the 
category of the combined type (11), and this further compli‑
cates the differentiation; the most widely acknowledged factors 
involved in the etiopathogenesis of bruxism are emotional 
disturbances and stress, whereas more recent evidence also 
pinpoints towards genetic predisposition (12‑15). In particular, 
when the patient experiences increased levels of emotional 
stress, this could lead to an increase in head and neck muscle 
tonicity, although it could also lead to an increase in the level 
of non‑functional muscle activity, such as bruxism or tooth 
clenching (16). Furthermore, the sympathetic activity or tone 
may also be influenced by emotional stress (16). It can be 
reasoned that prolonged sympathetic nervous system activity 
has a marked impact on certain types of tissue, such as the 
muscle (16). In this regard, increased sympathetic activity, 
by increasing muscle tone and subsequently by inducing 
a painful muscle condition, may constitute an etiological 
factor that can influence temporomandibular disorder (TMD) 
symptoms (16,17).

The most widely accepted factor in the etiopathogenesis of 
bruxism is stress, with recent evidence highlighting that expo‑
sure to chronic stress may affect the attenuation of neuronal 
pathways involved in the orofacial involuntary muscle activity. 
The present review discusses the negative effects of exposure 
to chronic stress on the central nervous system and in the etio‑
pathogenesis of bruxism. Particular emphasis is given on the 
effect of bruxism on the activation of the hypothalamic‑pitu‑
itary‑adrenal axis (HPA) axis, as this subsequently induces an 
increase in circulating corticosterone levels, also evidenced 
by increased levels of salivary cortisol, thereby transforming 
bruxism into a self‑reinforcing loop. Overall, the present 
review aimed to provide valuable insight into the neurological 
sequelae of chronic stress exposure, and on the mechanisms 
through which these sequelae may be overcome in order to 
improve or alleviate bruxism and related symptoms.

2. Effect of stress on the genesis of bruxism

Stress is the most commonly accepted factor involved in the 
pathogenesis of bruxism. To be more precise, we must refer 
to Distress and Allostatic load. According to the American 
Psychological Association and the Dictionary of Psychology, 
Distress is defined as ‘...the negative stress response, often 
involving negative affect and physiological reactivity: a type 
of stress that results from being overwhelmed by demands, 
losses, or perceived threats. It has a detrimental effect by 
generating physical and psychological maladaptation and 
posing serious health risks for individuals; in addition, 
Allostatic load is described as ‘the cumulative burden of 
chronic stress and life events. It involves the interaction of 
different physiological systems at varying degrees of activity. 
When environmental challenges exceed the individual ability 
to cope, then allostatic overload ensues’ (18). Animals under 
experimental stress conditions present with increased masseter 
activity (19) in humans, diurnal tooth clenching, bruxism and 
nail‑biting seem to appear most frequently in individuals who 
experience panic (20).

When humans are under conditions of stress, the HPA 
axis, the main neuroendocrine response to stress, is acti‑
vated. Through the hypothalamic [corticotropin‑releasing 
hormone (CRH)]‑pituitary [adrenocorticotropic hormone 
(ACTH)]‑adrenal route, glucocorticoids (GCs) are released 
into the bloodstream. Nonetheless, CRH activates one more 
neuronal pathway: That of the sympathetic‑adreno‑medullary 
axis, which appears to take place via the induction of locus 
coeruleus (LC), which in turn causes the activation of the 
sympathetic system. The latter leads to the release of norepi‑
nephrine (NE), which promotes physiological responses to 
stress, thereby counteracting the activation of the HPA axis. 
The LC‑NE system is a potent modulator of the ventral 
subiculum (of hippocampus) (vSub) neuronal activity, which 
may also contribute to stress adaptation. The vSub innervates 
several limbic structures, suggesting an upstream influence on 
limbic stress integration (21). An LC projection is also received 
by the amygdala, namely the basolateral nucleus (BLA), which 
is similarly stimulated under stress (22).

Implication of stress in orofacial musculature modulation. 
The normal hormonal response to stress is altered by ventral 
tegmental area (VTA) lesions, which implies that the dopa‑
mine system has an impact on the HPA axis (23). Equivalent, 
yet opposing modulatory effects on VTA dopaminergic 
neuron firing are produced by the vSub and the BLA, both 
of which constitute neurons that are normally being held at 
a hyperpolarized inactive state (24). It is also known that the 
neuroanatomy of masticatory modulation is a two‑neuron 
chain, where serotonergic neurons from the raphe nucleus 
project to the VTA and synapse with dopaminergic neurons. 
Central bruxism can occur in two polar conditions: In extreme 
hyperdopaminergic situations, such as the ones induced by 
amphetamines and levodopa (L‑dopa) and in the presence 
of cholinergic hypofunction, as well as in hypodopaminergic 
states, which appear to take place in cases of extrapyramidal 
system dysfunction (10).

It has also been shown that certain neurological conditions 
(Parkinson's or Huntington's disease) (25‑28), or certain medi‑
cations (such as selective serotonin reuptake inhibitors) (27‑29) 
that alter the function of the serotonin 5‑hydroxytryptamine 
(5‑HT) receptors, can cause secondary bruxism. A genetic 
polymorphism of the serotonin‑2A receptor gene that causes 
structural alterations and changes in the expression of 5‑HT 
receptors, is highly associated with bruxism (14,15). The role 
of peripheral 5‑HT2A receptors in the mediation of orofacial 
nociception has been well documented (30,31). Although it 
appears that a malfunction of the 5‑HT2 receptors is involved 
in the pathogenesis of bruxism, there is the paradox of 5‑HT1 
agonists being used as a drug of choice in bruxism. The 
explanation for this discrepancy is considered to rely on the 
VTA, where synapsis between presynaptic serotonergic 5‑HT 
neurons and dopaminergic neurons occurs. Any alterations 
on or between 5‑HT1 and 5‑HT2 receptors at the presynaptic 
level, will have a prominent negative effect on the mesocor‑
tical dopaminergic tract (10), which has essential functions in 
controlling involuntary muscle movements (Fig. 1).

Stress is also known to cause numerical area‑dependent 
changes on 5‑HT receptors. Specifically, stress invokes a 
reduction in 5‑HT1A receptors in the hippocampus; however, 
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at the same time, it causes an increase in cortical 5‑HT1A 
receptors (32). On the other hand, the 5‑HT2A receptors, 
which can be found in motor, sensory and spinal trigeminal 
nuclei, among other areas, appear to be unaffected (33). 
İnan et al (34) concluded that this is a case of the abnormally 
reduced inhibition of trigeminal motoneurons to the masseter 
muscle and not to the reticulobulbar pathways in bruxers. In 
addition, trigeminal nuclei lack GC and mineralocorticoid 
receptors, and are therefore unlikely to be affected by stress, 
at least not directly.

Mechanisms through which stress affects the mesocortical 
dopaminergic pathway. The activation of the vSub‑ventral 
pallidum (VP)‑nucleus accumbens (N.Acc) normally occurs 
under acute, mild and predictable stressors and leads to 
hyperdopaminergic states (35,36). Conversely, in chronic mild 
stressors, this pathway is attenuated, and the BLA‑VP pathway 
is activated. This results in a decrease in the dopaminergic 
neuronal population in the medial and central tracks of 
VTA (37). The subsequent dopamine depletion in the caudate 
nucleus and N.Acc is associated with decreased dopamine 
functioning in the mesolimbic pathway, where dopamine 
normally acts as an inhibitor to spontaneous movement (38). 
This observation has been supported by the recent findings of 
Ueno et al (39), where the motor representation of rhythmic jaw 
movement of the amygdala was assessed in an animal model. 
The authors concluded that the ventral part of the amygdala 
(medial, basal and cortical) is highly involved in the induction 
of rhythmic jaw movement and that the role of limbic system 
in the genesis of bruxism warrants further investigation (39) 
(Fig. 2).

Normally, gamma‑aminobutyric acid (GABA)‑ergic 
neurotransmission inhibits the amygdala from producing 
inappropriate emotional and behavioral reactions (40). GABA 
is crucial in maintaining a balance between neuronal activa‑
tion and inhibition (41). BLA entails mainly glutamatergic 
and considerably less GABAergic neurons; however, even this 
small number of GABAergic neurons is sufficient to induce an 
inhibitory effect on principal glutamatergic neurons (42). It has 
already been documented that chronic stress invokes the loss 

of the tonic inhibition of the amygdala via impaired GABA 
gating (43); such a disruption can lead to hyperexcitability, 
increased anxiety and depression (42).

Notably, susceptibility to social stress appears to be 
induced by inhibiting the mesocortical system, a situation 
that is similarly observed in both bruxists and patients with 
TMD who are more susceptible to new forms of stress (44). 
Males and females react differently to prolonged stress, as the 
dopaminergic system displays sex‑specific morphological and 
molecular alterations. As a result, stress causes a redesign of the 
dopaminergic mesocortical and mesolimbic circuits, as well as 
a sharp decrease in dopaminergic inputs from the VTA (44). 
These molecular changes influencing intracellular signaling in 
dopaminergic neurons and their target brain regions are linked 
to morphological changes in dopaminergic circuits brought on 
by chronic stress (45,46).

There is substantial evidence to suggest that alterations in 
the mesolimbic dopaminergic neurons are actively implicated 
in both neuropathic and chronic pain (47). The reduced neuronal 
activity of VTA dopamine neurons and the reduced dopami‑
nergic activation of N.Acc. in response to painful stimuli have 
both been noted in chronic and neuropathic pain (48,49). The 
lack of regulation of dopamine D2 receptor expressing indirect 
pathway output neurons, which may promote hypersensitivity 
to pain (50) and increased impulsivity (51), has been attributed 
to the lower dopamine levels in the N.Acc. Watanabe et al (47) 
demonstrated that the stimulation of VTA‑dopamine neurons 
and the stimulation of N.Acc. suppressed the allodynic effect of 
neuropathic pain. These neuronal changes in VTA‑dopamine 
neurons and subsequently in N.Acc. have a prominent effect 
on the mesencephalic trigeminal nucleus (Me5).

Implication of the mesocortical dopaminergic pathway in 
bruxism. Animal electrophysiological research has demon‑
strated that chronic restrained stress causes an enhanced 
excitability of Me5 neurons (52). As a result of this excit‑
ability, an increase in glutamatergic neurotransmission from 
Me5 to the trigeminal motor nucleus (Mo5) has been observed 
by performing western blot analysis of vesicular glutamate 
transporter 1 (VGLUT1) protein overexpression in the Mo5, 
resulting in increased overactivity of the masseter muscle, 
as verified via the evaluation of acetylcholinesterase (AchE) 
and creatinine kinase (CK)‑MM levels (52). AChE dictates 
the rapid breakdown of acetylcholine, which is essential for 
skeletal muscle contraction (53). The most prevalent CK isoen‑
zyme found in skeletal muscle is CK‑MM. Increased levels 
indicate muscle overactivity and subsequent muscle fatigue and 
pain (54). In an attempt to analyze the neuroplasticity changes 
caused by bruxism or related to bruxism, Boscato et al (55) 
came to the following conclusion: ‘Bruxism seems, indeed, 
to be connected with significant abnormalities in the brain 
circuits related to the control of the jaw‑closing muscles’. This 
notion is further supported by data regarding another clinical 
entity, the burning mouth syndrome (BMS). BMS is a chronic 
orofacial condition characterized by a burning or numbing 
sensation that recurs for >2 h per day, for >50% of the days, for 
>3 months, without any evident causative lesions (56). BMS is 
considered a neuropathic condition and can result from either 
peripheral small fiber neuropathy of the trigeminal nerve, or 
a central type due to hypodopaminergic neuron activity in 

Figure 1. Serotinergic 5‑HT neurons from the raphe nucleus synapse in the 
ventral tegmental area with mesocortical dopaminergic neurons that inner‑
vate up to the prefrontal cortex. Any changes at presynaptic or postsynaptic 
level will strongly affect the mesocortical dopaminergic tract. Serotonin is 
depicted in black dots, whereas dopamine is represented by blue squares. DA, 
dopamine; 5‑HT, 5‑hydroxytriptamine; S, serotonin.
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the basal ganglia or a nerve system pathology including the 
trigeminal (57). A noteworthy fact about this condition is that 
72.7% of patients reporting symptoms of BMS exhibit para‑
functional habits; for example, 77% present with wear facets, 
while 65.9% exhibit signs or symptoms of TMD according 
to the Research Diagnostic Criteria for Temporomandibular 
Disorders (RDC/TMD) (58). In this context, it has been 
hypothesized that BMS and parafunctional habits (bruxism) 
may share common pathways. Lauria et al (59) demonstrated 
that such a neuropathy in the nigrostriatal dysfunction leads to 
a loss of inhibition of the trigeminal nerve, thereby resulting 
in sensory and motor hyperfunction and mastication muscle 
hyperactivity. Patients with BMS present with abnormal reflex 
responses in neurological tests (blink reflex), similar to what is 
observed in bruxists in masseter inhibitory reflex (60).

The activation of the N.Acc. occurs either via the vSub‑VP 
pathway or via the BLA‑VP pathway. However, acute and 
chronic stress exposure, and subsequently an increase in 
circulating corticosterone levels, are also known to diminish 
progenitor cell proliferation, inhibit neuronal differentiation 

and suppress cell survival in the hippocampus dentate gyrus; 
all of these actions affect hippocampal neurogenesis (61‑64) 
and may result in cognitive deficiencies that are associated with 
the hippocampus (65‑67). The ability of the hippocampus to 
negatively modulate the HPA axis is dependent on the neuro‑
genesis of the hippocampal dentate gyrus (68). Therefore, 
the activation of N.Acc and subsequently of the Me5 occurs 
via the amygdala‑ventral pallidum pathway. There have been 
reports of direct projections from the central nucleus of the 
amygdala to the Me5, which are crucial for the perception and 
control of negative emotions (69). This type of projection has 
been connected to stronger biting attacks during hunting in 
animal studies and has recently been identified in humans as 
well (70,71).

3. Mesencephalic trigeminal nucleus

Current evidence highlights that bruxism can also act as a 
stressor via the activation of the Me5. The Me5 consists of a 
band of cells that run directly adjacent to the periaqueductal 

Figure 2. Serotinergic 5‑HT neurons from the raphe nucleus synapse in the VTA with dopaminergic neurons, which control spontaneous muscle movements. 
These tracts follow either the vSub (hippocampus) route or the BLA route, depending on the stressors. In acute and mild stressors, the vSub‑VP‑N.Acc is 
activated, while in chronic and severe stressors, the aforementioned tract becomes destabilized and the BLA‑VP‑N.Acc tract is activated. 5‑HT, 5‑hydroxytrip‑
tamine; vSub, ventral subiculum; VTA, ventral tegmental area; VP, ventral pallidum; N.Acc, nucleus accumbens; BLA, basolateral amygdala; Amy, amygdala; 
Hyp, hypothalamus; HP, hippocampus; DR, dorsal raphe nucleus; LC, locus coeruleus.
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gray (PAG) and extend from the boundary between the pons 
Varolii and the midbrain to the superior colliculus (upper 
boundary of the midbrain) (52). The inferior border of the Me5 
lies rostral to the motor trigeminal nucleus and is surrounded 
by reticular formation (RF) (72).

The peripheral branches mainly innervate mechano‑recep‑
tors in the periodontal ligament and the elevator muscles of the 
mandible. They are sensitive to jaw elevator muscle movement, 
and may be activated by even the lightest pressure (1N and 4N 
in the anterior and the posterior teeth, respectively) (73‑75), 
and even in the complete absence of stimuli (76). The central 
branches of the Me5 are glutamatergic, the majority projecting 
to Mo5 (77), but also to the reticular parvocellular area and the 
dorsolateral midbrain RF, i.e., both to the dorsal raphe nucleus 
(DRN) and the laterodorsal tegmental nucleus (LDT). The 
midbrain RF nerve cells, in particular those of the DRN and 
LDT, form part of the ascending reticular activation system 
(ARAS) nuclei which, along with certain branches of the Me5, 
send specific projections to the entire cortex and the nuclei 
of hypothalamic orexinergic (78,79). Each time the upper and 
lower teeth occlude or the elevator muscles move, the Me5 
is activated, and this in turn activates the ARAS nuclei, and 
in particular orexine (OX). The activation of both Me5 and 
ARAS nuclei is proportional to the pressure exerted on the 
teeth and the muscles (80).

OX plays a key role both in the pathogenesis of headaches, 
as well as in fostering and maintaining vigilance: Individuals 
with OX deficiency often present with narcolepsy (81‑84). 
Orexinergic neurons are connected with every node that is 
involved in the sleep‑awake cycle (81). The cerebral cortex is 
both directly and indirectly excited by the orexinergic nuclei. 
OX the activates LDT, pedunculopontine tegmental nucleus, 
dorsal raphe, LC, VTA, PAG and tuberomammillary nucleus 
(TMN). Apart from the hypothalamic connections, OX cells 
send projections to the forebrain, cerebral cortex, hippo‑
campus, amygdala and TMN (82). Furthermore, OX stimulates 
the release of GCs, autonomous functions, behavior, appetite, 
metabolic rate and gastric secretion (83‑85). Therefore, when 
teeth come into contact and muscles contract through the 
Me5 and ARAS nuclei, the activation of the hypothalamus, 
forebrain and cerebral cortex occurs. This is supported by 
evidence that chewing improves cognitive performance and 
spatial memory, while tooth loss may lead to dementia (86,87). 
The observation that the hypothalamic activation follows 
this path and not the other way around is in agreement 
with the study by Cruccu et al (88), who produced masseter 
motor‑evoked potentials of normal latency and amplitude in 
patients with bilateral and unilateral pain. They concluded that 
cerebral hyperactivity could not be the cause of discomfort 
and masticatory system dysfunction in these patients, based on 
the absence of facilitation in their reactions (88) (Fig. 3).

During sleep, the central nervous system is under the influ‑
ence of the hypothalamic GABA. The only structure that is 
insensitive to GABA is the Me5, due to a lack of dendrites. 
ARAS nuclei are sensitive to GABA; thus, during sleep, 
they can only be activated through the Me5 (80). In addition, 
it has long been known that sleep is divided into rapid eye 
movement (REM) and non‑REM (NREM, with NREM being 
characterized by the presence of the cyclic alternating pattern, 
where an individual moves from the arousal (A‑phase) to the 

resting (B‑phase) phase and vice versa. Arousals occur in 
every individual to maintain a state of alertness and to prevent 
the individual from falling into deep sleep for long periods of 
time (84). It has also been demonstrated that the A‑phase has 
three different subtypes, two of which, namely A2 and A3, 
have a high prevalence in bruxists (81). In polysomnographic 
experiments conducted in a protected environment where 
there was a lack of external stimuli to initiate an arousal, the 
only stimuli observed were of internal origin and appeared to 
have occurred via the Me5 and ARAS nuclei (81).

By contrast, Me5 receives projections from the N.Acc 
which, as aforementioned, is an area of ventral striatum 
accepting excitatory glutamatergic inputs from cortical and 
limbic regions, including the hippocampus and the basolateral 
amygdala, and returns projections to both pallidal and mesen‑
cephalic motor effector sites; for this reason, it is considered 
a ‘limbic‑motor interface’ (89). N.Acc receives dopaminergic 
inputs from the VTA, an area that is highly involved in the 
pathogenesis of bruxism, as aforementioned in the present 
review. These inputs are further modulated by inputs from 
either the hippocampus (vSub)‑pallidal (VP) or the BLA‑VP 
pathways, both of which are implicated in the association of 
stress with bruxism (90).

4. HPA axis and lateral habenula

Upon arrival of the signal to the hypothalamus, activation 
follows two neuronal pathways: The activation of the HPA 
axis and activation of the thalamus, particularly of the lateral 
habenula (LHb). Animal studies have identified a possible 
link between masticatory dysfunction and the activity of the 
HPA axis (61,62,91). CRH and arginine vasopressin (AVP) 
are secreted by the activated hypothalamic paraventricular 
nucleus (PVN) neurons into the pituitary portal system and 
subsequently induce the secretion of ACTH; circulating 
ACTH then activates the synthesis and secretion of GCs from 
the adrenal cortex. Experimentally induced occlusal dishar‑
mony in animals has resulted in increased circulating and 
urine corticosterone levels that persist for weeks (61,65,91‑97). 
This disharmony appears to be in the form of bite‑raising 
or tooth loss (98‑100). In a previous systematic review and 
meta‑analysis by Fritzen et al (101), higher levels of salivary 
cortisol were observed in adult patients with bruxism, but not 
in children, whereas no associations were made with bruxism 
or stress or anxiety.

The increased circulating levels of corticosterone appear to 
have notable consequences. Initially, they correlate with strong 
circadian rhythms, with peak levels occurring during the acti‑
vation period (102), and with increased muscle tone (103‑105). 
According to some researchers, the activation threshold for an 
episode of bruxism is reached when the muscle tone reaches 
10% (106) or 20% (107‑109) of the maximum voluntary 
contraction.

The hyperactivity of the HPA axis can cause an individual to 
be more sensitive and susceptible to novel stress. Experiments 
in mice where occlusal disharmony is caused by bite‑raising 
procedures, have demonstrated shown that, apart from the 
increase in CRH and AVP in PVN due to bite‑raising, expo‑
sure to novel stress further reinforces CRH‑mRNA expression 
in PVN (110,111). Additionally, it has been noted that TMD 
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sufferers frequently exhibit higher levels of anxiety and/or 
depression compared to asymptomatic control subjects (112), 
whereas TMD symptoms appear more commonly in indi‑
viduals who are under stress (113).

Neuroimaging studies are beginning to provide evidence 
that masticatory dysfunction may result in hippocampus‑depen‑
dent cognitive impairment (114,115). According to a growing 
body of research in animals, spatial memory and learning abil‑
ities are impaired by masticatory dysfunction brought on by 
tooth extraction or occlusal disharmony (61,62,91,94,116‑122). 
Additionally, neurons of the hippocampus, dendritic spines, 
post‑synaptic density, as well as the release of hippocampal 
acetylcholine, acetyltransferase and choline acetyltransferase 
activity, have all been identified by morphological analyses to 
be significantly decreased in toothless or bite‑raised rodents 
(63,64,66,93,94,116,123‑125). Notably, HPA hyperactivity and 
the inhibitory control of corticosterone have been shown to 
result in changes in the 5‑HT receptors of the hippocampus, 
such as those observed in suicidal brains (32,126).

Recent evidence also highlights the importance of one more 
neuromuscular pathway, that of the LHb, which constitutes 
part of the epithalamus and is activated by the lateral hypo‑
thalamus, in addition to other areas of the brain (127,128). The 
habenula consists of two small nuclei located above the poste‑
rior end of the thalamus and is divided into medial habenula 
and LHb (113). The latter regulates the monoaminergic 
systems, dopamine and serotonin (129). Liu et al (113) demon‑
strated that an occlusal disharmony, such as a crossbite can 
stimulate the LHb. In addition, a direct one‑way projection has 
been shown to stretch from the LHb to the Me5, as evidenced 
by using anterograde and retrograde track tracing (130). The 
LHb is additionally associated with a number of depressive 
symptoms (127,128,131) and sleep issues (111) and can be 
triggered by a number of stressors and unpleasant or aversive 
stimuli (132). Notably, this direct projection of the LHb to the 
Me5 is inhibitory and causes motor suppression; however, 
in cases of chronic pain, this loop of homeostatic inhibi‑
tion by LHb appears to be disrupted (127,128). This motor 

Figure 3. Activation of the mesencephalic trigeminal nucleus, via the ascending reticular activating system, leads to activation of the hypothalamus and the 
HPA axis. The activation of pituitary gland and the release of corticotropin‑releasing hormone will lead to the activation of the LC and the SAM axis. HPA 
axis, hypothalamus‑pituitary‑adrenal axis; SAM, sympathetic‑adreno‑medullary; LC, locus coeruleus; N.Acc, nucleus accumbens; Amy, amygdala; Hyp, 
hypothalamus; HP, hippocampus; DR, dorsal raphe nucleus; VTA, ventral tegmental area.
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suppression can also occur indirectly through the activation of 
the medulla oblongata, which mediates the trigeminocardiac 
reflex (TCR). The TCR is induced in situations characterized 
by overactivation of the sympathetic system and results in the 
downregulation of the sympathetic system and the upregulation 
of the parasympathetic system (133). This will subsequently 
cause bradycardia, bradypnea and in some cases, apnea.

Similar neurodegenerative findings have been reported 
in sleep bruxists. Keskinruzgar et al (134) demonstrated that 
there was a decrease in retinal nerve fiber layer axon thick‑
ness, inferior parietal lobe dendrite and granule cell layer 
(soma) volume of the retinal ganglion cells in patients with 
sleep bruxism as compared to the controls, when optical 
coherence tomography measurements were used, suggesting 
retinal neuro‑degeneration (135). Kalenderoglu et al (136) 
reported similar results in patients with major depression. The 
retina is regarded as a continuation of the brain, therefore any 
changes within the brain are also expected to take place in 
the retina. Another even more notable finding in the study by 
Keskinruzgar et al (134) is that choroidal thickness is changed 
in patients with sleep bruxism. The transport of nutrients and 
oxygen to the retina is carried out via the choroid, one of the 
most critical sites of vascularization.

5. Conclusion and future perspectives

Overall, the current review has highlighted the role of stress 
both as a precipitating and an initiating factor in the genesis 
of bruxism. Based on clinical evidence, it has been demon‑
strated that chronic stress can degenerate the hippocampus and 
destabilize the mesocortical dopaminergic pathway, which is 
responsible for the control of involuntary muscle movements. 
In this manner, it promotes the activation of the basolateral 
amygdala, which can in turn cause rhythmic jaw movement. 
If one considers that any malfunction at any point of the 
VTA‑mesocortical‑vSub‑VP‑N.Acc‑Me5 pathway can cause 
bruxism, it is only logical to assume that this may provide 
an explanation as to why there is no specific medication that 
confers universal and consistently positive results; at the same 
time, the certainty of evidence produced by the majority of 
studies has been calculated in the range between very low and 
moderate (137,138). Similarly, the existence of neurological 
degeneration may constitute the reason why cognitive behav‑
ioral therapy is not successful as a bruxism management option, 
since it cannot reverse these neurological disturbances, at least 
not sooner than 6 months from the initiation of treatment (137). 
As an initiating factor, stress increases the muscle tone and 
when this increase rises to 10‑20%, it may cause a bruxism 
event, in addition to reducing the pain threshold. On the other 
hand, a sudden alteration in occlusion, an occlusal instability 
which cannot be tolerated, as well as parafunctional activities, 
could generate stress which is demonstrated as increased levels 
of circulating corticosterone. In other words, bruxism appears 
as a self‑sustained vicious circle. The present review suggests 
that stress management should be addressed as part of any 
treatment plan, as a maintenance program, irrespectively of the 
peripheral or central origin of bruxism; this does not mean that 
the possibility of a sudden change in peripheral sensory input 
should be underestimated, as it may be of utmost importance in 
the establishment and perpetuation of bruxism. Further studies 

are required in order to identify a medication, agent or supple‑
ment that has minimal or no adverse effects, and which is able to 
counteract the sequelae of chronic stress exposure, to re‑activate 
the mesocortical‑vSub pathway and to attenuate the BLA‑VP‑N.
Acc pathway, which induces rhythmic jaw muscle activity.
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