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INTRODUCTION

Nasopharyngeal carcinoma (NPC) occurs frequently in the 
Southeast Asia countries and southern China.1 NPC is associat-
ed with multiple risk factors, including the Epstein-Barr virus 
infection,2 host genetics,3 and environment.4 Invasive surgery, 
radiotherapy, and chemotherapy contribute to the recovery of 
NPC.5 Cisplatin is the most commonly used chemotherapeutic 
drug for NPC, while its acute toxicities are often intolerable.6 
Therefore, the development of new drugs is essential to improve 

the clinical outcomes of NPC patients.
Natural products are a valuable source of new anti-cancer 

drugs due to their potential effectiveness and low toxicity.7,8 Rhi-
zoma Alismatis [dried rhizomes of Alisma orientalis (Sam.) 
Juzep.] is widely used in China, Korea, and Japan.9 The extracts 
of Rhizoma Alismatis have multiple pharmacological effects, 
including anti-hyperlipidemic,10 anti-hypoglycemic,11 anti-in-
flammatory,12 hepatoprotective,13 anti-hepatitis B virus,14 anti-
bacterial,15 and anti-cancer16 activities. Alisol A is one of the tri-
terpenes isolated from Rhizoma Alismatis.17 Previous studies 
have shown that alisol A suppresses the growth of breast can-
cer cells.18 However, there has been no report regarding the ef-
fect of alisol A on NPC cells.

The Hippo signaling pathway plays a major role in anticancer 
therapeutics.19 YAP is a principal member and downstream ef-
fector of the Hippo signaling pathway.20 Molecular docking is 
used to identify potential protein targets for compound.21 Based 
on the molecular docking analysis, we found that alisol A was 
a potent inhibitor of YAP.

In this study, we used HK1 and C666-1 cells to detect whether 
alisol A could inhibit cell proliferation, migration, and invasion. 
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MATERIALS AND METHODS

Cell culture
NPC cell lines (C666-1 and HK1) were purchased from Shang-
hai Huiying Biotechnology Co., Ltd (Shanghai, China). Cells 
were cultured in RPMI-1640 containing 10% FBS, 100 U/mL 
penicillin G, and 100 μg/mL streptomycin (HyClone, Logan, 
UT, USA) at 37°C in a 5% CO2 incubator. Alisol A was purchased 
from Tauto Biotech Co., Ltd (Shanghai, China) and dissolved 
in dimethyl sulfoxide (DMSO).

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay 
C666-1 and HK1 cells (2×104) were seeded in 96-well plates 
and treated with alisol A (10, 20, and 40 μM) or cisplatin (DDP, 
10 μM) for 24 h. At 24, 48, and 72 h, 20 µL of MTT solution (5 
mg/mL) was added to each well of 96-well plates for 4 h at 37°C. 
Formed formazan crystals were dissolved in 100 µL DMSO. The 
absorbance was measured at 570 nm by a microplate reader 
(Bio-Rad, Hercules, CA, USA). Data were expressed as follows: 
inhibition ratio (%)=[1-(OD570treated-OD570blank)/(OD570control-
OD570blank)]×100%. 

Colony formation assay
C666-1 and HK1 cells (1×103) were seeded in 6-well plates. 
The cells were treated with alisol A (10, 20, and 40 μM) or DDP 
(10 μM) for 8 days at 37°C. The medium were renewed every 2 
days. Colonies were stained with 0.1% crystal violet solution 
and counted under the inverted microscope. A cell colony 
should contain ≥50 cell masses.

Cell cycle analysis
C666-1 and HK1 cells (3×105) were seeded in 6-well plates and 
treated with alisol A (10, 20, and 40 µM) for 24 h. After collection 
and fixation, cells were stained with propidium iodide. Samples 
were analyzed by a flow cytometer (BD Biosciences, Franklin 
Lakes, NJ, USA).

Wound healing assay
C666-1 and HK1 cells (3×105) were seeded into 6-well plates 
and treated with alisol A (10, 20, and 40 µM) for 24 h. The mono-
layer cells were scratched by a sterile 10 µL pipette tip. The 
wound areas were photographed 24 h later using an inverted 
microscope (Nikon, Melville, NY, USA). 

Cell migration and invasion assays
Transwell chambers were coated with or without Matrigel (BD 
Biosciences). Cells were seeded into the top chamber with 100 
μL Serum-free medium. Cells were stained with crystal violet. 
The number of cells was counted in five randomly fields.

Western blot
Total cells were lysed by lysis buffer on ice. The nuclear and cy-

toplasmic proteins were extracted and separated using the nu-
clear protein extraction kit (Beyotime Biotechnology, Jiangsu, 
China). Then, 20 μg of protein were separated by SDS-PAGE 
and transferred to PVDF membranes (Millipore, Billerica, MA, 
USA). The membranes were incubated with specific antibod-
ies. Primary antibodies were shown as follows: β-actin (1:2000, 
4967), GAPDH (1:2000, 5174), Histone H3 (1:2000, 9715), YAP 
(1:2000, 4912), p-YAP(ser127) (1:2000, 4911), MMP2 (1:2000, 
4022), MMP9 (1:2000, 3852), cyclin D1 (1:2000, 2922), cyclin E1 
(1:2000, 20808), CDK2 (1:2000, 2546), CDK4 (1:2000, 12790) 
(Cell Signaling Technology, Boston, MA, USA). The membranes 
were incubated with secondary antibody (1:5000, A0545) (Sig-
ma, St. Louis, MO, USA). Finally, protein bands were visualized 
using an enhanced chemiluminescence detection kit (Cell 
Signaling Technology) and photographed using a GE Amersh-
am Imager 600 imaging system. 

Immunofluorescence
The fixed cells were incubated with YAP (1:300, 14729) (Cell 
Signaling Technology). Cells were incubated with DAPI and 
visualized using a confocal microscope (Leica, Wetzlar, Ger-
many).

Molecular docking
The crystal structure of YAP was obtained from the protein 
data bank (PDB, http://www.rcsb.org/, ID: 4rex). Crystal struc-
ture of each protein was selected based on the best resolution 
available. PubChem (https://pubchem.ncbi.nlm.nih.gov/) 
was used to obtain the three-dimension (3D) structure of alisol 
A (MOL000850). AutoDock Vina and Discovery Studio soft-
ware were used for the docking simulations and calculations. 
The value of root mean square deviation (RMSD) was calcu-
lated using PyMOL. The prediction of binding mode was se-
lected with RMSD below 2.0 Å.

Statistical analysis
All analyses were performed using SPSS 22.0 program (IBM 
Corp., Armonk, NY, USA). Statistical significance was evaluated 
by one-way ANOVA and Student’s t-test. A p-value<0.05 was 
considered statistically significant.

RESULTS

Alisol A inhibits NPC cells proliferation 
The two-dimension (2D) and 3D chemical structures of alisol 
A are shown in Fig. 1A and B. Alisol A significantly inhibited 
the growth of C666-1 and HK1 cells in a time- and concentra-
tion-dependent manner. The inhibition rate of alisol A was less 
than that of DDP (Fig. 1C). We found that alisol A inhibited the 
colony formation of C666-1 and HK1 cells in a concentration-
dependent manner. The inhibition of DDP on clone formation 
was stronger than that of alisol A (Fig. 1D).

http://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
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Alisol A induces cell cycle arrest in G0/G1 phase of 
NPC cells 
As shown in Fig. 2A, the proportion of cells in the G0/G1 phase 
was distinctly increased, while the proportion of cells in the S 
phase was distinctly decreased. In addition, we found that ali-
sol A treatment significantly reduced the protein expression of 

cell cycle-related genes, including cyclin D1, cyclin E1, CDK2, 
and CDK4 in NPC cells (Fig. 2B). These results indicate that the 
cell cycle was arrested in the G0/G1 phase.

Alisol A inhibits migration and invasion of NPC cells
The migration and invasion abilities of NPC cells were reduced 
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Fig. 1. Alisol A inhibits the growth of NPC cells. (A) The two-dimension chemical structure of alisol A. (B) The three-dimension chemical structure of 
alisol A. (C) MTT assay was used for cell inhibition rate. (D) The colony numbers were counted by clone formation assay. Data are presented as the 
mean±SD of three independent experiments (*p<0.05, **p<0.01, ***p<0.001 vs. control group). NPC, nasopharyngeal carcinoma.
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in alisol A-treated cells (Fig. 3A-C). In addition, alisol A treat-
ment significantly reduced the protein expression of MMP2 
and MMP9 in NPC cells (Fig. 3D).

Alisol A attenuates YAP nuclear expression in NPC cells
The docking interaction between alisol A and YAP was detect-
ed by AutoDock Vina software (Fig. 4A). The pink color repre-
sented the amino acid breakdown, the yellow dotted line repre-
sented the hydrogen bond, and the light green represented the 
preferential confirmation of molecules (RMSD=0.180 Å, Bond 
energy=-6.7 Kcal/mol). The interaction between alisol A and 
YAP was predicted using the Discovery Studio software, and the 
2D schematic diagram is shown in Fig. 4B. We further investi-
gated the effects of alisol A on Hippo signaling. As shown in Fig. 
4C, YAP protein expression was decreased and p-YAP Ser127 
level was increased after alisol A treatment. Alisol A reduced 
YAP in the nucleus, whereas it increased p-YAP Ser127 in cyto-
plasm (Fig. 4D). 

DISCUSSION

Traditional Chinese medicine has been practiced for thou-
sands of years, and is widely accepted as an alternative treat-
ment for cancer.22 Recently, bioactive compounds in Rhizoma 
Alismatis have been widely elucidated for their antineoplastic 
effect. Alisol A suppresses the progress of breast cancer.18 Alisol 
B suppresses the proliferation of breast cancer cells.23 Alisol B 
23-acetate induces apoptosis of human lung cancer cells24 and 
hepatoma cells.25 Our study revealed the anti-cancer activity of 
alisol A in NPC cells.

Cancer is characterized by uncontrolled cell cycle.26 Cyclin 
D/E and CDK2, CDK4 are critical for cells entering the S phase 
from G1.27 Cell cycle arrest is frequently found in NPC.28 Sola-
nine regulates the expression of cell cycle proteins, including 
Cyclin D1, Cyclin E1, CDK2, and CDK4 in prostate cancer.29 In 
this study, the expression of cyclin D1, cyclin E1, CDK2, and 
CDK4 was significantly down-regulated in alisol A-treated 
C666-1 and HK1 cells. Similar report has found that alisol A 
arrests cell cycle at the G0/G1 phase by regulating the expres-
sion of CDK4/cyclin D1 and CDK2/cyclin E1 in breast cancer 
cells.18 Our study showed that alisol A suppresses the prolifera-
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tion of C666-1 and HK1 cells in vitro by inducing G0/G1 arrest.
MMPs are implicated in the metastatic process of cancer 

cells.30 The degradation of extracellular matrix (ECM) is a vital 

procedure in cell metastasis.31 MMP2 and MMP9 are involved 
in the degradation of ECM.32 Alisol A 24-acetate reduces MMP2 
and MMP9 expression, and shortens cell migration distance.33 
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Fig. 4. Alisol A attenuates YAP nuclear expression in NPC cells. (A) The docking interaction between alisol A and YAP was detected by AutoDock 
Vina software. (B) The docking interaction between alisol A and YAP was detected by Discovery Studio software. (C) The expression of Hippo signal-
ing pathway-related proteins was detected by western blot. (D) YAP expression in cytosol or nuclear fractions was detected by western blot. (E) YAP 
expression in nuclear fractions was detected by immunofluorescence. Scale bar, 10 µm. Data are presented as the mean±SD of three independent 
experiments (*p<0.05, **p<0.01, ***p<0.001 vs. control group). NPC, nasopharyngeal carcinoma.
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Our results suggest that alisol A treatment inhibits NPC cell mi-
gration and invasion by suppressing the expression of MMP2 
and MMP9.

YAP is identified as an oncogene in different types of can-
cers.34,35 It is well documented that the YAP-induced promotion 
of cell proliferation is determined by its nuclear translocation.36 
YAP expression is decreased following wogonoside treatment 
in endometrial cancer.37 Corosolic acid induces the repression 
of cancer progress by translocating YAP from the nucleus in 
hepatocellular carcinoma.38 However, YAP protein expression 
does not change after artemisinin treatment in the whole cell 
extracts of hepatocellular carcinoma cells.39 In this study, alisol 
A treatment decreased YAP protein expression in the nucleus.

To sum up, our research might provide a novel mechanism of 
alisol A for the treatment of NPC. Alisol A inhibited the growth, 
migration, and invasion of NPC cells by suppressing YAP pro-
tein expression in the nucleus.
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