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Abstract: By virtue of the high theoretical capacity of Si, Si-related materials have been developed as
promising anode candidates for high-energy-density batteries. During repeated charge/discharge
cycling, however, severe volumetric variation induces the pulverization and peeling of active compo-
nents, causing rapid capacity decay and even development stagnation in high-capacity batteries. In
this study, the Si/Fe2O3-anchored rGO framework was prepared by introducing ball milling into a
melt spinning and dealloying process. As the Li-ion battery (LIB) anode, it presents a high reversible
capacity of 1744.5 mAh g−1 at 200 mA g−1 after 200 cycles and 889.4 mAh g−1 at 5 A g−1 after
500 cycles. The outstanding electrochemical performance is due to the three-dimensional cross-linked
porous framework with a high specific surface area, which is helpful to the transmission of ions and
electrons. Moreover, with the cooperation of rGO, the volume expansion of Si is effectively alleviated,
thus improving cycling stability. The work provides insights for the design and preparation of
Si-based materials for high-performance LIB applications.

Keywords: dealloying; Si; Li-ion battery; anode; nanoporous

1. Introduction

Over the past few decades many energy storage devices have been designed to meet
the needs of electric vehicles and portable electronic devices in the context of rapid fossil
fuel consumption [1–6]. Lithium-ion batteries (LIBs) are receiving increasing attention
on account of their long life, high energy density, and environmental friendliness [7–13].
However, it is urgent to explore novel electrode materials to meet the demand for higher-
energy-density LIBs. Among the various candidates, Si is an exciting and promising anode
candidate for the development of high-performance LIBs because of its high theoretical
mass specific capacity (4200 mAh g−1) and low operating voltage [14–16]. Unfortunately,
large volume variations, structural fragmentation, and the cracking of Si anodes during
repeated charge/discharge processes result in severe capacity attenuation and electrical
contact loss, impeding their widespread commercial application [17,18].

Some strategies have been suggested to enhance the overall property of Si anodes.
One effective strategy is to synthesize Si anodes with different nanostructures, such as
Si nanowires, nanotubes, nanoparticles, and so on [19–21]. Mueller et al. [22] prepared
Si nanoparticle-loaded graphite micron particles by a fluidized bed granulation method,
showing high Li storage properties. Zhang et al. [23] synthesized P-doped porous Si
nanoparticles by magnesiothermic reduction, resulting in 1761 mAh g−1 at 0.5 A g−1 after
80 cycles. The above Si nanoparticles with the advantages of small size and high specific
surface area can provide a transfer path and sufficient room for the rapid transmission of
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Li+, which is beneficial to reduce the cracking and grinding of electrodes. Another effective
strategy is to synthesize different Si/C composite materials [24–26]. Graphene and reduced
graphene oxide (rGO) with high electrical conductivity and high mechanical strength
have been adopted in the design of Si-C anodes for LIBs to relieve the large stress caused
by continuous charge–discharge cycles [27,28]. For example, vertically aligned Si@rGO
frameworks were prepared by Park et al. [29] through a series of processes including gela-
tion, freeze-casting, magnesiothermic reduction, acid etching, and thermal carbon coating.
Capacity retention of 68% could be obtained after 150 cycles. Si nanoparticle-encapsulated
GO nanoribbons were prepared by Yao et al. [30] through an electrostatic-induced self-
assembly process, presenting values of 1235 mAh g−1 at 1 C after 500 cycles. Furthermore,
an additional potential strategy is the combination of Si with an anode material contain-
ing relatively low capacity, which may relieve the internal stress originating from the
severe volume variation of anodes during cycling. Im et al. [31] prepared polylaminate 2D
nanoparticles with alternately arranged Si and SiOx layers, displaying a capacity retention
of 88% after 200 cycles. Liu et al. [32] synthesized Si@Fe3O4@FLG as anode materials for
LIBs, demonstrating an excellent capacity of 637 mAh g−1 at 2 A g−1 after 1600 cycles.
However, most of the previously revealed preparation methods are complex, costly, result
in low yield, and show difficulties in mass production. As a result, it is highly necessary to
exploit a simple and low-cost route to fabricate Si-based anodes.

In our previous study, low-cost Al ingots and natural ferrosilicon ores were selected
as the starting raw materials to prepare dual-network porous Si/Al9FeSi3/Fe2O3 com-
posites [33]. The fabrication process combined melt-spinning and free dealloying. This
method involves low-cost initial materials, a simple process, easy scaling, and promise
for mass production [34]. In this process, Al9FeSi3 with a relatively low specific capac-
ity (839.7 mAh g−1) was obtained. This was clearly lower than that of Si and Fe2O3
(1007 mAh g−1) and limited the development of high-performance anodes. In our im-
proved case, ball milling was utilized for melt-spinning ribbons prior to dealloying treat-
ment [35]. As a result, a porous Si/Fe2O3 dual network anode (free of Al9FeSi3) was
prepared by changing the elemental distribution and phase composition of the dealloy-
ing precursors. Although the composition of the dealloyed product was optimized, its
electrical conductivity and electrochemical performance need to be further improved. To
settle this concern, an rGO network was introduced into the Si/Fe2O3 anode by two kinds
of methods in this study. It was found that the as-synthesized Si/Fe2O3 anchored rGO
framework by the ball milling route presented significantly improved Li storage properties
and cycling stability as the anode for LIBs, delivering 1744.5 mAh g−1 at 200 mA g−1 after
200 cycles and 889.4 mA h g−1 even at 5 A g−1 after 500 cycles. The study reveals a new
approach for the design and fabrication of Si-based anodes for high-performance LIBs
applications, which will be helpful to the exploitation of various high-performance anodes
and may drive the technical development of the combined utilization of dealloying as well
as ball milling.

2. Results and Discussions
2.1. Characterization of Si/Fe2O3/rGO

The XRD patterns of the BM48-D4, BM-SFG, and UD-SFG samples are shown in
Figures 1a and S1a. The three materials present similar peak positions but are different in
peak width and peak intensity. The diffraction peaks located at 28.4◦, 47.3◦, and 56.1◦ are
related to the (111), (220), and (311) lattice planes of Si (JCPDS No.27-1402) [36,37], while the
diffraction peaks at 36.2◦, 38.1◦, 39.5◦, and 54.9◦ correspond to the (020), (112), (200), and
(004) lattice planes of Fe2O3 (JCPDS No.47-1409) [38,39]. In addition, a weak peak around
25◦ can be observed in the XRD patterns of BM-SFG and UG-SFG, in accordance with the
(002) lattice planes of rGO [40]. It should be emphasized that the first-step ball-milling
process changes the element distribution of the dealloying precursor so that the dealloyed
product no longer contains Al9FeSi3 [33] and other intermetallic phases, opening a new
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door for the design of novel LIB anode materials by tuning the microstructure of dealloying
precursors through ball milling.

Figure 1b reveals the Raman spectroscopy of the BM-SFG material. Four peaks can be
clearly seen. The peak observed around 520 cm−1 corresponds to the Si-Si bond [28,41],
while the peak at 293 cm−1 is related to the Fe-O bond of Fe2O3 [42,43]. Two strong peaks
at 1200–1600 cm−1 are in accord with the D band (defects and disorder) and G band
(demonstrating the presence of SP2− hybridized carbon) of rGO [44]. The ratio of peak
intensity ID/IG is 0.86. Figure S1b reveals Raman spectra of rGO, BM48-D4, and UD-SFG.
Obviously, the Raman spectrum of rGO only presents the D band and G band of rGO,
with an ID/IG ratio of 0.82. The Raman spectrum of BM48-D4 presents the Si-Si bond and
the Fe-O bond peaks. The Raman spectrum of UD-SFG shows the D band and G band
of rGO with an ID/IG ratio of 0.84 as well as the Si-Si bond and the Fe-O bond peaks. In
this situation, the peak intensities of the Si-Si bond and the Fe-O bond peaks of BM-SFG
are slightly stronger than those of UD-SFG, and the ID/IG ratio of BM-SFG is higher than
that of UD-SFG and rGO, indicating that BM-SFG has a greater degree of defects in all the
test samples, favoring ion and electron transmission during cycling. The XRD and Raman
results confirm the successful preparation of the Si/Fe2O3/rGO composites.
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Figure 1. (a) X-ray diffraction (XRD) pattern of the BM-SFG; (b) Raman spectrum of the BM-SFG; (c) N2 adsorption-
desorption isotherm characteristics and pore size distribution (inset) and high-resolution XPS spectra of (d) C 1s, (e) Fe 2p,
and (f) Si 2p for the BM-SFG.

The nitrogen adsorption–desorption isotherm of BM-SFG is displayed in Figure 1c. It
shows a typical type-III isotherm with a type-H3 hysteresis loop [45], revealing the presence
of mesopores. The BM48-D4 and UD-SFG samples show a similar curve type, with BM-SFG
in isotherms (Figure S2a,b). The specific surface area of BM-SFG is 127.8 m2g−1, which is
much higher than for the BM48-D4 (38.4 m2g−1) and UD-SFG (45.8 m2g−1) samples. The
pore size distribution of the three samples (Figures 1c and S2c) are concentrated at 2–5 nm,
further revealing the plentiful mesopores in the test materials. The existence of these meso-
pores can adapt to the volume variation of materials in the cycling process and improve the
transmission speed of Li ions by shortening the diffusion path [46]. With a higher specific
surface area, BM-SFG is expected to show better electrochemical performance.

The superficial elements and valence states of the materials were revealed by XPS. The
full XPS spectrum presented in Figure S3a uncovers the existence of Si, Fe, C, Al, and O
elements in the composites. The O 1s spectrum (Figure S3b) can be divided into two peaks.
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The peak at 532.8 eV is from hydroxyl, while the peak at 531.8 eV can be attributed to the
peak of metal bond in oxide, namely the Fe-O bond (OM bond) in Fe2O3 [47]. Figures 1d
and S3c display the C 1s spectra of BM-SFG and UD-SFG, respectively. The peaks at
285.3, 286.7, and 289.2 eV are in accord with C-C, C-O, and O-C=O, respectively [48,49].
Figures 1e and S3d present Fe 2p maps, showing three characteristic peaks concentrated
at 711.4 eV, 725.2 eV, and 719.3 eV, relating to the Fe 2p3/2, Fe 2p1/2, and satellite peaks,
respectively. The energy difference for Fe 2p1/2 and Fe 2p3/2 is of 13.8 eV, demonstrating
the formation of Fe2O3 [50,51]. The Si 2p spectra of Figures 1f and S3e reveal two charac-
teristic peaks of Si, which are located at 99.1 and 102.6 eV, corresponding to Si0 and Si4+,
respectively [52], showing a slight oxidation of superficial Si. Al peak can be observed in
this situation (Figure S3f), indicating that there was still uncorroded Al in the materials
after dealloying. Based on the above results, we can conclude that the final product consists
of Si, Fe2O3, rGO, and residual Al. The mass ratio of Si/Fe2O3/rGO composites was
estimated by considering XPS, EDS, and ICP-MS results. It was found that the mass ratio
of Si:Fe2O3:rGO:Al was close to 68.9:15.8:13.6:2.7.

SEM images of the BM48-D4 and BM-SFG samples are shown in Figure 2a,b, respec-
tively. Two main morphologies, nanoparticles and nanosheets, can be easily detected
(Figures 2a and S4a). Based on previous results [35], the nanosheets relate to Fe2O3, while
the nanoparticles correspond to Si. It was found that BM48-D4 contains Fe2O3 nanosheets
and Si nanoparticles. Although the two materials are uniformly distributed, they lack a
network with good electrical conductivity. After ball milling, the Fe2O3 nanosheets and
Si nanoparticles are covered with rGO network (Figure 2b). Figure S4b displays the SEM
image of the UD-SFG composite, showing clear coarsening of Fe2O3 nanosheets and rGO
frameworks after the ultrasonic process.
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TEM images (Figure 2c,d) show that the Fe2O3 nanosheets and Si nanoparticles are
uniformly anchored on rGO networks. In this situation, the three materials contact each
other in pairs, ensuring the continuity of the conductive channel and the high conductivity
of the composites conducive to improving the electrochemical performance of LIBs. The
HRTEM images reveal the lattice fringe of the nanosheet region and the nanoparticle
region (Figure 2e,f, respectively). The lattice fringe in Figure 2e shows crystal plane
spacing of about 0.249 nm and 0.237 nm, in accordance with the (020) and (112) planes of
Fe2O3 [53]. The lattice fringe in Figure 2f presents interplanar spacing of 0.314 nm, 0.192 nm,
and 0.163 nm, relating to the (111), (220), and (311) planes of Si [54]. The selected area
electron diffraction patterns (Figure 2g,h) toward the nanosheet region and the nanoparticle
region are also in accord with the characteristics of Fe2O3 and Si, respectively. TEM and
corresponding elemental mapping images of the BM-SFG sample are presented in Figure 3.
The C element is permeated throughout the sample, relating to rGO networks, which
ensure an improved conductivity. In addition, the Fe-rich and Si-rich areas can be found
in Figure 3e,f, respectively, corresponding to Fe2O3 and Si, respectively. All the tests
confirm the successful preparation of Fe2O3 nanosheets and the Si nanoparticle-anchored
rGO network.
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2.2. Electrochemical Performance of Li-Ion Batteries

The CV curve measurement of the BM-SFG composite was carried out in the range
of 0.01–3.0 V at 0.1 mV s−1, as shown in Figure 4a. In the first reduction process, a strong
reduction peak at 0.62 V is observed, relating to the conversion of Fe3+ to Fe0 (Fe2O3 + 6Li+

+ 6e−→ 3Li2O + 2Fe) [55] and the formation of the solid electrolyte interface (SEI) film [56].
Obvious reduction peaks at 0.2 V and a steep peak in the range of 0.01~0.15 V are attributed
to the generation of amorphous LixSi phase deriving from lithiation of crystalline Si. In
the anodic sweep, two peaks at 0.3 V and 0.5 V relate to the delithiation of LixSi to form
Si. The peak emerging around 1.2 V may arise from the reaction between Li ions and the
superficial oxygenic functional groups [57]. A broad peak centered at 1.88 V corresponds
to the multi-step oxidation of Fe0 to Fe2+ and Fe2+ to Fe3+ [58]. In the second cathodic
scan, a new peak at 1.3 V is formed. In this situation, the reaction from Fe3+ to Fe0 in the
subsequent process may be completed through two routes. In the first possible route, the
lithiation of Fe2O3 (Fe2O3 + xLi+ + xe− → LixFe2O3) occurs at the peak of 1.3 V [59]. The
reduction of Fe3+/Fe2+ to Fe0 is carried out at the peak of 0.67 V (shifted from 0.62 V in
the first scan). In the second possible route, the reduction of Fe3+ to Fe0 occurs through
two steps, in which the reduction of Fe3+ to Fe2+ takes place at the peak of 1.3 V and the
reduction of Fe2+ to Fe0 occurs at the peak of 0.67 V. More detailed testing is needed in the
future to uncover this process. In the second anodic scan, the increase in peak intensity
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of the two peaks at 0.3 and 0.5 V is derived from the activation of Si. The broad peak
around 1.88 V is decomposed into two peaks at about 1.5 V and 1.9 V, corresponding to the
two-step oxidation from Fe0 to Fe2+ and from Fe2+ to Fe3+, respectively. With the increase
in cycle number, the reduction and oxidation peaks shift slightly, which may be caused by
the irreversible structural rearrangement of active materials in the lithiation/delithiation
process. Moreover, the CV curves display good overlap, indicating a good reversibility of
the BM-SFG anode.

Figures 4b and S5 present the galvanostatic charge–discharge curves of the BM-SFG
and UD-SFG composites, respectively. The initial discharge curve contains a non-repeatable
platform at about 1.2 V, which can be attributed to the decomposition of the electrolyte
and the formation of the SEI layer, leading to the irreversible capacity loss of the first cycle.
The platform in the range of 0.8~0.6 V relates to the conversion of Fe3+ to Fe0. Due to
the lithiation/Li-insertion process of Si and rGO, an obvious and long inclined platform
appears when the discharge curve reaches 0.2~0.01 V [60]. The delithiation reaction of
silicon occurs at 0.2~0.6 V in the charging voltage platform. Another long charging platform
within the scope of 1.2~2.0 V corresponds to the multi-step oxidation of Fe0 to Fe2+ and Fe2+

to Fe3+. These potential platforms are consistent with the potentials toward the chemical
reaction peaks in the CV curve. The capacity loss values during the first discharge/charge
process of BM-SFG and UD-SFG were 14.6% and 28.6%, respectively. There is no obvious
difference in curve shapes among the subsequent cycles, which reflects the good stability
of the anode material. With the increase in cycle numbers, the charge–discharge curves
of the electrode gradually shift to the left, indicating that the electrode capacity declines
during the cycle. After 50 cycles, the charge–discharge curves present good overlap, which
indicates that the material possesses good cycling stability in the later cycle.
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Figure 4. (a) CV curves of the BM-SFG electrode measured at 0.1 mV s−1 between 0.01 and 3 V. (b) Galvanostatic charge-
discharge (GCD) profiles of the BM-SFG electrode recorded under 200 mA g−1. (c) Cyclic performances of the BM-SFG,
UD-SFG, BM48-D4 anodes at a current density of 200 mA g−1. (d) The rate performance of the BM-SFG, UD-SFG, and
BM48-D4 electrodes. (e) The charge/discharge profiles of BM-SFG, UD-SFG, and BM48-D4 electrodes recorded at different
scan rates. (f) Cycling performance at 5000 mA g−1.
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According to the mass ratio of the active product, the theoretical mass specific capacity
of the electrode material (3157.5 mAh g−1) can be estimated from Equation (1).

Ctheoretical = CSi
68.9

68.9 + 15.8 + 13.6
+CFe2O3

15.8
68.9 + 15.8 + 13.6

+CrGO
13.6

68.9 + 15.8 + 13.6
(1)

where Ctheoretical represents the theoretical capacity of the composite, and CSi, CFe2O3, and
CrGO represent the theoretical capacity of Si, Fe2O3, and rGO, respectively. Figure 4c
shows the cycling performance of BM-SFG, UD-SFG, and BM48-D4 cycling at 200 mA g−1.
The specific capacity of these samples decreases rapidly in the first 10 cycles and de-
clines at a slower rate in the subsequent cycles. The first discharge/charge capacities
of the BM-SFG, UD-SFG, and BM48-D4 electrodes are 2967.5/2534.8, 2893.4/2093.5, and
3167.5/2234.8 mAh g−1, respectively. The initial coulomb efficiency of BM-SFG electrode
(85.4%) is higher than that of the UD-SFG (71.4%) and BM48-D4 (70.6%) electrodes. The
formation of SEI film leads to the irreversible loss of capacity and consumes part of Li+

to form inert lithium. After 200 cycles, the reversible capacities of the BM-SFG, UD-SFG,
and BM48-D4 electrodes are 1744.5 mAhg−1, 1352.4 mAhg−1, and 697.2 mAhg−1 (100th
cycle), respectively. It can be clearly seen that the BM-SFG electrode shows the highest
coulomb efficiency, the best capacity retention, and cycle stability, demonstrating the best
comprehensive performance among the tested materials. According to the mass ratio of the
active materials, active Si, Fe2O3, and rGO contribute 70.1%, 16.1%, and 13.8%, respectively,
towards the battery performance of the BM-SFG.

The rate performances of the three anodes were measured at different current den-
sities, as shown in Figure 4d. The BM-SFG composite delivers reversible capacities of
2546.7, 2222.9, 1868.9, 1598.6, and 1056.8 mAh g−1 at 0.2, 0.5, 1, 2, and 5 A g−1, respectively,
which is clearly higher than those of UD-SFG and BM48-D4 electrodes. In addition, when
the current density recovers to 500 mA g−1, the BM-SFG presents a reversible capacity of
2015.7 mAh g−1 after cycling for an additional 30 cycles. Figure 4e shows the represen-
tative galvanostatic charge/discharge curves of BM-SFG at current densities from 200 to
5000 mA g−1. With the increase in current density, the shape of the curve basically remains
unchanged, while the position gradually moves to the left. When the current density recov-
ers, two group of galvanostatic charge/discharge curves (500 mA g−1) nearly overlap with
each other, demonstrating its good recoverability. The long-cycle performances of BM-SFG,
UD-SFG, and BM48-D4 at a high current density of 5000 mAh g−1 are explored in Figure 4f,
presenting discharge capacities of 889.4, 510.9, and 143.6 mAh g−1, respectively, after 500
cycles. In this situation, the BM-SFG electrode uncovers the best cycling stability in high
current density, demonstrating the structural superiority of as-obtained Si/Fe2O3-anchored
rGO framework.

The schematic diagrams reflecting the structural changes of BM-SFG and UD-SFG
before and after the cycle are presented in Figure 5a,b, respectively. Moreover, SEM images
of two electrodes after cycling for 200 cycles at 200 mA g−1 are presented in Figure 5c
and d. BM-SFG basically maintains its original morphology after cycling. At the same
time, Si nanoparticles and Fe2O3 nanosheets coarsen, expand, and agglomerate to a certain
extent without observable cracks or fractures. However, serious expansion and fracture can
be observed in cycled UD-SFG. The great morphological difference of the two electrodes
after cycling is due to the large differences in the three-dimensional structure, size, and
specific surface area of the initial composites. With higher specific surface area and thinner
nanosheets, the three-dimensional BM-SFG framework can well accommodate the volume
expansion of active materials, while the coarsened UD-SFG network cannot.
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The Raman and XRD results of the BM-SFG electrodes before and after cycling at
high current density (5000 mA g−1) for 50 cycles are provided in Figure S6. No obvious
changes in peak position and intensities of BM-SFG electrodes can be found, proving that
the structure and composition of the BM-SFG electrode are relatively stable after cycling.
These results further demonstrate the successful synthesis of the Si/Fe2O3/rGO composite
and that the initial material is the material reacting in the cycling.

Figure 6a,b present an ex-situ XPS spectra analysis of the BM-SFG electrodes at
different stages. As shown in Figure 6a, the Fe 2p spectra change significantly after the
first discharge. A new peak appears at about 707.9 eV, which is related to the formation
of Fe0. This fully shows that Fe2O3 participates in the lithium storage reaction in the
charging/discharging process. After the charge, the XPS peak position is restored to the
initial position of the material, indicating that the electrode has undergone an effective
reversible reaction. As shown in Figure 6b, after the first discharge the peak corresponding
to Si 2p becomes weak, which can be attributed to the formation of multi-component
mixtures composed of different LixSi products that weaken the XPS signal of a single
component, indicating that the alloying reaction between Si and Li took place during the
cycling. After charging, only the peak of Si0 can be found, corresponding to the delithiation
reaction of LixSi to Si. Figure 6c presents ex situ XRD results of the BM-SFG electrodes
at different stages. After the first discharge, the main peak intensity of Si is markedly
lower than that of the original material. LixSi peaks appear at 20.2◦ and 23.5◦, while Fe
peaks appear at about 42.5◦ and 65◦, in accordance with the lithiation of Si to LixSi and the
reduction of Fe3+ to Fe, respectively. After charging, the XRD peak position is returned to
the initial position of the material, demonstrating a good reversibility of the materials.
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The EIS spectra of BM-SFG and UD-SFG electrodes before and after cycling for
200 cycles are exhibited in Figure 7a,b. The Nyquist plots consist of two parts: a semicircle
in the high- and medium-frequency area corresponding to charge transfer resistance and a
slash in the low-frequency area caused by ion diffusion. Obviously, the BM-SFG electrode
presents lower charge transfer resistance than the UD-SFG electrode, which may benefit
from the well-weaved rGO frameworks. The charge transfer resistance of two electrodes
decreases notably after cycling, which may be caused by the structural rearrangement of
active materials and the generation of stable SEI layer [61–63] during cycling. In addition,
the BM-SFG electrode still presents a lower charge transfer resistance than the UD-SFG
electrode after cycling. The detailed fitted data of EIS are provided in Table S1. These
results reveal the structural advancement of the BM-SFG framework, which may induce
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a lower resistance and better conductivity. A digital photo of a red light-emitting diode
(LED) powered by a half cell is shown in Figure 7c. After 40 min, the LED bulb reduces its
brightness (Figure 7d) but still works, showing the potential application of the BM-SFG
electrode in the energy storage field.
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2.3. Comparison of Electrochemical Performance of Li-ion Batteries

Table 1 displays the electrochemical performance of different Si-based electrode ma-
terials [26,28,64–70]. The as-synthesized BM-SFG anode presents relatively excellent Li
storage performance, which is better than that of many reported Si-based composites. The
good performance can be ascribed to the following aspects. Firstly, the porous framework
can provide a large contact area and interaction between the electrolyte and the active
substance, and can further enhance the ionic fluidity and permeability, which is beneficial
to the smooth progress of electrochemical reactions. Secondly, the BM-SFG framework
with a high specific surface area can buffer volume expansion to avoid the pulverization
and separation of the active material from the conductive network and improve the elec-
trochemical stability. Thirdly, the rGO framework provides a fast transmission network
for electrons, while the porous structure is helpful for ion transport, which guarantees
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good rate performances. The paper provides us with a simple method for preparing high
performance Si-based anodes. The as-adopted route can be extended to produce more new
materials with high Li storage performance.

Table 1. Comparison of the electrochemical properties of Si-based composites for Li-ion batteries.

Materials Electrolyte Current Density
(mA g−1)

Cycle
Number

Reversible
Capacity

(mAh g−1)
Ref.

Si/Ti3C2 MXene LX-025 from DuoDuoChem 100 200 1475 [64]

Si-Cu3Si-CNT/G-C 1 M LiPF6 in EC/DEC (1:1) with 10
wt% FEC 200 100 1088 [65]

N-rGO/C@Si 1 M LiPF6 in DMC/EC/DEC (1:1:1)
with 2 wt% VC and 10 wt% FEC 420 150 1115.8 [28]

Si@Void@C/rGO 1 M LiPF6 in EC/DEC (1:1) 500 100 1294 [26]

Si@C@Cu 1 M LiPF6 in EC/DMC (1:1) with 2
wt% VC 500 200 1773 [66]

Si/multilayer graphene 1 M LiPF6 in EC/DMC/DEC (1:1:1)
with 10 wt% FEC 1000 500 990 [67]

Si/Ti3C2 MXene LX-025 from DuoDuoChem 1000 800 973 [64]

Mg-coated Si film 1.2 M LiPF6 in EC/EMC (3:7) with
10 wt% FEC 4200 500 ~2100 [68]

Si/TiSi2
heteronanostructure 1 M LiPF6 in EC/DMC (1:1) 8400 100 937 [69]

Interconnected Si
Nanowires 1.15 M LiPF6 in EC/DEC (3:7) 8400 70 ~1800 [70]

Si/Fe2O3/rGO (BM-SFG) 1 M LiPF6 in EC/DMC (1:1)
200 200 1744.5 This

work5000 500 889.4

3. Materials and Methods

The typical preparation route of the target product is shown in Figure 8. The Fe1.9Si10.1Al88
ingots were firstly fabricated by our previously reported method [33] through the arc-melting
of Al ingots and the ferrosilicon ore (27.15 wt% Fe, 0.49 wt%-associated elements including
Mn, S, P, and C, and Si balance) directly. The ingots were re-melted and produced into
ribbons by the melt-spinning method [71–73] and then were ball-milled (first ball-milling)
into powders with a rotation speed of 600 r/min at room temperature for 48 h with
ball-to-ribbon ratio of 60:1 (120 g grinding balls, 2.0 g ribbons). To inhibit samples from
oxidation during ball-milling, the ribbons were immersed into n-heptane in the tank. The
as-obtained powders were washed with absolute ethyl alcohol to remove antioxidants
and dealloyed [74–76] in 1.25 M NaOH solution for 4 h. After washing in anhydrous
ethanol and drying in vacuum oven at 60 ◦C for 12 h, the dealloyed material (BM48-D4)
was synthesized. Then, the BM48-D4 material was mixed with rGO in accordance with
the mass ratio of 5:1 and ball milled (second ball-milling) for 10 min under the same
milling conditions. After cleaning, the ball-milled Si/Fe2O3/rGO (BM-SFG) composite
was obtained by drying at 60 ◦C for 12 h under vacuum conditions. For a comparison,
the BM48-D4 material and rGO (mass ratio, 5:1) were mixed in the anhydrous ethanol
with ultrasonic processing. Thus, the ultrasonic-treated Si/Fe2O3/rGO (UD-SFG) contrast
sample was prepared after vacuum drying. The mass loading of the electrode materials
was approximately 1.0~1.2 mg cm−2. Experimental details in material characterization and
electrochemical measurements can be found in the Supporting Information S0.
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4. Conclusions

A porous Si/Fe2O3/rGO composite was successfully prepared using a combined
process involving melt-spinning, dealloying, and ball-milling. Si/Fe2O3 was anchored
on the rGO framework to form a three-dimensional porous cross-link structure. Due to
this special structure, the electrode revealed a reversible capacity of 1744.5 mAh g−1 at
200 mA g−1 after 200 cycles and 889.4 mA h g−1 at a high current density of 5 A g−1 after
500 cycles, presenting excellent cycling stability, high rate properties, and great potential
as LIB anode. By involving ball-milling in the dealloying-based preparation process, the
composition and structure of the product could be regulated, uncovering a novel strategy
for developing high-performance LIB anode materials.
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