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1. Summary
The inhibition of triosephosphate isomerase (TPI) in glycolysis by the pyruvate

kinase (PK) substrate phosphoenolpyruvate (PEP) results in a newly discovered

feedback loop that counters oxidative stress in cancer and actively respiring

cells. The mechanism underlying this inhibition is illuminated by the co-crystal

structure of TPI with bound PEP at 1.6 Å resolution, and by mutational studies

guided by the crystallographic results. PEP is bound to the catalytic pocket of

TPI and occludes substrate, which accounts for the observation that PEP com-

petitively inhibits the interconversion of glyceraldehyde-3-phosphate and

dihydroxyacetone phosphate. Replacing an isoleucine residue located in the cat-

alytic pocket of TPI with valine or threonine altered binding of substrates and

PEP, reducing TPI activity in vitro and in vivo. Confirming a TPI-mediated

activation of the pentose phosphate pathway (PPP), transgenic yeast cells expres-

sing these TPI mutations accumulate greater levels of PPP intermediates and

have altered stress resistance, mimicking the activation of the PK–TPI feed-

back loop. These results support a model in which glycolytic regulation

requires direct catalytic inhibition of TPI by the pyruvate kinase substrate PEP,

mediating a protective metabolic self-reconfiguration of central metabolism

under conditions of oxidative stress.
2. Introduction
With the challenge of surviving in a constantly changing environment, cells have

evolved mechanisms to flexibly regulate metabolism [1,2]. An important and

dynamically regulated metabolic pathway is glycolysis, an ancient chemical

route of carbohydrate utilization that produces ATP, NADH and intermediate

metabolites for the synthesis of nucleotides, fattyacids and amino acids. Glycolysis

is mainly regulated through feedback and feed-forward cycles involving its inter-

mediate metabolites. These cycles sustain intermediates while preventing their

accumulation to toxic levels and are responsible for the oscillating behaviour of

glycolytic reactions [3–6]. Moreover, this enzymatic regulation is important for

maintaining the balance of metabolism during changes in cell growth or environ-

ment [1,2]. As an example, the increased need for the redox cofactor NADPH

during oxidative stress caused upon hydroperoxide exposure is met by diverting
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Table 1. Crystallographic data collection and refinement statistics. The PDB
deposition code for model and structure factors of TPI – PEP is 4OWG.

data collection

wavelength (Å) 0.9795

resolution (Å) 43.1 – 1.55

(high-resolution shell) 1.63 – 1.55

Rmerge 0.086 (0.314)

unique reflections 59 113

completeness 93.4

multiplicity 2.7

I/s(I ) 8.0

unit cell (a, b, c (Å);

a,b,g (deg))

a ¼ 36.85, b ¼ 72.07, c ¼ 161.20,

a ¼ b ¼ g ¼ 90

space group P212121

refinement

R (working set) 0.1665

Rfree (test set) 0.2032

RMS deviations

bond lengths (Å) 0.0195

bond angles (Å) 1.9061

Ramachandran statistics

% of residues in

allowed regions

465 (96.27%)

% of residues in

generously allowed

14 (2.90%)

% of residues in not

allowed

4 (0.83%)

model

amino acids TPI 246 of 250

water molecules 432
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glycolytic flux into the pentose phosphate pathway (PPP). This

transition is rapidly inducible by metabolic inhibition of

glycolysis, changes in the activity of glucose 6-phosphate dehy-

drogenase (the first enzyme of the oxidative PPP), followed by

transcriptional control during mid- to long-term adaptation to

oxidative conditions [7–10].

A similar mechanism acts to prevent an accumulation of

oxidizing metabolites in cancer cells or cells that respire at

high rates. These frequently possess a higher activity of the

PPP to balance the greater demand for NADPH by the anti-

oxidant machinery and to compensate for the increased pro-

duction of reactive oxygen species [11,12]. Current findings

have highlighted the importance of the terminal glycolytic

enzyme pyruvate kinase (PK) to achieve the regulation of gly-

colysis and the PPP. Low activity of PK has been found in

cancer and rapidly proliferating cells, and in yeast cells with

high respiration activity [13,14]. More recently, it has been pro-

posed that cancer cells profit from the loss of the PKM2 gene

during tumour formation [15]. Reduced PK activity caused

accumulation of its substrate, phosphoenolpyruvate (PEP),

which correlates with an increased activity of the PPP [14,16],

and increased oxidant tolerances of both mammalian and

yeast cells [11,14]. It has been observed that PEP is an inhibitor

of another metabolic redox regulator, triosephosphate isomerase

(TPI or TIM, EC 5.3.1.1) [17,18]. In its glycolytic role, TPI is

regarded as a near-perfect catalyst because its catalytic speed

in vitro only depends on the rate of diffusion of its substrates

[19]. In vivo, TPI interconverts dihydroxyacetone phosphate

(DHAP) and glyceraldehyde-3-phosphate (G3P) to prevent an

accumulation of DHAP [19,20]. Reduced activity of TPI in

yeast and Caenorhabditis elegans leads to a partial inhibition

of glycolysis but is beneficial during oxidative stress, as it

increases the concentration of PPP metabolites and stress toler-

ance in both species [7,21]. We have shown previously that the

increased oxidative stress resistance of PK mutants is attributable

to TPI as well. In yeast cells expressing mutant TPI with lowered

activity, PK failed to increase stress resistance, while a deletion of

the first enzyme of the oxidative PPP, glucose 6-phosphate dehy-

drogenase (G6PDH, ZWF1), leads to protein and mitochondrial

oxidative damage in a PK-dependent manner [14].

To understand how PEP affects TPI activity, we generated a

co-crystal structure of the enzyme in complex with PEP at 1.6 Å

resolution. We find that PEP directly interacts with TPI by

binding into the catalytic pocket of the enzyme and outcom-

petes the substrates from their binding position. Moreover,

the structural data reveal that PEP interacts with the conserved

Ile170, a residue which when mutated is associated with TPI

deficiency in humans [22], and in yeast affects response to oxi-

dative stress [7,23] and PK function [14]. We use this mutant

and others inferred from the crystallographic structure to

define the kinetics and stability properties of TPI upon PEP

binding. We demonstrate that the in vivo consequence of com-

petitive TPI inhibition is the activation of the PPP and altered

stress resistance.
3. Results and discussion
3.1. Structure of the triosephosphate isomerase –

phosphoenolpyruvate complex
TPI is a ubiquitous enzyme with homologues found throughout

all kingdoms of life [20,24] and that in human populations
possesses only a minimum of sequence divergence [25]. To

study the TPI–PEP interaction, we co-crystallized PEP and

rabbit TPI, which differs from human TPI in four non-conserved

residues only (electronic supplementary material, figure S1).

The structure was solved by molecular replacement and refined

at 1.55 Å resolution (table 1). The asymmetric unit contains a

homodimer of TPI (figure 1a). Each protomer contains eight

a-helices on the outside and eight parallel b-strands on the

inside, forming a typical TIM-barrel [26]. Comparison of

TPI-PEP with a previously reported structure of rabbit muscle

apo TPI [27] shows that the active site loops are in the closed con-

formation in both subunits. The electron density map gave a

clearly defined and unambiguous shape for PEP bound to the

active sites of both subunits (figure 1a,c). Active site residues

engage PEP and make similar interactions to those observed

for the TPI substrate DHAP (figures 1b and 2a,b; a stereo-

scopic illustration is given in figure 1c) [28]. For substrate

conversion, TPI employs a catalytic triad consisting of the resi-

dues Lys13, His95 and Glu165 [27], whereas PEP is in contact

with the catalytically active residue Lys13 and the active site

residues Gly232, Gly233, Gly171, Ser211 and Asn11 (figure 2).

The positioning of PEP thus indicates that it binds into the



His95

(a)

(b) (c)

Lys13

Glu165

Ile170

PEP

Figure 1. Co-crystal structure of TPI with bound PEP. (a) Schematic of the TPI –
PEP crystallographic structure. PEP locates in the active centre of both subunits in
the asymmetric TPI dimer. (b) The catalytic pocket of TPI bound to PEP. Catalytic
residues are highlighted in yellow, PEP in red, isoleucine 170 in green. (c) Stereo-
scopic illustration of the PEP binding site environment including a difference map
in which PEP has been removed from the model and was refined against the
experimental data for five cycles. The map has been contoured at 4 s.d. and
reveals positive density for the missing ligand.
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catalytic pocket of TPI and competes with the substrates for

binding with catalytic residues (figure 2c).

3.2. Structure – function analysis of the triosephosphate
isomerase – phosphoenolpyruvate interaction

We observed that PEP is in direct contact with a conserved

isoleucine at position 170. A human TPI allele mutant for this

residue (Ile170Val) has been found in a rare variant in the

human genetic disorder TPI deficiency. This mutation translates

into a mutant TPI with reduced catalytic activity [21,22]. TPI

deficiency manifests as recessive autosomal multi-system dis-

order, which is caused by structural defects in the TPI enzyme

[29]. Based on the crystallographic information, we predicted

two further residue exchanges to affect PEP binding and gener-

ated two constructs encoding for TPILys13Arg as well as

TPIIle170Thr. Lys13 is known to be required for the catalytic mech-

anism [26] and exchanging it to arginine rendered the enzyme

not only catalytically inactive but also largely unstable (elec-

tronic supplementary material, figure S3; figures 4 and 5).

Thus, our analyses shown below focused mostly on the

TPIIle170Val and TPIIlel70Thr proteins that retained stability and

residual catalytic activity.

3.3. TPIIle170Val and TPIIle170Thr exhibit altered
phosphoenolpyruvate and glyceraldehyde-
3-phosphate binding

We expressed 6x-histidine tagged wild-type human TPI,

TPIIle170Val, TPIIle170Thr and TPILys13Arg in Escherichia coli and
purified the enzymes using metal affinity chromatography.

Far-UV circular dichroism (CD) spectroscopy of the purified

recombinant enzymes showed a similar composition of second-

ary structures, indicating that the mutations did not prevent

folding (electronic supplementary material, figure S2). To deter-

mine the impact of the mutations on the interactions of TPI with

PEP and G3P, we conducted thermal melt assays using the

fluorescent probe SYPRO Orange [30]. In the presence of incre-

mental PEP concentrations, TPI and its mutants exhibited

thermo stabilization, indicating that the proteins bound the

metabolite (figure 3a). Interestingly, TPIIle170Val and TPIIle170Thr

responded more strongly to the presence of PEP (TPIIle170Val

DTm¼ 2.648C, TPIIle170Thr DTm¼ 2.958C) in comparison with a

DTm¼ 2.578C for human wild-type TPI, indicating that the

mutations increased the binding affinity to PEP (figure 3a).

Next, we assessed structural stability in the presence of

the TPI substrate, G3P. This substrate is expected to be con-

stantly metabolized to DHAP (and back) [31,32], and

adding up to 3 mM G3P to wild-type TPI caused a slight

increase in the enzyme’s thermal stability (figure 3b). The

effects of G3P addition to TPIIle170Val were comparable with

that of the wild-type. A much stronger response was however

observed for TPIIle170Thr. This mutant substantially gained

stability in the presence of G3P (figure 3b; DTm ¼ 6.218C at

3 mM G3P, wild-type TPI DTm ¼ 1.688C), indicating that the

binding affinity to this substrate was increased. We speculate

that the increased substrate affinity is facilitated by a hydro-

gen bond between the substrate and the threonine side chain.

Finally, we tested whether protein stability is affected by

PEP in the presence of G3P. In the wild-type form, PEP was

competitive with G3P for binding the enzyme, as expressed

by an increase in thermal stability even at PEP levels lower

than 0.25 mM (figure 3c). Conversely, the increased thermo-

stability mediated by G3P specifically to the TPIIle170Thr

enzyme (figure 3b) was partially lost upon adding PEP

(figure 3c), confirming competitive binding in this mutant

as well. By contrast, TPIIle170Val was resistant to increased

PEP levels (figure 3c), indicating that this metabolite was

no longer competitive for binding. In summary, thermal

shift assays confirmed binding of PEP to TPI. The different

behaviour of the TPIIle170Val and TPIIle170Thr mutants in this

process supports the crystallographic identification of the

binding site to be the catalytic pocket and indicates direct

contact of PEP and G3P with this isoleucine residue.
3.4. Inhibitory effects of phosphoenolpyruvate on
triosephosphate isomerase catalysis

Next, we performed enzyme-coupled assays to determine

changes in the catalytic activity of TPI in the mutants as well

as in the presence of PEP. The three mutations affecting resi-

dues located in the catalytic pocket, TPIIle170Val, TPIIle170Thr and

TPILys13Arg, all reduced the catalytic activity of TPI (figure 4a).

The substantial residual activities of 5.9% for TPIIle170Val or

13.1% of TPIIle170Thr indicate that Ile170 is not essential for

TPI’s catalytic function. By contrast, TPILys13Arg exhibited only

catalytic activity around the detection limit of the assay

(approx. 0.2% compared with wild-type level), confirming that

Lys13 is essential for catalysis, as reported earlier [33].

To quantify enzymatic activity for wild-type TPI, TPIIle170Val

and TPIIle170Thr, and to determine the rate of their inhibition by

PEP (expressed as Ki, IC50 values), we generated substrate
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Figure 2. The TPI inhibitor PEP and the TPI substrate DHAP have similar interaction sites. (a) Contact distances between TPI and its substrate DHAP, and (b) the
interactions of TPI and PEP in the active site. PEP and DHAP are in contact with similar principal residues. Distances are given in Å. Green balls, phosphate; grey balls,
carbon; red balls, oxygen. The red circles indicate residues in close proximity to the ligand. Illustrations were prepared using LIGPLOT. (c) PEP and DHAP bind similarly
to the TPI active site. Rabbit TPI bound to PEP, overlaid with the location of the TPI substrate DHAP as determined by Jogl et al. [28] as surface representation.
Yellow areas highlight catalytically active residues; PEP: red; DHAP: blue.
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saturation and PEP titration curves for these enzyme species.

The mutant enzymes exhibited lower substrate conversion

rates and saturated at lower concentrations of G3P (Km for

wild-type TPI: 1373 mM, TPIIle170Val: 687 mM and TPIIle170Thr:

303 mM). This indicates that despite its lower activity, the

TPIIle170Thr mutant had higher affinity to the TPI substrate
(figure 4b, black curves, from left to right). Next, we titrated

PEP to the reaction operating at maximal activity. In all cases,

a strong and concentration-dependent inhibition of the

enzyme activity was observed. In the case of human wild-

type TPI, 50% of enzyme activity was lost in the presence

of 570 mM PEP (IC50), corresponding to a Ki of 230 mM
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(figure 4b, blue curves, to be read from right to left). Compared

with pharmacological inhibitors, PEP is thus a relatively low-

affinity inhibitor for TPI. However, this appears biologically

meaningful, as PEP is constantly present at high cellular

levels [14]. A high affinity for PEP would thus render TPI

constantly inactive.

Finally, we observed that the introduced TPI mutations

influenced the PEP sensitivity of TPI. The mutant species exhib-

ited strongly increased IC50 values (TPIIle70Val¼ 1925 mM,

TPIIle170Thr ¼ 1537 mM). This finding supports the crystallo-

graphic result that isoleucine 170 interacts with PEP, rendering

the mutant enzymes in relative terms more PEP-resistant.

3.5. In vivo complementation of triosephosphate
isomerase, TPIIle170Val and TPIIle170Thr

In the next step, we tested whether cells carrying the mutant

enzymes were capable of maintaining metabolism. For this,

we used a yeast strain (MR100 [21]) chromosomally deleted

for yeast TPI1, a direct sequence orthologue of human TPI

catalysing the same reaction, and which is kept viable by

expressing TPI from a 5’FOA-counterselectable URA3 plas-

mid. We introduced human TPI, TPIIle170Val, TPIIle170Thr and

TPILys13Arg into this strain, then selected on 5’FOA media for

cells that had lost the TPI-URA3 plasmid. Yeast strains expres-

sing wild-type TPI, TPIIle170Val and TPIIle170Thr could be

cultured in glucose-containing media, indicating that these

enzymes compensated for the loss of yeast TPI, demonstrating

catalytic activity in vivo. By contrast, yeast cells expressing

TPILys13Arg were not viable, confirming that TPILys13Arg was

not catalytically functional (figure 5a).

Next, TPI activity was measured in cell extracts of the trans-

genic strains. As the total TPI substrate conversion per

microgram protein in the cell extract corresponded to 1.5% com-

pared to the pure enzyme (15.5 mmol NADH min21 mg

protein21), we estimate that TPI accounts for approximately

1.5% of total soluble protein, substantiating that TPI is one of

the most abundant cytoplasmic proteins [34]. Interestingly, we

noted that the total activity of mutant enzymes (TPIIle170Val,

TPIIle170Thr) was, relative to wild-type, significantly lower in

their purified version compared with what we measured

in the cell extracts (figures 4a and 5b). An analysis of TPI

expression levels by immunoblotting using a specific TPI anti-

sera [35] however revealed that mutant TPI is much more

strongly expressed compared with wild-type TPI (figure 5c).

This indicates that cells compensated for a loss of specific TPI

activity by the upregulation of the enzyme abundance.

3.6. Low triosephosphate isomerase activity mediates
elevation in pentose phosphate pathway
metabolite concentrations, oxidant resistance
and heat sensitivity

We have shown previously that reduced activity of TPI causes a

re-configuration of central metabolism, leading to increased flux

of the PPP and increased stress resistance in yeast and C. elegans
[7]. The feedback inhibition of TPI by PEP is therefore expected

to have similar consequences. In bacteria, yeast and mammalian

cells, PEP accumulation is caused by a diminution of PK activity

[11,14,16]. Whereas low PK activity in yeast is correlated

with high respiration rates and superoxide production [14], in
human cells it is associated with rapid cell proliferation and

cancer [13,36]. Affected by high ROS production, cancer cells

upregulate the allosterically regulated PK isoform PKM2 [37],

which is redox-sensitive and the PKM isoform with lower

catalytic activity [11,13,36]. Moreover, recent results have

demonstrated that cancer cells have higher survival chances

when they lose this gene [15]. This situation causes a block of

the early steps of glycolysis and increases the PPP activity result-

ing in augmented oxidant tolerance of both yeast and

mammalian cells [11,14], indicating that the PK–TPI feedback

loop is important for oxidative stress protection.

As shown above, TPI substrates and PEP bind to the same

structural site and have largely the same contact residues. As a

consequence, mutations that affect PEP binding also affect the

catalytic activity of TPI. This prevents the creation of an ideal in
vivo model where TPI feedback inhibition by PEP would be dis-

rupted while TPI catalytic activity is unaffected. However, the

mutant proteins provide a means of studying the consequences

of specifically lowered TPI activity that mimics the situation of

feedback inhibition. We used the yeast strains expressing

TPIIle170Val and TPIIle170Thr to determine glycolytic and PPP

metabolite concentrations by liquid chromatography tandem

mass spectrometry (LC-MS/MS), adapting our previous pro-

cedures [38,39]. In comparison with the isogenic strain

expressing wild-type TPI, yeast cells expressing both the natu-

rally occurring TPIIle170Val allele and the designed TPIIle170Thr

protein displayed an increased concentration of PPP intermedi-

ates, indicating higher activity of this pathway confirming the

previous results (figure 6a; electronic supplementary material,

figure S4). Moreover, glycolytic intermediates upstream of TPI

were affected, with the strongest measured increase in the con-

centration of the TPI substrate DHAP (figure 6a), reflecting the

partial blockage of glycolysis.

Next, we tested for consequences of expressing the mutant

TPI forms in regard to stress resistance. For this, the transgenic

strains were rendered prototrophic by transformation with the

pHLUM minichromosome [40]. Then, the cells were spotted on

media containing the thiol-oxidizing compound diamide, as

resistance to this compound has previously been shown to be

dependent on PPP activation [7,41], and on media containing

hydrogen peroxide, a naturally occurring oxidant. Resistance

against both oxidants was increased in cells expressing

TPIIle170Val and TPIIle170Thr, with the effects being stronger for

diamide (figure 6b). To address whether this phenotype was

directly depending on the PPP, a similar set of experiments

was then conducted in isogenic strains deleted for the gene

encoding glucose 6-phosphate dehydrogenase (ZWF1), the

first enzyme of the oxidative PPP that is a direct source of

NADPH [42], and SOL3 and SOL4, two paralogous genes

which catalyse the next (non-NADP(H)-dependent) step of

the pathway [43]. The deletion of ZWF1 (on both oxidants)

reduced yeast oxidant tolerances (figure 6b). The deletion of

SOL3 and SOL4 caused weaker effects on H2O2 only (figure

6b). In combination with ZWF1, the protective effects of

TPIIle170Val and TPIIle170Thr were lost, and this phenotype was

affected in combination with SOL3 and SOL4 deletions as

well (figure 6b). This indicates that the TPI-mediated oxidant

protection is dependent on the oxidative PPP, and mainly on

its first NADPH-producing enzyme, the glucose 6-phosphate

dehydrogenase Zwf1p.

Yeast strains with low PK activity are resistant to oxidants

[14] but sensitive to heat [44]. Therefore, we tested whether a

similar behaviour was observed in the TPI mutant strains.
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Figure 6. Low TPI activity increases PPP metabolite load and causes oxidant resistance and heat sensitivity. (a) Concentrations of glycolytic and PPP metabolites in
the human TPIIle170Val and TPIIle170Thr mutants relative to yeast expressing human wild-type TPI. PPP and glycolytic metabolites were quantified by LC-MS/MS. PPP
metabolites are increased in the TPI mutants. Absolute values are given in the electronic supplementary material, figure S4. (b) TPIIle170Val and TPIIle170Thr mediate
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Exponentially growing yeast strains were exposed to 508C for

five minutes or kept at 308C and used to inoculate a fresh cul-

ture. The heat-induced growth delay, calculated using a

model free spline fit [45], was used as a measure of yeast

heat resistance. Yeast cells expressing human TPI well
tolerated the heat treatment; however, yeast harbouring

TPIIle170Val and TPIIle170Thr were heat-sensitive, resulting in a

strong delay until growth resumed (figure 6c). Thus, low

TPI activity, despite protecting against oxidants, causes heat

sensitivity. In summary, similar to what has been observed



Table 2. Plasmids used in this study and their deposition ID (http://www.addgene.org).

plasmid name encoded protein application addgene #

p413GPD-hTPI human wild-type TPI1 expression in S. cerevisiae (HIS3, cen) 50719

p413GPD-hTPI Ile170Val human TPI1 Ile170Val expression in S. cerevisiae (HIS3, cen) 50720

p413GPD-hTPI Ile170Thr human TPI1 Ile170Thr expression in S. cerevisiae (HIS3, cen) 50721

p413GPD-hTPI Lys13Arg human TPI1 Lys13Arg expression in S. cerevisiae (HIS3, cen) 50722

pET20b-hTPI human wild-type TPI1 expression and purification in E. coli 50723

pET20b-hTPI Ile170Val human TPI1 Ile170Val expression and purification in E. coli 50724

pET20b-hTPI Ile170Thr human TPI1 Ile170Thr expression and purification in E. coli 50725

pET20b-hTPI Lys13Arg human TPI1 Lys13Arg expression and purification in E. coli 50726
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in cells with low PK activity [14,44], expressing TPIIle170Val

and TPIIle170Thr increased PPP metabolite concentrations

and mediated oxidant resistance and heat sensitivity.
4. Conclusion
The central glycolytic enzyme TPI plays a crucial role in coor-

dinating energy with redox metabolism during stress response

and in cancer. Being the target of a feedback loop initiated by

the pyruvate kinase substrate PEP, dynamic TPI inhibition dis-

tributes metabolites between glycolysis and the PPP [7,14].

Here we present a TPI–PEP co-crystal structure, demonstrat-

ing that PEP directly binds into the catalytic pocket of TPI. In

structure–function studies involving different TPI point

mutations including a rare natural variant (TPIIle170Val [22]),

and two mutants designed on the basis of the crystallographic

findings (TPILys13Arg and TPIIle170Thr), we have demonstrated

that PEP functions as a competitive TPI inhibitor, being able

to interfere with the enzymatic TPI function during catalysis.

Finally, studies with transgenic yeast cells expressing these

human TPI mutants revealed that low TPI activity increases

PPP metabolite concentrations, increased oxidant resistance

and decreased heat tolerance. Hence, the PYK–TPI feedback

loop, leading to the regulation of glycolysis and the PPP to

adapt to oxidative stress conditions, is the consequence of

active-site competitive TPI inhibition by the PK substrate PEP.
5. Material and methods
Recombinant TPI expression, enzyme purification, Western

blotting, yeast cultivation and strain generation were con-

ducted according to standard procedures and are described

in the electronic supplementary material. The plasmids gen-

erated in this study have been deposited at Addgene

(http://www.addgene.org) and are listed in table 2.

5.1. Crystallization of triosephosphate isomerase –
phosphoenolpyruvate complex

Native rabbit muscle TPI (TPI, Sigma) was buffer exchanged

into crystallization buffer (20 mM Tris pH: 7.0, 150 mM NaCl,

5 mM MgCl2) with a HiTrap Desalting column and concen-

trated to 10 mg ml21 with a VIVA spin 2 ml concentrator

(MWCO: 10 kDa). PEP was added to the TPI solution to a

final concentration of 5 mM. Crystals were grown at 208C
using the sitting-droplet vapour diffusion method by

mixing 200 nl of TPI–PEP complex with 200 nl of reservoir

solution (0.1 M MES pH: 6.5, 25% polyethylene glycol

(PEG) 8000). Crystals appeared 1 day after setting up the

crystallization trial and reached the final size in 1 week.

The crystals were transferred briefly into reservoir solution

supplemented with 25% v/v PEG 400 as cryoprotectant

before flash freezing in liquid nitrogen.

5.2. Data collection, structure determination
and refinement

X-ray diffraction data were collected at 100 K from cryopro-

tected crystals at beamline I24 at the Diamond Light Source.

A complete dataset of TPI–PEP crystal was collected to a

resolution of 1.55 Å. The data were processed and scaled

using iMOSFLM and SCALA [46,47], respectively. Molecular

replacement was performed with the CCP4 suite program

PHASER [48] using the rabbit muscle apo TPI (PDB ID: 1R2R)

[27] as the search model. The map identified PEP in the

active site, and the initial model (without ligand) was refined

using REFMAC5 [49]. One protomer was manually adjusted

into the electron density map using COOT and directly placed

in the second protomer based on non-crystallographic

symmetry. The model was refined again with TLS, NCS

(non-crystallographic symmetry) and restrained refinement

using REFMAC5. PEP was finally built into the electron density

map and then refined. A summary of the crystallographic data

and refinement are given in table 1. Figures were generated

using PYMOL.

5.3. Circular dichroism
Recordings of the far-ultraviolet (UV) CD spectrum were used

to verify the native conformation of the purified TPI enzyme

species. The TPI proteins were diluted to a final concentration

of approximately 3.7 mM in 20 mM HEPES (pH 7.5). CD

recordings were performed at 258C on a Jobin Yvon CD6

Dichrograph, as described previously [50]. Three scans were

averaged and base line subtracted using the software provided

by the Jobin Yvon CD6 Dichrograph manufacturer.

5.4. Enzyme activity assays
TPI activity was determined as described previously [21,51].

In brief, activity of TPI in cell-free protein extracts of

http://www.addgene.org
http://www.addgene.org
http://www.addgene.org
http://www.addgene.org
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transgenic yeast expressing human TPI, or with purified human

TPI recombinantely expressed in E. coli, was determined in an

enzyme-coupled reaction with glycerol 3-phosphate dehydro-

genase. Optical density measurements at 340 nm were used

to detect NADH to NADþ oxidation upon adding the TPI

substrate glyceraldehyde 3-phosphate and recorded in 12 s

intervals in a spectrophotometer (Amersham US 2000). Km

and Ki values were determined by generating saturation

curves with G3P and PEP, respectively.

5.5. Thermal shift assays
The detection of protein thermal unfolding was performed in

96-well plates on an iQ5 real-time PCR cycler (BioRad). The

reaction mix of 100 ml 20 mM HEPES (pH 7.5) contained

approximately 4.5 mM protein, 0.4 ml 500� SYPRO Orange

(Sigma Aldrich) and PEP and/or G3P at the indicated concen-

trations. Thermal unfolding of the proteins was monitored by

increasing the temperature from 25 to 958C in 28C min– 1

steps. Measurements were taken every 0.58C. The resulting

curves were each fitted with a four-parameter log-logistic func-

tion and protein melt points (inflection points) were calculated

using R v. 2.14.1 and the drc package v. 2.3-0. The protein melt

points for each ligand concentration were plotted against the

melt temperature and fitted with equation (5.1).

y ¼ Tmax � x
Kdþ x

þ a� xþ b: (5:1)

5.6. Oxidant-tolerance tests and growth curves
Oxidant tolerance tests were performed as described earlier

[7] and growth was monitored after 2–3 days of incubation

at 308C. For growth curves, overnight cultures of the indi-

cated yeast strains were diluted to an OD600 ¼ 0.2 in SC2His

media. Aliquots of the same cultures were incubated for

5 min at the indicated temperatures. Immediately after the

heat shock, the cells were transferred to a 96-well plate

and growth was monitored in a FLUOstar OPTIMA (BMG

Labtech) plate reader for 25 h.

5.7. Sample extraction for metabolomics
Sugar phosphate intermediates were quantified with a pro-

cedure adapted from our earlier work [38,52]. Briefly, 7.5 OD

units of cell suspension were sampled in log phase at an
OD600 1.5+0.05 by rapid cold methanol quenching [53] and

then lysed in 200 ml organic extraction buffer (75 : 25

acetonitrile : water, 0.2% formic acid) by three repeated

FastPrep-24 (MP Biomedicals) cycles for 20 s at 6.5 m s21.

The second extraction cycle was performed with 200 ml and

UPLC-grade water. Supernatants from both extraction steps

were combined and the solvent was evaporated in a SpeedVac

concentrator. The dry pellets were resuspended in 100 ml 7%

acetonitrile, centrifuged and metabolite concentrations were

quantified by subsequent LC-MS/MS analysis.
5.8. LC-MS/MS measurements
Samples were subjected to LC separation (Agilent 1290) on a

C8 column (Zorbax SB-C8 Rapid Resolution HD, 2.1 �
100 mm, 1.8 mm, Agilent; column temperature: 208C, injection

volume: 1 ml). Separation was achieved by isocratic flow at

12% acetonitrile for 3.5 min followed by a gradient to 38%

acetonitrile within 2.5 min. With an additional washing step

(42% acetonitrile, 0.5 min) and re-equilibration to starting con-

ditions, this resulted in a total cycle time of 7.5 min. All buffers

contained 750 mg l21 octylammoniumacetate as ion pairing

reagent. An online coupled triple quadrupole mass spec-

trometer (Agilent 6460) operating in SRM mode was used for

quantification. Individual metabolites were identified by

matching retention time and fragmentation pattern with com-

mercially available standards. SRM transitions, ionization and

fragmentation energies were optimized for each compound

(electronic supplementary material, table S2). Ion source set-

tings are listed in the electronic supplementary material,

table S3. Data analysis was done in the Masshunter Worksta-

tion software package (Agilent). External calibration curves

were measured repeatedly and used to determine absolute

concentrations.
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