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Genetic diagnosis of Mendelian disorders via RNA
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Across a variety of Mendelian disorders, B50–75% of patients do not receive a genetic

diagnosis by exome sequencing indicating disease-causing variants in non-coding regions.

Although genome sequencing in principle reveals all genetic variants, their sizeable number

and poorer annotation make prioritization challenging. Here, we demonstrate the power of

transcriptome sequencing to molecularly diagnose 10% (5 of 48) of mitochondriopathy

patients and identify candidate genes for the remainder. We find a median of one aberrantly

expressed gene, five aberrant splicing events and six mono-allelically expressed rare variants

in patient-derived fibroblasts and establish disease-causing roles for each kind. Private exons

often arise from cryptic splice sites providing an important clue for variant prioritization.

One such event is found in the complex I assembly factor TIMMDC1 establishing a novel

disease-associated gene. In conclusion, our study expands the diagnostic tools for

detecting non-exonic variants and provides examples of intronic loss-of-function variants with

pathological relevance.
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D
espite the revolutionizing impact of whole-exome
sequencing (WES) on the molecular genetics of
Mendelian disorders, B50–75% of the patients do not

receive a genetic diagnosis after WES1. The disease-causing
variants might be detected by WES but remain as variants of
unknown significance (VUS, Methods section) or they are missed
due to the inability to prioritize them. Many of these VUS are
synonymous or non-coding variants that may affect RNA
abundance or isoform but cannot be prioritized due to the poor
understanding of regulatory sequence to date compared to coding
sequence. Furthermore, WES covers only the 2% exonic regions
of the genome. Accordingly, it is mostly blind to regulatory
variants in non-coding regions that could affect RNA sequence
and abundance. While the limitation of genome coverage is
overcome by whole genome sequencing (WGS), prioritization
and interpretation of variants identified by WGS is in turn limited
by their amount2–4.

With RNA sequencing (RNA-seq), limitations of the sole
genetic information can be complemented by directly probing
variations in RNA abundance and in RNA sequence, including
allele-specific expression and splice isoforms. At least three
extreme situations can be directly interpreted to prioritize
candidate disease-causing genes for a rare disorder. First, the
expression level of a gene can lie outside its physiological range.
Genes with expression outside their physical range can be
identified as expression outliers, often using a stringent cutoff on
expression variations, for instance using the Z-score5 or statistics
at the level of whole gene sets6,7. The genetic causes of such
aberrant expression includes rare variants in the promoter8 and
enhancer but also in coding or intronic regions5. Second,
RNA-seq can reveal extreme cases of allele-specific expression
(mono-allelic expression (MAE)), whereby one allele is silenced,
leaving only the other allele expressed. When assuming a
recessive mode of inheritance, genes with a single heterozygous
rare coding variant identified by WES or WGS analysis are not
prioritized. However, MAE of such variants fits the recessive
mode of inheritance assumption. Detection of MAE can thus help
re-prioritizing heterozygous rare variants. Reasons for MAE can
be genetic. A pilot study validated compound heterozygous
variants within one gene as cause of TAR syndrome, where one
allele is deleted and the other harbours a non-coding variant that
reduces expression9. MAE can also have epigenetic causes such as
X-chromosome inactivation or imprinting on autosomal genes,
possibly by random choice10,11. Third, splicing of a gene can be
affected. Aberrant splicing has long been recognized as a major
cause of Mendelian disorders (reviewed in refs 12–14). However,
the prediction of splicing defects from genetic sequence is difficult
because splicing involves a complex set of cis-regulatory elements
that are not yet fully understood. Some of them can be deeply
located in intronic sequences15 and are thus not covered by WES.
Hence, direct probing of splice isoforms by RNA-seq is
important, and has led to the discovery of multiple splicing
defects based on single gene studies: skipping of multiple
exons (exon 45–55)16 and creation of a new exon by a deep
intronic variant in DMD17, intron retention in LMNA caused by
a 50 splice site variant18, and skipping of exon 7 in SMN1
caused by a variant in a splicing factor binding site19. Altogether,
RNA-seq promises to be an important complementary tool to
facilitate molecular diagnosis of rare genetic disorders. However,
no systematic study to date has been conducted to assess
its power.

We considered investigating the power of RNA-sequencing for
molecular diagnosis with a panel of patients diagnosed with a
mitochondrial disorder for three reasons. First, mitochondrial
diseases collectively represent one of the most frequent inborn
errors of metabolism affecting 2 in 10,000 individuals20. Second,

the broad range of unspecific clinical symptoms and the genetic
diversity in mitochondrial diseases makes molecular diagnosis
difficult and WES often results in VUS. As a consequence of the
bi-genomic control of the energy-generating oxidative
phosphorylation (OXPHOS) system, mitochondrial diseases
may result from pathogenic mutations of the mitochondrial
DNA or nuclear genome. More than 1,500 different nuclear genes
encode mitochondrial proteins21 and causal defects have been
identified in B300 genes and presumably more additional
disease-associated genes still awaiting identification22. Third,
since the diagnosis often relies on biochemical testing of a tissue
sample, fibroblast cell lines are usually available from those
patients. Moreover, for many patients, the disease mechanisms
can be assayed in epidermal fibroblast cell lines even though the
disease may manifest in different tissues23. This allows rapid
demonstration of the necessary and sufficient role of candidate
variants by perturbation and complementation assays24. This also
indicates that disease-causing expression defects, if any, should be
detectable in these cell lines.

Here, we establish an analysis pipeline to systematically
detect RNA defects to complement genome-based molecular
diagnosis. We find a median of one aberrantly expressed gene,
five aberrant splicing events and six mono-allelically expressed
rare variants in patient-derived fibroblasts and establish
disease-causing roles for each kind. This leads to the molecular
diagnosis of 10% of undiagnosed mitochondriopathy patients
(5 out of 48) and yields candidate genes for 36 other patients.
Systematic analysis of private exons shows that these often
occur at locations where splicing is detectable at basal level in
the population, providing an important clue for variant
prioritization. Altogether, our study expands the tools for
interpreting non-exonic variants and accelerating the genetic
diagnosis of rare disorders.

Results
RNA sequencing on patient-derived fibroblasts. We performed
RNA-seq on 105 fibroblast cell lines from patients with a
suspected mitochondrial disease including 48 patients for which
WES based variant prioritization did not yield a genetic diagnosis
(Fig. 1, Methods section, Supplementary Table 1). After
discarding lowly expressed genes, RNA-seq identified 12,680
transcribed genes (at least 10 reads in 5% of all samples, Methods
section, Supplementary Data 1). We systematically prioritized
genes with the following three strategies: (i) genes with aberrant
expression level6–8, (ii) genes with aberrant splicing17,25 and
(iii) MAE of rare variants9 (Fig. 1) to estimate their disease
association. All strategies are based on the comparison of one
patient against the rest. We assumed the causal defects to differ
between patients, which is reasonable for mitochondrial disorders
with a diversity of B300 known disease-causing genes
(Supplementary Data 2). Therefore, the patients serve as good
controls for each other.

Aberrant expression. Once normalized for technical biases, sex
and biopsy site (Supplementary Method 1 and Supplementary
Fig. 1), the samples typically presented few aberrantly expressed
genes (median of 1, 90% of the samples with o10, Fig. 2a,
Supplementary Data 3) with a large effect (|Z-score|43)
and significant differential expression (Hochberg adjusted P
valueo0.05). Among the most aberrantly expressed genes
across all samples, we found 2 genes encoding mitochondrial
proteins, MGST1 (one case) and TIMMDC1 (two cases) to be
significantly down-regulated (Fig. 2b–d and Supplementary
Fig. 2). For both genes, WES did not identify any variants in
the respective patients, no variant is reported to be
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disease-associated and no case of potential bi-allelic rare variant
is listed in our in-house database comprising more than 1,200
whole-exomes from mitochondrial patients and more than
15,000 whole-exomes available to us from different ongoing
research projects. To evaluate the consequences of diminished
RNA expression at the protein level, we performed quantitative
proteomics in a total of 31 fibroblast cell lines (including these
three patients, and further 17 undiagnosed and 11 diagnosed
patients, Supplementary Table 1, Supplementary Data 4 and 5,
Supplementary Methods 2–5) from a second aliquot of cells
taken at the same time as the RNA-seq aliquot. Normalized
RNA and protein expression levels showed a median rank
correlation of 0.59, comparable to what has been previously
reported26,27 (Supplementary Fig. 3). Patient #73804 showed
B2% of control MGST1 level whilst the lack of detection of
TIMMDC1 in both patients (#35791 and #66744) confirmed an
even stronger effect on protein expression, indicating loss of
function (Fig. 2e and Supplementary Fig. 4). MGST1, a
microsomal glutathione S-transferase, is involved in the
oxidative stress defense28. Consequently, the loss of
expression of MGST1 is not only a likely cause of the disease
of this patient, who suffers from an infantile-onset
neurodegenerative disorder similar to a recently published
case with another defect in the reactive oxygen species defense
system (Supplementary Fig. 4, Supplementary Note 1)29, but
also suggests a treatment with antioxidants. Both TIMMDC1
patients presented with muscular hypotonia, developmental
delay and neurological deterioration, which led to death in the
first 3 years of life (Supplementary Note 1). Consistent with the
described function of TIMMDC1 as a respiratory chain
complex I assembly factor30,31, we found isolated complex I

deficiency in muscle (Supplementary Fig. 2), and globally
decreased levels of complex I subunits in fibroblasts by
quantitative proteomics (Fig. 2e and Supplementary Fig. 2)
and western blot (Fig. 2f, Supplementary Fig. 10).
Re-expression of TIMMDC1 in these cells increased complex
I subunit levels (Fig. 2f). These results not only validate
TIMMDC1-deficiency as disease causing but also provide
compelling evidence for an important function of TIMMDC1
in complex I assembly.

Aberrant splicing. We identified aberrant splicing events by
testing for differential splicing in each patient against the others,
using an annotation-free algorithm able to detect splice sites de
novo (Methods section, median of 5 abnormal events per sample,
90% with o16, Fig. 3a). Among the 175 aberrant spliced genes
detected in the undiagnosed patients, the most abundant
events were, apart from differential expression of isoforms, exon
skipping followed by the creation of new exons (Fig. 3b). Two
genes encoding mitochondrial proteins, TIMMDC1 and CLPP,
which were among the 20 most significant genes, caught our
attention (Supplementary Data 6). Out of 136 exon-junction
reads overlapping the acceptor site of CLPP exon 6 for patient
#58955, 82 (per cent spliced in ref. 32, C¼ 60%) skipped exon 5,
and 14 (C¼ 10%) showed a 30-truncated exon 5, in striking
contrast to other samples (Fig. 3c). The likely genetic cause of
these two splice defects is a rare homozygous variant in exon 5 of
CLPP affecting the last nucleotide of exon 5 (c.661G4A,
p.Glu221Lys 1.2� 10� 5 frequency in the ExAC database33,
Supplementary Fig. 5). Both detected splice defects result in
truncated CLPP and western blots corroborated the complete loss
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Figure 1 | Strategy for genetic diagnosis using RNA-seq. The approach we followed started with RNA-seq of fibroblasts from unsolved WES patients.

Three strategies to facilitate diagnosis were pursued: Detection of aberrant expression (for example, depletion), aberrant splicing (for example, exon

creation) and MAE of the alternative allele (for example, A as alternative allele). Candidates were validated by proteomic measurements, lentiviral

transduction of the wild-type (wt) allele or, in particular cases, by specific metabolic supplementation.
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of full-length CLPP (Supplementary Figs 5 and 11). Our WES
variant filtering reported this variant as a VUS and classified
CLPP as one among 30 other potentially bi-allelic affected
candidate genes (Supplementary Data 7). Since the variant was of
unknown significance, the patient remained without genetic
diagnosis. The loss of function found by RNA-seq and confirmed
by western blotting now highlights clinical relevance of the
variant within CLPP. CLPP encodes a mitochondrial
ATP-dependent endopeptidase34 and CLPP-deficiency causes
Perrault syndrome35,36 (OMIM #601119) which is overlapping
with the clinical presentation of the patient investigated here
including microcephaly, deafness and severe psychomotor
retardation (Supplementary Note 1). Moreover, a study recently
showed that Clpp� /� mice are deficient for complex IV
expression37, in line with complex IV deficiency of this patient
(Supplementary Fig. 5).

Split read distribution indicated that both TIMMDC1-deficient
patients expressed almost exclusively a TIMMDC1 isoform with a
new exon in intron 5 (Fig. 3d). This new exon introduces a

frameshift yielding a premature stop codon (p.Gly199_Thr200ins5*,
Fig. 3e). Moreover, this new exon contained a rare variant
(c.596þ 2146A4G) not listed in the 1,000 Genomes Project2,3

(validated by Sanger sequencing, Supplementary Fig. 2,
Supplementary Method 6). WGS demonstrated that this variant is
homozygous in both patients (Fig. 3e, Supplementary Method 7),
the only rare variant in this intron and close to the splice site (þ 6
of the new exon). We could not identify any rare variant in the
promoter region or in any intron–exon boundary of TIMMDC1.
Additionally, when testing six prediction tools for splicing events,
this deep intronic rare variant is predicted by SpliceAid2 (ref. 38) to
create multiple binding sites for splice enhancers. Together with the
correctly predicted new acceptor and donor sites by SplicePort39

(Feature generation algorithm score 0.112 and 1.308, respectively)
this emphasizes the influence of this variant in the creation of the
new exon. Besides, the four other tools predicted no significant
change in splicing40–43. We further discovered an additional family
in our in-house WGS database (consisting of 36 patients with a
suspected mitochondrial disorder and 232 further patients with
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gene are highlighted in red (#35791, #66744, and #73804). (e) Gene-wise comparison of RNA and protein fold changes of patient #35791 compared to

the average across the fibroblast cell lines of all other patients. Subunits of the mitochondrial respiratory chain complex I are highlighted (red squares).
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unrelated diseases) carrying the same homozygous intronic variant.
In this family three affected siblings presented with similar clinical
symptoms although without a diagnosis of a mitochondrial disorder

(Fig. 3e, Supplementary Fig. 2). Two siblings died before the age of
10. A younger brother (#96687), now 6 years of age, presented with
muscle hypotonia, failure to thrive and neurological impairment
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(Supplementary Note 1), similar to the patients described above.
Western blot analysis confirmed TIMMDC1-deficiency (Fig. 2f,
Supplementary Fig. 10) and impaired complex I assembly, which
was restored after re-expression of TIMMDC1 (Fig. 2g,
Supplementary Fig. 10). The discovery of the same intronic
TIMMDC1 variant in three unrelated families from three different
ethnicities provides convincing evidence on the causality of this
variant for the TIMMDC1 loss-of-function.

In almost all non-TIMMDC1-deficiency samples, we noticed a
few split reads supporting inclusion of the new exon (Fig. 3d),
consistent with an earlier report that many cryptic splice sites are
not entirely repressed but active at low levels44. We set out to
quantify this phenomenon and to interrogate the frequency of
private exons originating from weakly spliced exons, independent of
their possible association with disease. Consequently, we modelled
the distribution of C for the 1,603,042 splicing events detected
genome-wide in 105 samples as a mixture of three components. The
model classified splicing frequencies per splice site as strong (20%,
with C45.3%), weak (16%, with 0.16%oCo5.3%), or
background (64%, with Co0.16%, Methods section, Fig. 3f and
Supplementary Fig. 6). Strikingly, the majority (70%, 4.4-fold more
than by chance) of the 17 discovered private exons originated from
weak splice sites (Fig. 3f, bottom). These data confirm that weakly
spliced cryptic exons are loci more susceptible to turn into strongly
spliced sites than other intronic regions. These weak splicing events
are usually dismissed as ‘noise’ since they are only supported by few
reads in a given sample. Our analysis shows that they can be
detected as accumulation points across multiple individuals. Hence,
these results suggest that the prioritization of deep intronic VUSs
gained through WGS could be improved by annotating weak splice
sites and their resulting cryptic exons.

Mono-allelic expression. As a third approach, we searched
for MAE of rare variants. In median per sample, 35,521
heterozygous SNVs were detected by WES, of which 7,622 were
sufficiently covered by RNA-seq to call MAE (more than 10
reads), 20 showed MAE (Hochberg adjusted P valueo0.05,
allele frequency Z0.8), of which 6 were rare variants (minor
allele frequencyo0.001, Methods section, Fig. 4a, 90% of the
samples had o12 MAE of rare variants). Amongst the 18 rare
mono-allelic expressed variants in patient #80256 was a VUS in
ALDH18A1 (c.1864C4T, p.Arg622Trp, Fig. 4b), encoding an
enzyme involved in mitochondrial proline metabolism45. This
VUS had been seen in WES compound heterozygous with a
nonsense variant (c.1988C4A, p.Ser663*, Fig. 4b and
Supplementary Fig. 7). Variants in ALDH18A1 had been
reported to be associated with cutis laxa III (OMIM
#138250)46,47, yet the patient did not present cutis laxa.
Because of this inconsistent phenotype and the unknown
significance of the non-synonymous variant, the variants in
ALDH18A1 were not regarded as disease causing. However,
RNA-seq-based aberrant expression (Supplementary Fig. 7)
and MAE analysis prioritized ALDH18A1 again. Validation by
quantitative proteomics revealed severe reduction down to
B2% ALDH18A1 (Fig. 4c), indicating that the rare MAE
variant affects translation or protein stability. Metabolomics
profile of blood plasma was in accordance with a defect in
proline metabolism (Fig. 4d, Supplementary Method 8) and the
following changes in urea cycle. Patient fibroblasts showed a
growth defect that was rescued by supplementation of proline,
validating impaired proline metabolism as the underlying
molecular cause (Fig. 4e). Our experimental evidence strongly
suggests that the two observed variants are pathogenic. Finally,
a recent report48 on ALDH18A1 patients extended the
phenotypic spectrum to spastic paraplegia without cutis laxa
(OMIM #138250). Spastic paraplegia resembles the symptoms

of our patient (Supplementary Note 1), which validates these
ALDH18A1 mutations as disease-causing.

In another patient (#62346) we found borderline
non-significant low expression of MCOLN1 with 10 out of 11
reads expressing an intronic VUS (c.681-19A4C, Fig. 4f). This
intronic variant was detected as part of a retained intron, which
introduced a nonsense codon (p. Lys227_Leu228ins16*, Fig. 4f
and Supplementary Fig. 8). When looking at the WES
data we could additionally identify a heterozygous nonsense
variant (c.832C4T, p.Gln278*). The allele with the exonic
nonsense mutation was not expressed, most likely due to
nonsense-mediated decay. Mutations in MCOLN1 are asso-
ciated with mucolipidosis (OMIM #605248). The symptoms of
the patient were initially suggestive for mucolipidosis, but none
of the enzymatic tests available for mucolipidosis types 1, 2 and
3 revealed an enzyme deficiency in blood leucocytes
(Supplementary Note 1). Moreover, MCOLN1 was missed by
our WES variant filter since the intronic variant was not
prioritized. Hence, the WES data could not be conclusive about
MCOLN1. In contrast, the RNA-seq data demonstrated two
loss-of-function alleles in MCOLN1 and therefore established
the genetic diagnosis.

RNA defects in exome-diagnosed patients. Here, we included
genetically diagnosed patients in our RNA-seq analysis pipeline
to increase the power for the detection of aberrant expression
and aberrant splicing in fibroblast cell lines. However,
when evaluating the results for 40 diagnosed cases with WES
and RNA-seq available (Supplementary Table 1), aberrant
splicing detected 7 out of 8 cases with a causal splicing variant,
MAE recovered 3 out of 6 patients with heterozygous missense
variants compound with a stop or frameshift variant, and
aberrant expression recovered 3 out of 4 homozygous stop
variants. Counter-intuitively, only one of the 9 frame-shift
variants did lead to a detectable RNA defect, that is, MAE of a
near splice site intronic variant within a retained intron. The
partial recovery of stop and frameshift variants may reflect
incomplete nonsense mediated decay. For none of the 14 genes
where missense variants were disease causing, a RNA defect
could be detected with our pipeline. This is expected, since
missense variants more likely affect protein function rather
than RNA expression (Supplementary Table 2).

Discussion
Altogether, our study demonstrates the utility of RNA-seq in
combination with bioinformatics filtering criteria for molecular
diagnosis by (i) discovering a new disease-associated gene,
(ii) providing a diagnosis for 10% (5 of 48) of undiagnosed cases
and (iii) identifying a limited number of strong candidates.
We established a pipeline for the detection of aberrant expression,
aberrant splicing and MAE of rare variants, that is able to detect
significant outliers, with a median of 1, 5 and 6, respectively.
Overall, for 36 patients our pipeline provides a strong candidate
gene, that is, a known disease-causing or mitochondrial protein-
encoding gene, like MGST1 (Fig. 5a, Supplementary Data 7).
This manageable amount, similar to the median number of 16
genes with rare potentially bi-allelic variants detected by WES,
allows manual inspection and validation by disease experts. While
filtering by frequency is highly efficient when focusing on the
coding region, frequency filtering is not as effective for intronic or
intergenic variants identified by WGS. The loss-of-function
character observed on RNA level thus improved interpretation
of VUS identified by genotyping.

We focused our analysis on one sample preparation pipeline,
which has several advantages. Based on our experience,
expression outliers can only reliably be detected after extensive
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Figure 4 | Detection and validation of MAE of rare variants. (a) Distribution of heterozygous single nucleotide variants (SNVs) across samples for

different consecutive filtering steps. Heterozygous SNVs detected by exome sequencing (black), SNVs with RNA-seq coverage of at least 10 reads (grey),

SNVs where the alternative allele is mono-allelically expressed (alternative allele frequency 40.8 and Benjamini-Hochberg corrected P value o0.05, blue),

and the rare subset of those (ExAC minor allele frequency o0.001, red). (b) Fold change between alternative (ALTþ 1) and reference (REFþ 1) allele read

counts for the patient #80256 compared to total read counts per SNV within the sample. Points are coloured according to the groups defined in a.

(c) Gene-wise comparison of RNA and protein fold changes of the patient #80256 compared to the average across the fibroblast cell lines of all other

patients. The position of the gene ALDH18A1 is highlighted. Reliably detected proteins that were not detected in this sample are shown separately with their

corresponding RNA fold changes (points below solid horizontal line). (d) Relative intensity for metabolites of the proline biosynthesis pathway (inlet)

for the patient #80256 and 16 healthy controls of matching age. Equi-tailed 95% interval (whiskers), 25th, 75th percentile (boxes) and median

(bold horizontal line) are indicated. Data points belonging to the patient are highlighted (red circles, P values were computed using the Student’s t-test).

(e) Cell counts under different growth conditions for the NHDF and patient #80256. Both fibroblasts were grown in fetal bovine serum (FBS), dialysed FBS

(without proline) and dialysed FBS with proline added. Boxplot as in d. P values are based on a two-sided Wilcoxon test. (f) Intron retention for MCOLN1 in

patient #62346. Tracks from top to bottom: genomic position on chromosome 19, amino acid translation (red for stop codons), RefSeq gene model,

coverage of WES of patient #62346, RNA-seq based coverage for patients #62346 and #85153 (red and orange shading, respectively). SNVs are indicated

by non-reference coloured bars with respect to the corresponding reference and alternative nucleotide.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15824 ARTICLE

NATURE COMMUNICATIONS | 8:15824 | DOI: 10.1038/ncomms15824 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


normalization process. This needs information about all
technical details starting from the biopsy, growth of the cells,
to the RNA extraction and library preparation. Usually not all
this information is available in published data sets. For
detecting aberrant splicing such as new exons, we would
recommend not to mix different tissues because splicing can be
tissue-specific. MAE is the most robust of all criteria in this
respect because it only relies on read counts within a sample.
Overall, we recommend not relying on a single sample being
compared to public RNA-seq data sets. Instead, RNA-seq
should be included in the pipeline of diagnostic centres
to generate matching controls over time. The situation is
similar for whole exome and WGS, where the control for
platform-specific biases is important.

To our surprise, many newly diagnosed cases were caused by a
defective splicing event, which caused loss of function (Fig. 5b),
confirming the increasing recognition of the role of splicing
defects in both Mendelian49,50 and common disorders25. In the
case of TIMMDC1, the causal variant was intronic, and thus not
covered by WES. Even when detected by WGS, such deep
intronic variants are difficult to prioritize from the sequence
information alone. Here, we showed that RNA-seq of large
cohorts can provide important information about intronic
positions that are particularly susceptible to affect splicing when
mutated. We showed that private exons often arise from loci with
weak splicing of B1%. This suggests that rare variants affecting
such cryptic splice sites are more likely to affect splicing and that
these can be detected as positions with low yet consistent splicing.
We reason that analysis of a RNA-seq compendium of healthy
donors across multiple tissues such as GTEx (ref. 51) could
provide tissue-specific maps of cryptic splice sites useful for
prioritizing intronic variants.

Genetic disorders typically show specificity to some tissues,
some of which might not be easily accessible for
RNA-sequencing. It is therefore natural to question whether
transcriptome sequencing of an unaffected tissue can help
diagnosis. Here, we performed RNA-seq on patient derived
dermal fibroblast cell lines. The fibroblast cell lines are the
byproducts of muscle biopsies routinely undertaken in the clinic
to biochemically diagnose mitochondrial disorders with
enzymatic assays. By using fibroblast cell lines we overcome the
limited accessibility of the affected tissues, which in the case of
mitochondrial disorders are often high energy demanding tissues
like brain, heart, skeletal muscle or liver. It turns out that many
genes with a mitochondrial function are expressed in most
tissues52, including fibroblasts. Hence, extreme regulatory defects
such as loss of expression or aberrant splicing of genes encoding
mitochondrial proteins can be detected in fibroblasts, even
though the physiological consequence on fibroblasts might be
negligible. This property might be true for other diseases: the
tissue-specific physiological consequence of a variant does not
necessarily stem from tissue-specific expression of the gene
harbouring the variant. In many cases, tissue-specificity might be
due to environmental or cellular context, or from tissue-specific
expression of further genes. Hence, tissue-specificity does not
preclude RNA-seq of unaffected tissues from revealing the
causative defect for a large number of patients. Moreover,
non-affected tissues have the advantage that the regulatory
consequences on other genes are limited and therefore the causal
defects are more likely to stand out as outliers53.

Parallel to our effort, another study systematically investigated
the usage of RNA-seq for molecular diagnosis with a similar
sample size, using muscle biopsies from primary muscle disorder
patients50. Analogously to our approach, not only exome
sequencing-based VUS candidates were validated, but also new
disease-causing mechanisms identified using RNA-seq data.

Despite a few differences in the approach (expression outliers
were not looked for, only samples of the affected tissues were
considered and using samples of healthy donors as controls), the
results are in line with ours whereby aberrant splicing also turns
out to be a frequent disease-causing event. The success rate was
even higher (35%), possibly because the diagnostic rate of
primary muscle disorders is higher than for mitochondrial
disorders. Also, in this case the affected tissue was always
accessible and could be profiled. Therefore the chances were
higher that the affected gene is expressed. Altogether, this
complementary study confirms the relevance of using RNA-seq
for diagnosis of Mendelian disorders.

In conclusion, we predict that RNA-seq will become
an essential companion of genome sequencing to address
undiagnosed cases of genetic disease.

Methods
Study cohort. All individuals or their guardians gave written informed
consent before undergoing evaluation and testing, in agreement with the
Declaration of Helsinki and approved by the ethical committees of the centres
participating in this study, where biological samples were obtained. All studies
were completed according to local approval of the ethical committee of the
Technical University of Munich. The study cohort is described in detail in
Supplementary Note 1.

Exome sequencing. DNA from fibroblast cell lines was isolated from whole-cell
lysates using the AllPrep DNA Mini Kit (Qiagen, Hilden, Germany) according
to the manufacturer’s protocol. Exonic regions were enriched using the SureSelect
Human All Exon kit from Agilent (Supplementary Data 3) followed by
sequencing as 100 bp paired-end runs on an Illumina HiSeq2000 and Illumina
HiSeq2500 (AG_50MB_v4 and AG_50MB_v5 exome kit samples) or as 76 bp
paired-end runs on the Illumina GAIIx (AG_38MB_v1 and AG_50MB_v3
exome kit samples)54.

Exome alignment and variant prioritization. Read alignment to the human
reference genome (UCSC Genome Browser build hg19) was done using
Burrows-Wheeler Aligner55 (v.0.7.5a). Single-nucleotide variants and small
insertions and deletions (indels) were detected with SAMtools56,57(version 0.1.19).
Variants with a quality score below 90, a genotype quality below 90, a mapping
quality below 30, and a read coverage below 10 were discarded. The reported
variants and small indels were annotated with the most severe entry by the Variant
Effector Predictor58 based on The Sequence Ontology term ranking59. The
candidate variants for one patient are filtered to be rare, affect the protein sequence
and potentially both alleles.

Variants are rare with a minor allele frequency o0.001 within the ExAC
database33 and a frequency o0.05 among our samples. Our filter considers
variants to affect the protein, if they are a coding structural variant or their
mutation type is one of ablation, deletion, frame-shift, incomplete, start lost,
insertion, missense, splice, stop gain, stop retain, unstart and unstop. A potential
biallelic effect can be caused by either a homozygous or at least two heterozygous
variants in the same gene, whereas in latter case we assume that the heterozygous
variants are on different alleles (Supplementary Fig. 9). This filter is designed for a
recessive type disease model and does not account for a single heterozygous variant
that could be disease causing in a dominant way.

Variant of unknown significance. ‘A variation in a genetic sequence whose
association with disease risk is unknown. Also called unclassified variant, variant
of uncertain significance and VUS.’ (see https://www.cancer.gov/publications/dic-
tionaries/genetics-dictionary?cdrid=556493).

Cell culture. Primary patient fibroblast cell lines, normal human dermal fibroblasts
(NHDF) from neonatal tissue (Lonza) and 293FT cells (Thermo Fisher Scientific)
were cultured in high glucose DMEM (Life Technologies) supplemented with 10%
FBS, 1% penicillin/streptomycin, and 200mM uridine at 37 �C and 5% CO2. All
fibroblast cell lines have been tested negative for mycoplasma contamination.

RNA sequencing. Non-strand specific, polyA-enriched RNA-seq was performed
as described in ref. 23: RNA was isolated from whole-cell lysates using the AllPrep
RNA Kit (Qiagen) and RNA integrity number (RIN) was determined with the
Agilent 2100 BioAnalyzer (RNA 6000 Nano Kit, Agilent). For library preparation,
1 mg of RNA was poly(A) selected, fragmented and reverse transcribed with the
Elute, Prime and Fragment Mix (Illumina). End repair, A-tailing, adaptor ligation
and library enrichment were performed as described in the Low Throughput
protocol of the TruSeq RNA Sample Prep Guide (Illumina). RNA libraries were
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assessed for quality and quantity with the Agilent 2100 BioAnalyzer and the
Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies). RNA libraries were
sequenced as 100 bp paired-end runs on an Illumina HiSeq2500 platform.

Processing of RNA sequencing files. RNA-seq reads were demultiplexed and
mapped with STAR60 (version 2.4.2a) to the hg19 genome assembly (UCSC
Genome Browser build). In addition to the default parameters we detected gene
fusions and increased sensitivity for novel splice junctions (chimSegmentMin¼ 20,
twopassMode¼ ‘Basic’). Analysis was restricted to the 27,682 UCSC Known
Genes61 (genome annotation version hg19) of chromosomes 1–22, M, X or Y. Per

gene, reads that are paired with mates from opposite strands and that overlapped
completely within the gene on either strand orientation were counted using the
summarizeOverlaps function of the R/Bioconductor GenomicAlignments62

package (parameters: mode¼ intersectionStrict, singleEnd¼ FALSE,
ignore.strand¼TRUE and fragments¼ FALSE). If the 95th percentile of the
coverage across all samples was below 10 reads the gene was considered ‘not
expressed’ and discarded from later analysis.

Computing RNA fold changes and differential expression. Before testing for
differential expression between one patient of interest and all others, we controlled
for technical batch effect, sex and biopsy site as inferred from the expression of hox
genes (Supplementary Method 1, Supplementary Data 8). We modelled the
RNA-seq read counts Ki,j of gene i in sample j with a generalized linear model
using the R/Bioconductor DESeq2 package63,64:

Ki;j � NB sj�qi;j; ai
� �

log2ðqi;jÞ ¼ b0
i þ bcondition

i xcondition
i;j þbbatch

i xbatch
i;j þbsex

i xsex
i;j þ bhox

i xhox
i;j

Where NB is the negative binomial distribution; ai is a gene specific dispersion
parameter; sj is the size factor of sample j; b0

i is the intercept parameter for gene i.
The value of xcondition

i;j is 1 for all RNA samples j of the patient of interest, thereby
allowing for biological replicates, and 0 otherwise. The resulting vector bcondition

i
represents the log2 fold changes for one patient against all others. Z-scores were
computed by dividing the fold changes by the s.d. of the normalized expression
level of the respective gene. The P values corresponding to the bcondition

i were
corrected for multiple testing using the Hochberg family-wise error rate method65.

Detection of aberrant splicing. The LeafCutter66 software was utilized to detect
aberrant splicing. Each patient was tested against all others. To adjust LeafCutter to
the rare disease setting, we modified the parameters to detect rare clusters, capture
local gene fusion events and to detect junctions unique to a patient
(minclureads¼ 30; maxintronlen¼ 500,000; mincluratio¼ 1e-5, Supplementary
Data 9). Furthermore, one sample was tested against all other samples
(min_samples_per_group¼ 1; min_samples_per_intron¼ 1). The resulting P
values were corrected for multiple testing using a family-wise error rate approach65.

The significant splice events (Hochberg adjusted P valueo0.05) detected in the
undiagnosed patients were visually classified as exon skipping, exon truncation, exon
elongation, new exon, complex splicing (any other splicing event or a combination of
the aforementioned ones) and false positives (n¼ 73, Fig. 3b). However, due to
LeafCutter’s restriction to split reads it is difficult to detect intron retention events,
since no split-read is present in a perfect intron-retention scenario.

For further analysis, only reads spanning a splice junction, so called split reads,
were extracted with a mapping quality of 410 to reduce the false-positive rate due
to mapping issues. Each splice site was annotated as belonging to the start or end of
a known exon or to be entirely new. For the reference exon annotation the
GENCODE release 24 based on GRCh37 was used67. The per cent spliced in (C)
values32 for the 30 and 50 sites were calculated as:

C5 D;Að Þ ¼ nðD;AÞP
A0 nðD;A0Þ and C3 D;Að Þ ¼ nðD;AÞP

D0 nðD0;AÞ
where D is a donor site and A is an acceptor site. n(D,A) denotes the number of

reads spanning the given junction. D0 and A0 represent all possible donor and
acceptor sites, respectively.

Classification of splice sites into background, weak and strong was done by
modelling the distribution of the C5 and C3-values with three components.
Identifiability of the three components was facilitated by considering three groups of
junctions depending on previous annotation of splice sites: ‘no side is annotated’, ‘one
side is annotated’ and ‘both sides are annotated’. Specifically, the number of split reads
n(D, A) of a junction conditioned on the total number of reads N(D, A)¼SA0n (D,
A0), for C5, and N (D, A)¼SD0n (D0, A), for C3, was modelled as:

P n D;Að Þ jN D;Að Þð Þ ¼
X

c2fbg;wk;stg

X

s¼0;1;2

ps;cBetaBinðn D;Að Þ jN D;Að Þ; ac;bcÞ

where c is the component index, s the number of annotated sites and BetaBin
the beta-binomial distribution. Hence, the components were modelled to have the
same parameters ac, bc in all three groups but their mixing proportions ps,c to be
group-specific. Fitting was performed using the expectation-maximization
algorithm. For the initial step, the data points were classified as background
(Co0.001), weak spliced (Co0.1) and canonical (C4¼ 0.1). After convergence
of the clustering the obtained parameters were used to estimate the probability for
each junction side to belong to a given class.

Detection of mono-allelic expression. For MAE analysis only heterozygous
single-nucleotide variants with only one alternative allele detected from exome
sequencing data were used. The same quality filters were used as mentioned in
the exome sequencing part, but no frequency filter was applied. To get allele
counts from RNA-seq for the remaining variants the function pileLettersAt
from the R/Bioconductor package GenomicAlignments62 was used. The data
were further filtered for variants with coverage of at least 10 reads on the
transcriptome.
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Figure 5 | Characterization of diagnoses and variants causing aberrant

splicing. (a) Detection strategy and validation of genes with RNA defects in

newly diagnosed patients, that is, TIMMDC1 (n¼ 2 patients), CLPP,

ALDH18A1 and MCOLN1, and one patient with a strong candidate, that is,

MGST1. The median number (±median absolute deviation) of candidate

genes is given per detection strategies. Dotted check: identified by manual

inspection (not statistically significant). (b) Schematic representation of

variant causing splicing defects for TIMMDC1 (top, new exon red box), CLPP

(middle, exon skipping and truncation) and MCOLN1 (bottom, intron

retention). Variants are depicted by a red star.
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The DESeq2 package63,64 was applied on the final variant set to estimate
the significance of the allele-specific expression. Allele-specific expression was
estimated on each heterozygous variant independently of others (that is, without
phasing the variants). For each sample, a generalized linear model was fitted with the
contrast of the coverage of one allele against the coverage of the other alleles.
Specifically, we modelled Ki,j the number of reads of variant i in sample j as:

Ki;j � NB sj�qi;j; a
� �

log2 qi;j
� �

¼ b0
i þ ballele

i xallele
i;j

Where NB is the negative binomial distribution; the dispersion parameter a was
fixed for all variants to a¼ 0.05, which is approximately the average dispersion over
all samples based on the gene-wise analysis; sj is the size factor of each condition;
b0

i is the intercept parameter for variant i. The value of xallele
i;j is 1 for the alternative

alleles and 0 otherwise. The resulting ballele
i represents the log2-fold changes for the

alternative allele against the reference allele. The independent filtering by DESeq2
was disabled (independentFiltering¼ FALSE) to keep the coverage outliers among
the results. To classify a variant as mono-allelically expressed a cutoff of
bcondition

i

�� �� � 2 was used, which corresponds to an allele frequency Z0.8, and we
filtered Benjamini-Hochberg adjusted P values to be o0.05.

Transduction and transfection. Overexpression of TIMMDC1 in fibroblast cell
lines was performed by lentivirus-mediated expression of the full-length TIMMDC1
cDNA (DNASU Plasmid Repository) using the ViraPower HiPerform Lentiviral
TOPO Expression Kit (Thermo Fisher Scientific)68. TIMMDC1 cDNA was cloned
into the pLenti6.3/V5-TOPO expression vector and cotransfected into 293FT cells
with the packaging plasmid mix using Lipofectamine 2000. After 24 h, the transfection
mix was replaced with high glucose DMEM supplemented with 10% FBS. After
further 72 h, the viral particle containing supernatant was collected and used for
transduction of the fibroblast cell lines. Selection of stably expressing cells was
performed using 5mg ml� 1 Blasticidin (Thermo Fisher Scientific) for 2 weeks.

Immunoblotting. Total fibroblast cell lysates were subjected to whole protein
quantification, separated on 4–12% precast gels (Lonza) by SDS–polyacrylamide
gel electrophoresis (PAGE) electrophoresis and semi-dry transferred to
polyvinylidene difluoride membranes (GE Healthcare Life Sciences). The
membranes were blocked in 5% non-fat milk (Bio Rad) in TBS-T (150 mM NaCl,
30 mM Tris base, pH 7.4, 0.1% Tween 20) for 1 h and immunoblotted using pri-
mary antibodies (1:1,000 dilution) against CLPP (Abcam, ab56455), MCOLN1
(Abcam, ab28508), MT-ND5 (Abcam, ab92624), NDUFA13 (Abcam, ab110240),
NDUFB3 (Abcam, ab55526), NDUFB8 (Abcam, ab110242), TIMMDC1 (Abcam,
ab171978) and UQCRC2 (Abcam, ab14745) for 1 h at RT or ON at 4 �C. Signals
were detected by incubation with horseradish peroxidase (HRP)-conjugated goat
anti-rabbit and goat anti-mouse secondary antibodies (Jackson Immuno Research
Laboratories, Code: 111-036-045 and Code: 115-036-062, respectively, 1:5,000
dilution) for 1 h and visualized using ECL (GE Healthcare Life Sciences).

Blue native PAGE (BN-PAGE). Fresh fibroblast cell pellets were resuspended
in PBS supplemented with 0.25 mM PMSF and 10 U ml� 1 DNAse I and
solubilized using 2 mg digitonin per mg protein. The mixture was incubated on
ice for 15 min followed by addition of 1 ml PBS and subsequent centrifugation
for 10 min at 10,000g and 4 �C. The pellet was resuspended in 1x MB (750 mM
e-aminocaproic acid, 50 mM bis-Tris, 0.5 mM EDTA, pH 7.0) and subjected to
whole-protein quantification. Membrane proteins were solubilized at a protein
concentration of 2 mg ml� 1 using 0.5% (v/v) n-dodecyl-b-d-maltoside for 1 h on
ice and centrifuge for 30 min at 10,000g at 4 �C. The supernatant was
recovered and whole protein amount was quantified. Serva Blue G (SBG) was
added to a final concentration of 0.25% (v/v) and 60 mg protein were loaded on
NativePAGE 4–16% Bis-Tris gels (Thermo Fisher Scientific). Anode buffer
contained 50 mM Bis-Tris, pH 7.0, blue cathode buffer contained 15 mM
Bis-Tris, 50 mM Tricine, pH 7.0, 0.02% SBG. Electrophoresis was started at 40 V
for 30 min and continued at 130 V until the front line proceeded 2/3 of the gel.
Subsequently, blue cathode buffer was replaced by clear cathode buffer not
containing SBG (15 mM Bis-Tris, 50 mM Tricine, pH 7.0). Proteins were wet
transferred to polyvinylidene difluoride membranes and immunoblotted using
primary antibodies against NDUFB8 (Abcam, ab110242, 1:1,000 dilution) to
visualize complex I and UQCRC2 (Abcam, ab14745, 1:1,000 dilution) to
visualize complex III. Incubation with secondary antibodies and detection was
performed as described for immunoblotting.

Proline supplementation growth assay. We modified a method established ear-
lier46. For the comparative growth assay, equal number of cells (n¼ 250) from patient
and control were seeded in 96-well plates and cultured in DMEM containing 10% of
either normal or dialysed FBS. Medium with normal FBS contains small molecules,
whereas medium with dialysed FBS is free of molecules with a molecular weight
smaller than 10,000 mw (Proline-free medium). To confirm the effect of Proline
deprivation, DMEM containing dialysed FBS was supplemented with 100mM
L-Proline to rescue the growth defect. After paraformaldehyde fixation, nuclei were

stained with 40 ,6-diamidino-2-phenylindole and cell number was determined using a
Cytation3 automated plate reader (BioTek, USA).

Data availability. All data and R scripts needed to reproduce paper figures
are available online at our webserver (https://i12g-gagneurweb.in.tum.de/public/
paper/mitoMultiOmics). Additional data are available on request due to privacy
or other restrictions.
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