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Abstract
The spatial structure of various cell types in the tumour microenvironment (TME) can provide valuable insights
into disease progression. However, identifying the spatial organization of diverse cell types that significantly
correlates with patient prognosis remains challenging. In this study, enabled by deep learning-based cell segmen-
tation and recognition, we developed a computational pipeline to systematically quantify the spatial distribution
features of tumour cells, stromal cells, and lymphocytes in haematoxylin and eosin (H&E)-stained pathological
images of hepatocellular carcinoma (HCC). We identified six cellular spatial features that consistently and
significantly correlated with the overall survival of patients in two independent HCC patient cohorts, The Cancer
Genome Atlas Program cohort and the Beijing Hospital cohort. Each threshold for patient stratification was the
same for both cohorts, and the six features independently served as prognostic indicators when individually
analysed alongside clinical variables. Furthermore, the combination of features such as the mean value of cellular
diversity around stromal cells (StrDiv-M), the median distance between all cells (CellDis-MED), and the median
value of variation coefficient of the distance around stromal cells and their neighbours (CvStrDis-MED) could
further stratify the patient prognosis. In addition, incorporating cell spatial features with another clinical feature,
microvascular invasion improved prognostic stratification efficacy for patients from both cohorts. In conclusion,
by quantifying the cellular spatial organization features in the HCC TME, we discovered novel biomarkers for
evaluating tumour prognosis. These findings could promote mechanistic studies of the cellular spatial organiza-
tion within the HCC TME and potentially guide future clinical treatment.
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Introduction

Hepatocellular carcinoma (HCC) is the most prevalent
form of primary liver cancer [1]. However, the signifi-
cant heterogeneity of HCC presents challenges for accu-
rate diagnosis and prognostic stratification [2]. Despite
the complexity, there exist several well-accepted metrics
that have been utilized for HCC prognostic evaluation,
such as tumour size and number [3], serological level of
alpha-fetoprotein [4,5], and histological features such as
the presence or absence of vascular invasion [6]. To
further improve the accuracy of patient stratification, in
recent years, artificial intelligence-based methods have
been developed [7,8], utilizing clinical data and/or the
non-invasive imaging data such as computed tomogra-
phy (CT) [9,10], magnetic resonance [11], and
ultrasound [12].
In addition to the non-invasive imaging data,

histopathological images have also been used for HCC
prognosis evaluation [13–15]. However, most of
these studies focused on using image patches instead
of individual cells. On the other hand, it has been
demonstrated that the locations of specific cell types,
such as cancer-associated fibroblasts (CAFs), and the
corresponding cellular communications (CAFs-tumour)
can play a pivotal role in the HCC patient response to
anti-programmed cell death protein 1 (PD1) treatment
[16]. In addition, previous studies have also shown that
close proximity between tumour and CD8+ T cells,
or tumour-infiltrating T cells and B cells could be
strong prognostic indicators for HCC [17,18].
To facilitate the discovery of cellular spatial fea-

tures using standard haematoxylin and eosin (H&E)
stained images, a deep learning-based approach has
been developed to simultaneously recognize and seg-
ment tumour cells, lymphocytes, and other non-
malignant cells in pathological images of HCC [19].
This study focused on the imaging characteristics of
tumour nuclei and the spatial relationships between
tumour cells and lymphocytes [18]. However, the
spatial interactions between tumour cells and other
non-malignant cells remain unexplored. More impor-
tantly, the systematic extraction of cellular spatial
features from the complex tumour microenvironment
(TME) is challenging. There is growing interest in
quantitatively characterizing these features in the
TME and identifying their clinical relevance in can-
cer research [20–23].
This study aims to quantitatively and systematically

characterize the TME based on cell locations by simul-
taneously extracting spatial information of multiple
cell types from standard H&E pathological images of
patients with HCC.

Materials and methods

Patient information
There are two cohorts of patients with HCC in this study.
The first cohort involved 264 patients from The Cancer
Genome Atlas (TCGA) Program under the liver hepato-
cellular carcinoma (LIHC) category; the patient IDs are
listed in supplementary material, Table S1. The second
cohort involved 67 patients with HCC with available
whole-tumour pathological slide images, where all
patients received curative hepatectomy between 2012
and 2020 at Beijing Hospital and had no evidence of
distant metastasis or previous anticancer treatments prior
to surgery. The study was performed according to the
declaration of Helsinki and was approved by the ethics
review board of Beijing Hospital (2023BJYYEC-432-0).
All necessary written informed consent was obtained
from patients in the Beijing Hospital cohort. All images
were FFPE slides and digitally captured at 40� magnifi-
cation. For clinical variables, the pathological stage was
also mapped into three groups: early (stage I, Ia, Ib),
locally advanced (stage II, IIa, IIb), and advanced (stage
IIIa, IIIb, IV). Detailed patient information of the two
cohorts can be found via the following link: https://
github.com/huhj/Topological-features.

Histopathological image-processing pipeline
The ImageScope annotation tool was used to manually
label the boundaries of regions of interest (ROIs).
ROIs were defined by the major malignant region in
each pathological image. Within ROIs of each WSI,
20 patches, whose dimensions were 5,000 � 5,000
pixels under 40� magnification (0.25 μm per pixel),
were randomly sampled.
To reduce the noise of images, a deconvolution

method was adopted [24] to convert the RGB colours
of H&E colour space, with the deconvolution matrix
[0.6500, 0.7040, 0.2860; 0.2681, 0.5703, 0.7764;
0.7110, 0.4232, 0.5616], where signals from the cell
nucleus would be enriched in the haematoxylin channel.
Then, to reduce the fragments of the cell nucleus caused
by noise, morphological operations consisting of open-
ing and closing [25] were used to process the image of
the haematoxylin channel. Subsequently, a level set seg-
mentation technique [26] was applied to detect nuclei
locations. The parameters of the segmentation algorithm
were typically set as follows: Gaussian smoothing ker-
nel: σ = 1.5; region term weight: λ = 0.6; compactness
factor: m = 10; smoothness term weight: α = 0.3; and
maximum iterations: Tmax = 50. Finally, image
patches with the size 80� 80 pixels centred on the
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detected nuclei centroid were extracted from the origi-
nal selected pathological RGB image (illustrated in
Figure 1). Such an image-processing procedure can
provide a solid foundation for cell recognition by the
deep-learning procedure.

Transfer learning convolutional neural
network model
To recognise lymphocytes, tumour cells, and stromal
cells effectively and simultaneously in H&E images from
patients with HCC, we implemented a transfer learning
convolutional neural network (CNN) model, which was
developed to recognize cells in lung cancer [27]. All
networks received an input image patch sized 80 � 80
pixels, which was normalized to the range [�0.5, 0.5]
with R, G, and B channels. As in the original CNN
model, an eight-layer deep convolutional neural network
was applied, which consists of three convolution layers,
three pooling layers, one fully connected layer, and an
output layer, as shown in Figure 1. The pooling layer
used maximum pooling, and the output layer was a
softmax layer with three categories: tumour cell, stromal
cell, and lymphocyte. For each image patch, the

probability for each of the three categories was predicted,
and the highest probability was considered as the
predicted class. During training, we initialized the model
with pre-trained weights [27] in the lung adenocarcinoma
datasets and then fine-tuned the parameters for the
softmax layer based on 500 patches of our marked exam-
ples in HCC datasets using transfer learning [25].

Construction of the topological features based on
tumour cells, stromal cells, and lymphocytes
When the centroid of each cell nucleus was obtained, the
Delaunay triangulation algorithm [28] was adopted to
construct the spatial topological network, in which each
nucleus and its adjacent nuclei were connected by edges.
Meanwhile, we also applied a Voronoi diagram [29]
which divides the space into many areas based on the
closest attributes of the objects. In such a diagram, the
distance from any point within a convex polygon’s
enclosed region to the object point of that polygon is less
than the distance to any other object point.
Based on the location of the graph nodes in the

graph measurements (i.e., cell positions), we further
constructed spatial features that capture the spatial

Figure 1. Data acquisition and workflow for the prognostic analysis using H&E pathological images. (A) The cell classification workflow.
The nuclei of tumour cells, stromal cells, and lymphocytes are identified through image processing, transfer learning, and classification
(see Materials and Methods). (B) The workflow of spatial feature construction and prognosis analysis. We randomly selected 20 ROIs to
segment and detect nuclei, and then classified each nucleus using the HCC-CNN model. Delaunay triangulation and Voronoi tessellation
were applied to construct 109 quantitative spatial features. Then the prognostic value of proposed features was evaluated.
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arrangement and structural characteristics of the TME.
In total, we constructed 109 spatial features. A full list
of these spatial features is presented in supplementary
material, Table S1 with detailed descriptions of their
biological meanings. Note that since we selected
20 patches from the whole-slide image (WSI) of each
patient, the topological characteristics of the cells for
each patient were calculated based on the corresponding
values in all patches from the same WSI.

Survival analysis
Once the 109 spatial features were calculated, we first
separated each patient cohort into two groups with a
specific cut-off value of a particular feature. Next,
Kaplan–Meier survival analysis and log-rank tests were
performed to test for a significant difference in the over-
all survival (OS) between the two groups. OS data were
obtained from TCGA and Beijing Hospital, documented
in https://github.com/huhj/Topological-features and cen-
sored to the right. Specifically, for each feature, we
selected the optimal cut-off value to divide the patients
into two groups using the R package survminer, which
uses the maximum selected rank statistic to test for
independence between the response variable and the
given feature. In addition, a univariate and multivariate
Cox proportional hazard model was used to estimate
the hazard ratios (HRs) and the 95% confidence inter-
vals (CI). A two-sided p value of 0.05 was selected as
the threshold to define statistical significance between
patient groups. The survival risk ratio (HR) was used to
represent the difference in risk between different groups
due to the variable intervention. All variables with log-
rank p < 0.05 on univariate analysis were entered into
the multivariate analysis with backward stepwise selec-
tion of variables. R (version 3.2.4) and the R packages
survival (version 2.38-3), glmnet (version 2.0-5),
clinfun (version 1.0.13), and python (version 3.5.2)
were used in the analysis.

Results

Transfer-learning of the CNN model to accurately
classify cells in H&E images of HCC
To accurately segment the cell nucleus and recognise
the cell type using H&E-stained pathological images of
HCC patients, we first adopted a transfer learning proce-
dure (see Materials and Methods) to recognize cancer
cells, stromal cells, and lymphocytes in HCC samples
(Figure 1), based on a previously developed CNN
model for tumour sections of NSCLC [27]. In brief,

image patches were randomly selected from whole-slide
H&E-stained pathological images of patients with HCC
at Beijing Hospital. Each patch was chosen based on
the centre surrounding a specific type of cell nuclei,
including lymphocytes and tumour and stromal cells. In
total, 500 patches for each cell type were selected as
training and validation sets for transfer learning, and the
cell type in each patch was confirmed by two patholo-
gists (WZ and JZ) from Beijing Hospital (Figure 1).
For the transfer-learning procedure (see Materials

and Methods), we adopted a cross-validation method,
in which for each round of training and validation,
80% of the image patches were used as the training
set, whereas the remaining 20% were used as the vali-
dation set. As a result, the overall classification accu-
racy of the CNN model in the validation set was
96.3% for lymphocytes, 84.7% for stromal cells, and
89.1% for tumour cells, respectively. The independent
cross-study classification rates in the test dataset were
93.5% for lymphocytes, 80.3% for stromal cells, and
85.9% for tumour cells.

Spatial features of cells in tumour-section images
of HCC patients
We conducted our study with two cohorts of patients:
one from Beijing Hospital, which included 67 patients,
and the other from TCGA, which included 264 individ-
uals (see Materials and Methods). For each patient, we
collected a WSI of the primary tumour. For each WSI,
20 ROIs were selected, with each ROI measuring
5,000 � 5,000 pixels in size (under 400� magnification,
see Materials and Methods). For each ROI, we applied
our HCC-CNN model to segment and classify each cell
nuclei and extracted the x–y coordinates of lymphocytes,
tumour cells, and stromal cells. Using these spatial coor-
dinates, we employed Delaunay triangulation [28] as well
as the Voronoi diagram [29] to construct topological net-
works and diagrams of lymphocytes, tumour cells, and
stromal cells (supplementary material, Figure S1A–E).
Next, we created 109 quantitative image features to char-
acterize the spatial distribution and relationships; a
detailed list of these features and their biological implica-
tions is provided in supplementary material, Table S1.
Examples and a more detailed description of some impor-
tant spatial features are introduced in Figure 2.

Univariate analysis of spatial features with patient
prognosis in the TCGA cohort
With the spatial features obtained for each patient, we
explored whether these signatures could help stratify
patients into significantly different survival groups.
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Figure 2. Legend on next page.
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We first conducted a univariate analysis of the features
using the Cox proportional hazards model (see
Materials and Methods). In brief, using the method pro-
posed by package survminerR, we defined the optimal
cut-off value of each feature, which allowed us to strat-
ify a patient cohort into two significantly different prog-
nostic groups. The corresponding p values and HRs of
the TCGA and Beijing cohorts with the same cut-off
are shown in supplementary material, Table S2.
Specifically, we performed such an analysis of the

109 spatial features for the 207 (out of 264) LIHC
patients in TCGA (the discovery set) to determine the
optimal threshold for each spatial feature. Using the same
thresholds discovered, we tested whether they can further
stratify both the 57 (out of 264) LIHC patients in TCGA
(the validation set) as well as the 67 patients from the
Beijing hospital (the independent test set).
To discover the spatial features that can robustly strat-

ify the discovery, validation, and independent test sets,
we performed the analysis 10 times and, each time,
we randomly selected the 207-patient discovery set
from 264 LIHC patients in TCGA. In the end, 6 of
109 spatial features could consistently stratify the discov-
ery (207 patients from TCGA), validation (57 patients
from TCGA) and independent test sets (67 patients from
Beijing Hospital) into two significantly distinct prognos-
tic groups. Specifically, these 6 features consistently and
successfully stratified the 3 sets of patients at least 7 of
the 10 times the analysis was performed. The detailed list
of the HRs and p values are provided in supplementary
material, Table S3.
As examples, Figure 2A illustrates the definitions of

three spatial features of the six features identified: the
mean value of the cellular diversity around stromal
cells (StrDiv-M), the median value of the coefficient
of variation of the distance between stromal cells and
their neighbours (CVStrDis-MED), and the median
distance between cells (CellDis-MED).
In Figure 2B, we demonstrate that, using the same

optimal threshold values of corresponding spatial features
(StrDiv-M, CVStrDis-MED, CellDis-MED), the three

sets of patients can be consistently stratified into better
and worse prognostic groups. These results demonstrate
that the spatial features derived from this study may
robustly capture prognosis-related spatial information
inside the WSI across different cohorts. Note that, in this
analysis, optimal threshold values of corresponding spa-
tial features were obtained based on the 264 TCGA-
LIHC patients.
Moreover, we also tested whether the features corre-

lated with patient prognosis as continuous variables.
Specifically, we performed Pearson correlation analysis
between the OS of patients from TCGA and Beijing
Hospital and the patient-specific values of the six spatial
features (see Materials and Methods). All six variables
had statistically significant correlation with patient OS for
both TCGA and Beijing Hospital cohorts (all p < 0.05;
supplementary material, Table S4). Especially, StrDiv-M,
CVStrDis-MED, and CellDis-MED had correlation coef-
ficients for patients in Beijing Hospital cohorts, with the
coefficients all larger than 0.4 (all p < 0.001). Thus, these
results also suggest that the spatial features developed in
this study could be associated with the prognosis of the
patient.
On the other hand, we tested the consistency of patient

stratification using clinical information, such as age and
stage. Note that the cohorts of TCGA and Beijing
Hospital had different clinical variables. Only the TNM
stage III correlated with patient prognosis for both cohorts
(supplementary material, Table S5). Therefore, according
to the univariate analysis, the identified spatial features
were effective and consistent for patient stratification.

Multivariate analysis of the six spatial features
identified
To systematically assess whether the six spatial fea-
tures identified (Table 1) could serve as independent
prognostic factors, we performed multivariate analysis
on them with clinical variables, such as sex, age, stage,
and treatment information for both TCGA and Beijing
Hospital cohorts (supplementary material, Table S6).

Figure 2. Patient stratification efficacy of three important spatial features. (A) Illustration of the spatial features: left – cellular diversity
around stromal cells (StrDiv); middle – coefficient of variation of the stromal cell in the Network (CVStrDis); right – the distance
between all cells (CellDis). (B) Kaplan–Meier analysis on the overall survival of HCC patients from TCGA (264 patients). Patients were
stratified into two groups based on the values of corresponding features. The value-high/low groups are indicated in red and blue,
respectively. The optimal cut-off value of each feature was selected for these to reach the lowest log-rank p values (see Materials and
Methods). And the corresponding log-rank p values were as indicated. Kaplan–Meier plots for the three spatial features shown in (A),
that is, StrDiv-M, CVStrDis-MED, and CellDis-MED, are shown in the left, middle, and right panels, respectively. The specific cut-off
values are 0.147, 59.80, and 59.40 for StrDiv-M, CVStrDis-MED, and CellDis-MED, respectively. (C) Kaplan–Meier analysis on the overall
survival of HCC patients from Beijing Hospital (67 patients). Patients were stratified into two groups based on the cut-off values defined
in (B). Kaplan–Meier plots for the three spatial features shown in (A), that is, StrDiv-M, CVStrDis-MED, and CellDis-MED, are shown in
the left, middle, and right panels, respectively.
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Table 1. Univariable analyses of factors associated with overall survival on TCGA cohort and Beijing cohort with the same cut-off

Features

TCGA cohort Beijing Hospital cohort (with TCGA-derived cut-off values)

CI HR p CI HR p

StrDiv-M [1.18, 3.30] 1.97 0.009 [1.35, 7.90] 3.27 0.008
CVCellDis-MED [1.39, 3.25] 2.13 <0.001 [1.61, 88.60] 11.9 0.015
CVTumDis-M [1.37, 3.09] 2.06 0.001 [1.07, 6.77] 2.69 0.036
CVStrDis-MED [1.45, 3.35] 2.21 <0.001 [1.71, 19.26] 5.74 0.005
StrDis-MED [1.68, 3.93] 2.57 <0.001 [1.11, 7.04] 2.79 0.030
CellDis-MED [1.33, 3.05] 2.02 0.001 [1.64, 29.73] 6.98 0.009

StrDiv-M: the mean value of all the cellular diversity around stromal cells in the Delaunay network. CVCellDis-MED: the median value of the coefficient of variation
of the distance between one cell and neighbours in the Delaunay network. CVTumDis-M: the mean value of the coefficient of variation of the distance between
tumour cells and neighbours in the Delaunay network. CVStrDis-MED: the median value of the coefficient of variation of the distance between stromal cells and
neighbours in the Delaunay network. StrDis-MED: median distance between stromal cells in the Delaunay network. CellDis-MED: median distance between all cells
in the Delaunay network. Significant p values are shown in bold font.

Figure 3. Combinatorial analysis of selected spatial features. StrDiv-MV, CVStrDis-MED, and CellDis-MED were selected for further
combinatorial analysis. In (A) and (B), with two of the three spatial features, patients were first separated into two groups based on the
cut-off value of one spatial feature. Then the patients can be assigned to one of the four groups based on its value of another spatial
feature. Kaplan–Meier analysis was then performed for the four patient groups resulting from the specific combination. The HRs and
corresponding log-rank p values between the best/worst patient groups were indicated. The results of such combinatorial analysis for
TCGA cohort and Beijing hospital cohort using StrDiv-M/CVStrDis-MED, StrDiv-M/CellDis-MED, and CellDis-MED/CVStrDis-MED were
given in (A) and (B), respectively.
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Figure 4. Legend on next page.
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Interestingly, our results demonstrated that each of the
six spatial features can be independent prognostic fac-
tors for both cohorts when they are co-analysed with
the clinical features individually.
When we performed multivariate analysis of all six

spatial features together with the clinical features,
StrDis-MED served as an independent prognostic fac-
tor for the TCGA HCC cohort, and StrDiv-M served
as an independent prognostic factor for the Beijing
Hospital cohort (supplementary material, Table S7).
Furthermore, to systematically test whether combi-

nations of the six spatial features can further stratify
the patients, we tried all 15 combinations by selecting
two out of six features. We discovered that 14 out of
15 combinations gave general log-rank p values
smaller than 0.05 for both TCGA and Beijing Hospital
cohorts (supplementary material, Figure S2). Note that
each threshold value was the same for the two cohorts.
Examples of combinations between StrDiv-M, CellDis-
MED, and CVStrDis-MED are shown in Figure 3, all
of which have a specific stratification combination with
HR >2 and log-rank p values <0.01. These results dem-
onstrate the consistent and significant power of patient
stratification for both cohorts using the combination of
these spatial features.

Impact of cellular topological characteristics on
the prognosis of patients with and without
microvascular invasion
To further demonstrate the usefulness of spatial features
in patient stratification, we investigated the effects of a
combination of spatial characteristics and known clinical
diagnostic criteria. Specifically, we chose microvascular
invasion (MVI) as an example to explore the potential
improvement in patient stratification efficacy.
MVI, which can be classified according to whether

MVI occurs [30], has been shown to be an important
clinical prognostic index for patients with HCC.
However, for both the 264 patients from TCGA cohorts
and the 67-patient cohort from the Beijing Hospital,
MVI-positive/negative could not significantly separate
patients into two prognostic groups (log-rank p value

0.15 and 0.077) (supplementary material, Figure S3).
Therefore, we set out to test whether combining the
spatial features with the MVI feature could help to
improve patient stratification.
Specifically, we discovered that both CVStrDis-MED

and CellDis-MED can simultaneously separate the MVI-
negative patients into two distinct prognostic groups for
both TCGA and Beijing Hospital cohorts (Figure 4A,B).
Note that the threshold values for each of the two fea-
tures were determined by identifying the optimal values
in the TCGA cohorts (264 patients) and then applying
them to the Beijing Hospital cohorts (67 patients).
For StrDiv-M, interestingly, the optimal threshold

derived from the TCGA cohort (264 patients) failed to
further stratify the MVI-negative LIHC patients within
that group, yet it successfully stratified the MVI-
negative patients in the Beijing Hospital cohort
(41 patients, Figure 4C). Additionally, we divided the
MVI-negative patients into two groups based on OS:
those with OS longer than 3 years and those with OS
of 3 years or less. As illustrated in Figure 4D, the
StrDiv-M values differed significantly between these
groups. Notably, these differences were not observed
in the TCGA cohort, suggesting the presence of poten-
tial Asian-specific cellular spatial features that warrant
further investigation in larger cohorts.
As controls, we assessed other clinical parameters

between the MVI-positive and MVI-negative groups, but
no statistically significant differences were found.
Together, these findings indicate that integrating MVI
information with the spatial features developed in this
study substantially enhances the precision of patient strat-
ification. Future studies should validate the robustness of
these results using independent cohorts with well-
characterized MVI data.

The correlation between genetic mutations and
spatial features
Previous studies have identified the 10 most common and
prognostically significant mutated genes in HCC [31].
Building on this work, we analysed the publicly available
TCGA-LIHC dataset to examine the relationship between

Figure 4. Efficacy of combinatorial analysis using spatial features and MVI for patients in Beijing Hospital cohort. (A) For MVI-negative
patients, the Kaplan–Meier plot demonstrated that patients with low CVStrDis-MED values (blue line) have a significantly longer overall
survival for both the TCGA cohort (left) and the Beijing Hospital cohort (right). (B) For MVI-negative patients, the Kaplan–Meier plot
demonstrated that patients with low CellDis-MED values (blue line) have a significantly longer overall survival in both the TCGA cohort
(left) and the Beijing Hospital cohort (right). (C) For MVI-negative patients, the Kaplan–Meier plot demonstrated that patients with low
StrDiv-M values (blue line) have a significantly longer overall survival in the Beijing Hospital cohort. (D) The box plot of StrDiv-M values
for MVI-negative patients is shown in the lower panel. Patients with an overall survival shorter and longer than 3 years are shown in
blue and red boxes, respectively. The p value of the Student’s t test was 0.048.
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spatial features and genetic mutations. Our analysis
revealed that mutations in the MEM4, RB1, and ARID1A
genes were predominantly enriched in the CellDiv-
M-high group (CellDiv-M: the mean value of the cellular
diversity around all cells), while FMN2 mutations were
significantly enriched in the CvStrDis-MED-high group
(supplementary material, Table S8).
Specifically, the CellDiv-M-high group consisted of

32 patients, while the CellDiv-M-low group included
232 patients. Among those in the CellDiv-M-high
group, only one patient harboured mutations in MEM4,
RB1, and ARID1A (three patients in total), respectively,
compared to 25, 25, and 20 patients in the CellDiv-
M-low group. Notably, within the CellDiv-M-low
group, eight patients exhibited mutations in both MDM4
and RB1 genes, one patient had mutations in both
MDM4 and ARID1A genes, and another had mutations
in both RB1 and ARID1A genes. Additionally,
53 patients carried mutations in only one of the three
genes: MEM4, RB1, or ARID1A.
Similarly, the CvStrDis-MED-high group com-

prised 127 patients, whereas the CvStrDis-MED-low
group included 137 patients. Among those in the
CvStrDis-MED-high group, 12 patients carried muta-
tions in the FMN2 gene, in contrast to only one
patient in the CvStrDis-MED-low group.
These findings suggest potential connections

between the molecular pathogenesis of HCC and the
spatial distribution characteristics of the tumour
microenvironment.

Discussion

The intrinsic heterogeneity of the TME, both within
individual tumours and throughout the spectrum of
solid tumours, may contribute to the observed dis-
parities in treatment responses among patients with
HCC. The conventional TNM staging system after
tumour resection surgery falls short in its predictive
capacity for patient prognosis. Consequently, the
development of a robust postoperative assessment
tool, grounded in the analysis of cellular spatial fea-
tures using H&E pathological section images of
HCC tumours, has significant potential for posi-
tively influencing clinical decision making and guid-
ing future therapeutic strategies.
In this study, by employing a transferring learning

strategy, we adapted a CNN lung cancer classification
model to precisely identify and localize tumour cells,
lymphocytes, and stromal cells within H&E pathologi-
cal section images of HCC patients. Subsequently, we

used topological graph analysis to construct novel and
quantifiable spatial features of these cells.
Our univariate analysis identified six out of 109 spatial

cellular features that consistently and significantly differen-
tiate patient OS across the discovery (TCGA), validation
(TCGA), and independent test (Beijing Hospital) sets.
Each feature was evaluated using the same cut-off values
derived from the discovery set (TCGA). Notably, our mul-
tivariate analysis demonstrated that these six spatial fea-
tures serve as independent prognostic factors when
combined with available clinical variables for both TCGA
and Beijing Hospital cohorts. Each feature was evaluated
using the same cut-off values derived from the TCGA
cohort. Furthermore, when integrated with classical clini-
cal features obtained from H&E images, such as MVI sta-
tus, spatial features like CvStrDis-MED (the median value
of the coefficient of variation of the distance between stro-
mal cells and their neighbours) and CellDis-MED (the
median distance between cells) consistently enhanced the
efficacy of patient stratification across both cohorts.
Although our study has revealed exciting possibili-

ties, including the identification of spatial features as
prognostic markers, there are areas where further
exploration is warranted, such as further exploration of
the interactions between more cell types [32,33], inte-
gration of local and global spatial features within the
same pathological images [34–36], and the combina-
tion of spatial feature analysis with genomic feature
analysis [37,38].
In summary, our study, through cell recognition based

on a deep-learning approach and the construction of spa-
tial features, developed a novel computational tool that
extracts spatial features of the immune microenvironment
from H&E pathological images of HCC to assess prog-
nosis. These findings have enhanced our understanding
of cell–cell interactions and the spatial heterogeneity of
cell distribution within the TME. Ongoing research and
the application of spatial morphological distribution anal-
ysis hold great promise in deepening our understanding
of the complex interactions within the TME, to ultimately
contribute to the advancement of personalized medicine
and improving the clinical decision-making process.
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