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Primary visual cortex (V1) is clearly distinguishable from other cortical areas by its distinctive
pattern of neocortical lamination across mammalian species. In some mammals, primates
in particular, the layers of V1 are further divided into a number of sublayers based on their
anatomical and functional characteristics. While these sublayers are easily recognizable
across a range of primates, the exact number of divisions in each layer and their relative
position within the depth of V1 has been inconsistently reported, largely due to conflicting
schemes of nomenclature for the V1 layers. This conflict centers on the definition of layer
4 in primate V1, and the subdivisions of layer 4 that can be consistently identified across
primate species. Brodmann’s (1909) laminar scheme for V1 delineates three subdivisions
of layer 4 in primates, based on cellular morphology and geniculate inputs in anthropoid
monkeys. In contrast, Hässler’s (1967) laminar scheme delineates a single layer 4 and
multiple subdivisions of layer 3, based on comparisons of V1 lamination across the
primate lineage. In order to clarify laminar divisions in primate visual cortex, we performed
NeuN and VGLUT2 immunohistochemistry in V1 of chimpanzees, Old World macaque
monkeys, New World squirrel, owl, and marmoset monkeys, prosimian galagos and
mouse lemurs, and non-primate, but highly visual, tree shrews. By comparing the laminar
divisions identified by each method across species, we find that Hässler’s (1967) laminar
scheme for V1 provides a more consistent representation of neocortical layers across all
primates, including humans, and facilitates comparisons of V1 lamination with non-primate
species. These findings, along with many others, support the consistent use of Hässler’s
laminar scheme in V1 research.
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INTRODUCTION
Primary visual cortex, or V1, in most mammalian species is clearly
distinguishable from other cortical areas by the crisp, stratified
appearance of its cortical layers (Campbell, 1905; Brodmann, 1909;
Hässler, 1967; Garey, 1971; Billings-Gagliardi et al., 1974; Braak,
1984; Jones, 1984; Le Brun Kemper and Galaburda, 1984). In
primates, including humans (Allman and Kaas, 1971; Lund, 1973;
Braak, 1976; Fitzpatrick et al., 1983; Preuss et al., 1993; Casagrande
and Kaas, 1994; de Sousa et al., 2010; Wong and Kaas, 2010),
as well as some related non-primate species (Collins et al., 2005;
Wong and Kaas, 2008; Wong and Kaas, 2009b), most of these
layers have expanded and segregated into sublayers with distinct
functional and connectional properties, making V1 even more
conspicuous in comparison to other cortical areas. Yet despite its
marked appearance and the clear identification of multiple layers
and sublayers across species, the classification of cortical layers
within V1 of primates remains a controversial topic (Campbell,
1905; Clark and Sunderland, 1939; von Bonin, 1942; Garey, 1971;
Billings-Gagliardi et al., 1974; Henry, 1989; Casagrande and Kaas,
1994; Kaas, 2003; Zilles and Amunts, 2010; Molnár and Belgard,
2012; Nieuwenhuys, 2013). Numerous classification systems have
been proposed over the history of V1 research; some based on

laminar variations in staining intensity for histological markers
such as cytochrome oxidase (CO; Livingstone and Hubel, 1982;
Horton, 1984), some based on changes in cell density and mor-
phology through the cortical sheet, as seen with Nissl, myelin,
or Golgi stains (Lewis, 1880; Cajal, 1899; Campbell, 1905; Brod-
mann, 1909; Clark, 1925; von Economo and Koskinas, 1925; von
Bonin, 1942; Hässler, 1967; Garey, 1971; Valverde, 1977), and
still others based on variations in layer-specific gene and pro-
tein expression patterns through the areal extent of V1 (Hevner
et al., 2003; Watakabe et al., 2006; Yamamori and Rockland, 2006;
Bernard et al., 2012; Bryant et al., 2012; Takahata et al., 2012).
Within a single primate species such as macaque monkeys, which
are a widely utilized primate model for V1 research, anywhere
from eight to twelve layers and sublayers can be identified depend-
ing on the criteria for classification (Lund, 1973; Billings-Gagliardi
et al., 1974; Felleman and Van Essen, 1991; Casagrande and Kaas,
1994), leading to enormous confusion when comparing studies of
layer-specific connections or functions in V1. In less specialized
primates such as prosimians or lemurs (Preuss et al., 1993; Preuss
and Kaas, 1996; Wong and Kaas, 2009a; Wong et al., 2009), where
cortical layers are less distinct, only six to eight layers are com-
monly identified in anatomical studies, making the comparison of
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laminar-specific properties across primate species rather difficult.
Thus, a common system of laminar classification across primates
would greatly benefit the interpretation of past and future stud-
ies of V1’s structure and function. Of course this laminar system
should be consistent with laminar patterns used in other cortical
regions in primates, and for primary visual cortex in non-primate
taxa.

The most common discrepancy seen between laminar schemes
for V1 in primates involves the superficial and middle cortical lay-
ers. Under the famous scheme of Brodmann (1909), layer 3 of V1
is a single layer and layer 4 is divided into three distinct sublayers,
termed 4A, 4B, and 4C, with 4C further divided into 4Cα and 4Cβ.
This definition, originally based on Nissl-stained sections through
the border of V1 with the second visual area (V2) in anthropoid
primates and humans, stemmed from the observation that all three
middle layers merged into a single layer 4 in V2 and thus, must
all be derived from a single layer 4 in ancestral primates. Another
dominant laminar scheme, that of Hässler (1967), suggests that
layer 3 of V1 is expanded into three layers, termed 3A, 3B, and
3C, and layer 4 only contains two subdivisions, 4A and 4B. When
compared directly, Brodmann’s 4A, 4B, 4Cα, and 4Cβ are Hässler’s
3Bβ, 3C, 4A, and 4B, respectively, which leads to significant con-
fusion when discussing the origin and function of layers 3 and 4
in primate V1.

Anatomical studies of V1 in mammalian brains have bene-
fited from recent advances in histology, immunohistochemistry,
and in situ hybridization techniques that allow for the selective
labeling of individual cell populations based on cell- or layer-
specific markers (Hevner et al., 2003; Yamamori and Rockland,
2006; Belgard et al., 2011; Yamamori, 2011; Bernard et al., 2012;
Molnár and Belgard, 2012; Takahata et al., 2012). Many markers
can be variably expressed across layers, within and across species,
so converging types of evidence from different markers is more
informative (Molnár and Belgard, 2012), but some of them do
distinguish the same layers of V1 across multiple species. Thus,
a reconsideration of laminar classification in V1 of primates is
timely, given the benefits of reliable layer-specific markers and
the vast array of studies on layer-specific V1 functions in current
research.

Two markers have gained widespread use in recent research
by providing new insights on areal, laminar, and cellular func-
tions within V1. The first is neuronal nuclear antigen (NeuN;
Wolf et al., 1996), a DNA-binding protein that is exclusively
expressed in neuronal cell bodies across the central nervous sys-
tem (CNS) and highly conserved across a range of mammalian
and non-mammalian species. Immunolabeling for NeuN distin-
guishes neurons from astrocytes, microglia, and endothelial cells,
and identifies morphologically distinct classes of neurons in corti-
cal and subcortical brain structures. Thus, NeuN resembles a Nissl
stain but avoids the complications of labeling cells other than neu-
rons. The second is vesicular glutamate transporter 2 (VGLUT2), a
neurotransmitter transport protein found on the vesicles of many
glutamatergic neurons in the CNS (Aihara et al., 2000; Hisano
et al., 2000; Herzog et al., 2001). VGLUT2 is expressed in the presy-
naptic terminals of most thalamic relay neurons that project to
primary sensory cortical areas (Kaneko et al., 2002), and immuno-
labeling for VGLUT2 reliably distinguishes terminal projections

from the lateral geniculate nucleus (LGN) to the granular layer 4 of
V1. (Balaram et al., 2011, 2013; Bryant et al., 2012; Garcia-Marin
et al., 2012; Rovó et al., 2012). When combined with traditional
markers such as CO and Nissl, both NeuN and VGLUT2 can pro-
vide additional information about anatomically and functionally
distinct layers within V1.

In an attempt to define homologous V1 layers, we labeled
NeuN and VGLUT2 through the cortical sheet of seven primate
species (chimpanzees, macaque monkeys, owl monkeys, squir-
rel monkeys, marmoset monkeys, galagos, and mouse lemurs),
and one highly visual close relative of primates (tree shrews). By
then comparing NeuN- and VGLUT2-labeled sections to adjacent
CO- and Nissl-labeled sections, we outlined laminar boundaries
through V1 based on changes in the density and morphology of
NeuN-labeled cells, as well as the discrete boundaries of VGLUT2-
labeled geniculostriate terminations in each species. NeuN labeling
revealed highly conserved cortical lamination patterns in V1 of
every species examined in this study, and a clear visualization of
specialized and homologous V1 layers, particularly at the bor-
der of V1 with extrastriate visual area, V2. Additionally, VGLUT2
labeling provided consistent demarcations of layer 4 in V1 across
species, and identified specialized geniculostriate terminations to
discrete sublayers of layer 3 and layer 6 in some primates. When
compared across the primate lineage, both NeuN and VGLUT2
distributions provided evidence for multiple subdivisions of the
superficial and deep V1 layers, but only one granular layer 4 with
two subdivisions in V1. These layers are consistent with Hässler’s
(1967) laminar scheme for V1. The laminar boundaries identi-
fied in both NeuN and VGLUT2 preparations are comparable to
laminar divisions in other cortical areas across primates, as well
as laminar divisions within V1 in non-primates, and may high-
light specializations in V1 that reflect ethological and behavioral
differences between primate groups.

MATERIALS AND METHODS
NeuN and VGLUT2 immunoreactivity was examined in V1 of
seven primate and one non-primate species: chimpanzees (Pan
troglodytes), macaques (Macaca mulatta), marmosets (Callithrix
jacchus), squirrel monkeys (Saimiri sciureus), owl monkeys (Aotus
trivirgatus), galagos (Otolemur garnetti), mouse lemurs (Micro-
cebus murinus), and tree shrews (Tupaia glis). At least two, and
up to five, individual cases for each species were utilized in this
study. All procedures involving mouse lemurs followed the guide-
lines established by the European Communities Council directives.
All procedures involving chimpanzees, macaque monkeys, squir-
rel monkeys, owl monkeys, marmosets, galagos, and tree shrews
followed the animal care and use guidelines established by the
National Institutes of Health.

TISSUE ACQUISITION AND HISTOLOGY
One chimpanzee brain was obtained through the tissue donation
program at the Texas Biomedical Research Institute (San Anto-
nio, TX, USA), from a 53-year-old female that had recently died
of unrelated natural causes. Once the animal was pronounced
naturally deceased by veterinary staff, the brain was flushed post-
mortem with 0.1 M phosphate buffered saline (PBS) and shipped
overnight to Vanderbilt University. Upon arrival, the brain was
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bisected through the corpus callosum and subcortical structures,
and one hemisphere was postfixed in 4% paraformaldehyde (PFA)
for 2 days. Following postfixation, the hemisphere was blocked
into smaller pieces to facilitate sectioning through V1, and cry-
oprotected in 30% sucrose in 0.1 M phosphate buffer (PB) for
24 h. The other hemisphere was preserved for use in related stud-
ies. Another chimpanzee brain was obtained from a deceased adult
male at the New Iberia Research Center (Lafayette, LA, USA) sev-
eral years prior to this study. This individual had also perished
from natural causes, and once pronounced dead by a veterinarian,
the brain was extracted from the skull and briefly rinsed in 0.1M
PBS prior to postfixation with 4% PFA in 0.1M PBS. Following
postfixation, the occipital lobe was blocked for coronal sections
and cryoprotected in 30% sucrose in 0.1 M PB for 48 h prior to
histology.

Two mouse lemur brains were obtained for this study from
collaborators at INSERM in Bron, France, where the use of
mouse lemurs for research purposes is supported under the
Comité Consultatif National d’Éthique (CCNE). Both individ-
uals were euthanized in France and transcardially perfused with
0.1 M PBS followed by 4% PFA in 0.1M PBS. One brain was
extracted whole and shipped in 0.1 M PBS overnight to Van-
derbilt University. This brain was blocked and cryoprotected in
30% sucrose for 24 h prior to histology. The other brain was
extracted, cryoprotected in 20% glycerol in 0.1 M PBS and cut
into 40 μm coronal sections, and the sections were shipped
overnight to Vanderbilt University. These sections were then stored
in 0.1 M Tris-buffered saline (TBS) with 0.1% sodium azide for
immunohistochemistry.

Two macaque monkey brains were utilized in this study. One
brain was obtained through the tissue donation program at the
University of Washington (Seattle, WA, USA) and one brain was
obtained from collaborators at Vanderbilt University. Following
lethal levels of anesthesia, both individuals were euthanized and
then transcardially perfused with 0.1 M PBS followed by 4% PFA
in 0.1 M PBS. The brains were extracted from the skull and post-
fixed in 4% PFA for 3–6 h, and individual hemispheres were
then blocked and cryoprotected in 30% sucrose for 24 h prior
to histology.

Three squirrel monkeys, five owl monkeys, and four galagos
were utilized in this study, all of which were obtained within
Vanderbilt University. Following lethal levels of anesthesia, all
individuals were transcardially perfused with 0.1M phosphate-
buffered saline (PBS) followed by 4% PFA in 0.1 M PBS. Brains
were extracted from the skull, blocked into appropriately sized
pieces for sectioning, and cryoprotected in 30% sucrose in 0.1 M
phosphate buffer for 24–72 h prior to histology.

Four tree shrews were obtained from collaborators at the Uni-
versity of Kentucky, Louisville for this study. All individuals were
euthanized and transcardially perfused with 0.1 M PBS followed by
4% PFA in 0.1 M PBS. Brains were extracted from the skull, rinsed
in 0.1 M PBS, and transported in 4% PFA to Vanderbilt University
within 24 h. Upon arrival, brains were blocked into appropriately
sized pieces for sectioning, and cryoprotected in 30% sucrose in
0.1 M phosphate buffer for 24 h prior to histology.

Cryoprotected blocks from each individual were sectioned
into 40–50 μm coronal sections using a sliding microtome and

separated into 5–10 alternating series, depending on the overall
size of the brain. At least one series in every specimen was pro-
cessed for CO (Wong-Riley, 1979) or Nissl with thionin to identify
the boundary of V1 in each case. Remaining series were stored at
4◦C in 0.1 M TBS with 0.1% sodium azide until further use.

IMMUNOHISTOCHEMISTRY
One series in every specimen was labeled for NeuN, and a second
series was labeled for VGLUT2, using standard immunohisto-
chemical techniques (Balaram et al., 2013). Sections were rinsed
twice in 0.01M PBS, postfixed in 2% PFA for 20 min, rinsed
twice again, and incubated for 20 min in 0.01% hydrogen per-
oxide to quench background reactivity. Sections were then rinsed
and incubated for 2 h in a blocking solution containing 5% nor-
mal horse serum (Sigma Aldrich, St. Louis, MO, USA) and 0.05%
Triton-X100 (Acros Pharma, Princeton, NJ, USA) in 0.01 M PBS.
Sections were then transferred to fresh blocking solution con-
taining a 1:5000 dilution of either mouse anti-NeuN or mouse
anti-VGLUT2 (both from Millipore, Billerica, MA, USA) pri-
mary antibody, and incubated at room temperature overnight.
The following day, sections were rinsed thoroughly and incu-
bated for 2 h in fresh blocking solution containing a 1:500 dilution
of biotinylated horse anti- mouse IgG (Vector labs, Burlingame,
CA, USA), then rinsed again and incubated overnight in a biotin
amplification solution (ABC Elite kit, Vector Labs, Burlingame,
CA, USA). After that, sections were rinsed thoroughly again and
reacted with a solution containing 1% diaminobenzidine, 1%
nickel chloride, and 0.1% hydrogen peroxide in 0.01 M PBS to
visualize the label. All sections were then mounted on gelatin-
subbed slides, dehydrated in ethanol, cleared in xylene, and
coverslipped with Permount (Fisher Scientific, Pittsburgh, PA,
USA).

IMAGING AND ANALYSIS
All sections were imaged at 20× magnification using a Leica
SCN400 slide scanner and individual images were exported
using Leica Ariol software (Leica Microsystems, Buffalo Grove,
IL, USA). All images were adjusted for brightness and con-
trast, but were otherwise unaltered for the purposes of this
study. For Figures 1, 3, and 4, images were resized relative
to the largest panel (usually those depicting chimpanzee V1)
to provide better comparisons and distinctions between lam-
inar boundaries across the range of variably sized primates
and tree shrews. For Figures 2 and 5, all images were held
at absolute size to display the relative thickness of V1 layers
compared to total cortical thickness in Figure 2, as well as
the relative neuronal densities between layers of V1 and V2 in
Figure 5.

For comparative estimates of neuronal density, roughly 100–
120 50 μm2 regions were delineated as part of layer 3 or layer 4
in V1 or V2 on NeuN-stained sections from each species, and the
number of stained cells in each region was automatically derived
using count functions in Ariol. Raw counts were analyzed using
the Kolmogorov–Smirnov test and were determined to be non-
normal (p < 0.0001). Significant differences below p = 0.05 were
then determined using the Mann–Whitney U test in IBM-SPSS (v.
22; IBM, Armonk, NY, USA).
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FIGURE 1 | Laminar distributions of Nissl, neuronal nuclear antigen

(NeuN), cytochrome oxidase (CO), and vesicular glutamate transporter 2

(VGLUT2) in primary visual cortex of chimpanzees (A), Old World

macaque monkeys (B), owl monkeys (C), New World squirrel monkeys

(D), and marmosets (E), prosimian galagos (F) and mouse lemurs (G),

and tree shrews (H). Hässler’s (1967) laminar divisions listed to the left,
Brodmann’s (1909) divisions are listed in parentheses. Individual panels are
scaled relative to V1 of chimpanzees to visualize comparisons between
laminar density and staining intensity across primate species. Absolute scale
comparisons are shown in Figure 2.

RESULTS
NeuN and VGLUT2 immunohistochemistry identified neuronal
cell bodies and glutamatergic terminations respectively, in V1 of
all species examined in this study. Compared to traditional Nissl
and CO stains (Figure 1), NeuN immunoreactivity (IR) revealed
clear laminar boundaries in V1 and V2 (Figures 2 and 3), and
could distinguish between granule cells and pyramidal cells in all
species (Figure 4). Eleven distinct laminar divisions in V1 were
identified across species and designated as layers or sublayers of
the six classic neocortical layers (best seen in Figure 2). VGLUT2 IR

clearly distinguished V1 layers that receive geniculate inputs, layer
4 and upper layer 6 in all species as well as layer 3Bβ in anthropoid
monkeys, and better separated thalamic inputs from intrinsic V1
projections compared to traditional CO stains (Figure 1). Addi-
tionally, NeuN and VLGUT2 IR revealed the relative shifts of
neocortical layers at the boundary of V1 with V2 (Figures 3 and
5), providing evidence for a single layer 4 with two subdivisions
in V1 that continues as a single undifferentiated layer in V2. The
thalamorecipient sublayer of layer 3, 3Bβ, which was previously
characterized as part of layer 4 in some species (Brodmann, 1909;
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FIGURE 2 | NeuN immunoreactivity through the cortical layers

of V1 in (A) chimpanzees, (B) macaque monkeys, (C) squirrel

monkeys, (D) owl monkeys, (E) marmosets, (F) galagos,

(G) mouse lemurs, and (H) tree shrews. Laminar designations

by Hässler (1967) are listed to the left, Brodmann’s divisions are
listed in parentheses. Black lines indicate neocortical layer boundaries
and white lines indicate sublaminar boundaries within each layer.
Scale bar is 250um.

Lund, 1988), ended abruptly at the V1/V2 border and did not con-
tinue as part of layer 4 in V2. The layers adjacent to layer 4 of V1
however, layers 3C and 5A, did continue across the border from
V1 to V2 along with the remaining superficial and deep neocor-
tical layers. A detailed analysis of NeuN and VGLUT2 labeling in
each species, as discussed below, provided strong evidence for a
uniform laminar scheme in V1 across primates, which can also be
applied to highly visual non-primates such as tree shrews.

LAYERS 1 AND 2 OF V1
Layer 1 of V1 was densely packed with myelinated fibers and largely
cell-free in all species (Figures 1–3, 5). Scattered populations of
small neurons in layer 1 were seen in NeuN preparations across
primates, but far fewer neurons were visible in layer 1 of tree shrews
(Figures 1–3). Layer 2 of V1 contained a thin, dense band of small
neurons in all species. In anthropoid monkeys and chimpanzees,
layer 2 neurons were more densely packed in the upper half of
the layer compared to the lower half, but were more evenly dis-
tributed through the layer in prosimian primates and tree shrews
(Figure 2). In chimpanzees and macaque monkeys, some cells in
layer 2 stained weakly for VGLUT2 (Figures 1 and 5), but these
cells may simply be surrounded by punctate VGLUT2-positive ter-
minals, as seen in other studies of primate VGLUT distributions
(Bryant et al., 2012; Garcia-Marin et al., 2012; Balaram et al., 2013).
New World monkeys, prosimians, and tree shrews did not express
noticeable amounts of VGLUT2 in layer 2.

LAYER 3 OF V1
Across primates, layer 3 consisted of three distinct sublayers that
could be differentiated based on changes in neuronal size and
density (Figures 1–3). The most superficial layer, 3A, contained
heterogeneous populations of medium and large neurons that
were concentrated along the upper half of 3A in chimpanzees and
macaque monkeys, but evenly distributed across 3A in New World
monkeys, prosimians, and tree shrews (Figure 2). In chimpanzees

and macaque monkeys, some cells in 3A also showed weak label-
ing for VGLUT2, similar to those seen in layer 2 (Figures 1 and
5). Layer 3B, in contrast, mostly contained small neurons closely
packed together, and appeared as a cell-dense band between the
upper and lower sublayers of layer 3. Neurons in layer 3C were
more sparsely distributed compared to neurons in 3A and 3B, giv-
ing this layer a lighter appearance in NeuN preparations across
species. Both 3B and 3C lacked VGLUT2 labeling in all species,
making these layers much lighter in VGLUT2 preparations as well
(Figures 1 and 5). In general, laminar boundaries between 3A, 3B,
and 3C were most easily identified in chimpanzees and macaque
monkeys given their clear differences in neuronal density, but were
more difficult to distinguish in New World monkeys, prosimi-
ans, and tree shrews due to gradual shifts in cell size and density
through the depth of layer 3. In prosimians and tree shrews in
particular, most of layer 3 appeared to be a continuous population
of variably sized cells rather than three identifiable sublayers with
distinct variations in neuronal size or density.

At the boundary of layers 3B and 3C in Old World and New
World monkeys, a thin band of small granule cells was visible
in NeuN preparations (Figures 1–3). For macaque, squirrel, and
marmoset monkeys, a similar band of dense VGLUT2-positive ter-
minations was present in the same location between 3B and 3C, but
in owl monkeys, a more diffuse band of VLGUT2 IR was present
instead. This specialized region, termed 3Bβ, receives parvocel-
lular and koniocellular geniculate inputs in anthropoid monkeys
(Blasdel and Lund, 1983; Horton, 1984; Lund, 1988), but is less
evident in other primates (Casagrande and Kaas, 1994 for review).
NeuN preparations through V1 of chimpanzees also showed a
similar band of granule-like cells at the border of 3B with 3C, but
VGLUT2 preparations did not identify geniculate terminations in
this region. Granule-like cells in layer 3 were not seen in prosimi-
ans or tree shrews, but all three species did show variations in
VGLUT2 labeling in layer 3. V1 in galagos showed diffuse patches
of VGLUT2-positive terminals in layer 3B, while V1 in mouse
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FIGURE 3 | NeuN immunoreactivity reveals transitions of laminar

boundaries between V1 and V2 in (A) chimpanzees, (B) macaque

monkeys, (C) squirrel monkeys, (D) marmosets, (E) owl monkeys,

(F) galagos, (G) mouse lemurs, and (H) tree shrews. Hässler’s laminar
designations are listed on each panel for both visual areas. Arrowheads

demarcate the V1/V2 border, V1 is to the left of the arrowhead and V2 is to the
right of the arrowhead in each panel. Black lines indicate laminar boundaries
and white lines indicate sublaminar boundaries in each area. Individual panels
are scaled relative to V1 of chimpanzees to visualize laminar transitions
between V1 and V2 across species.

lemurs and tree shrews showed much denser patches of VGLUT2-
positive terminations in layer 3 that periodically stretched upward
into layers 2 and 1 of V1 (Figures 1 and 5). Such variations in
VGLUT2 labeling across species may reflect differences in relative
parvocellular and koniocellular geniculate inputs to layer 3 of V1.

LAYER 4 OF V1
Layer 4 is arguably the most distinct layer of V1 in any mammalian
species, given its dense array of thalamic visual inputs and its dis-
tinct laminar boundaries compared to the superficial and deep
layers of V1 (Figures 1–5). Across primates, layer 4 consists of two
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FIGURE 4 | Comparisons of neuronal density in layers 3C and 4 of

(A) chimpanzees, (B) macaque monkeys, (C) squirrel monkeys, (D)

marmosets, (E) owl monkeys, (F) galagos, (G) mouse lemurs, and (H)

tree shrews. In both areas, neurons in layer 4 are significantly more
densely packed than neurons in layer 3C. Scale bar is 20 μm.

identifiable subdivisions, upper 4A and lower 4B, which receive
magnocellular and parvocellular inputs from the LGN, respec-
tively, and send separate projections to otherV1 layers (Casagrande
and Kaas, 1994; Callaway, 1998). NeuN preparations in all species
revealed two subdivisions of layer 4, 4A and 4B, with small, densely

distributed granule cells that appeared more crowded together in
4B compared to 4A (Figures 1–4). Both divisions were easily iden-
tifiable in apes, Old World monkeys and New World monkeys, but
were less distinct in prosimians. Interestingly, tree shrews show
two similar subdivisions of layer 4, 4A and 4B, but these subdi-
visions are related to different inputs than those of 4A and 4B in
primate species (Conley et al., 1984).

VGLUT2 IR clearly distinguished both subdivisions of layer
4 in all species examined (Figures 1 and 4), with 4B showing
denser VGLUT2 IR compared to 4A. The extent of VGLUT2 IR in
each sublayer was roughly equal in apes and diurnal anthropoid
monkeys. In nocturnal primates such as owl monkeys, galagos,
and mouse lemurs, however, the magnocellular recipient layer 4A
contained a much wider band of VGLUT2 IR compared to the
parvocellular recipient layer 4B.

LAYER 5 OF V1
Layer 5 of V1 is often considered a single layer in primates,
although a thin layer of neurons with distinct connections along
the dorsal border has been previously observed in macaque mon-
keys (Lund, 1987). This layer, termed 5A, is not easily distinguished
in traditional Nissl stains and has not been previously described
in other species. NeuN preparations through V1 clearly identified
two sublayers of layer 5 in primates and tree shrews (Figures 1–3).
The superficial sublayer, 5A, contained small neurons that stained
weakly for NeuN, appearing as a thin, pale layer immediately below
4B. The deep sublayer, 5B, contained medium and large neurons
that stained darkly for NeuN and were more evenly distributed
compared to cells in 5A. The boundary between 5A and 5B was
distinguishable in all primates given the distinct change in neu-
ron size and density between the two sublayers. In tree shrews
however, the 5A/5B boundary was less distinct due to more vari-
ably sized neuronal populations in both sublayers. Nevertheless,
two visible subdivisions of layer 5 were present in all examined
species.

LAYER 6 OF V1
Layer 6 of V1 is also traditionally considered a single layer (von
Bonin, 1942; Garey, 1971; Lund et al., 1975; Lund, 1988), but
tends to have a heterogeneous appearance in most species given
its variable cell populations and proximity to the white matter
belowV1. NeuN preparations in all species identified two sublayers
of layer 6; the superficial sublayer, 6A, contained even distri-
butions of medium and large darkly stained neurons while the
deep sublayer, 6B, contained sparser populations of small neurons
that diffused into the white matter below V1 (Figures 1–3). In
prosimian primates and tree shrews, a thin cell-free zone often
separated cells in 6A from 6B, but in anthropoid primates, 6B
appeared continuous with the lower portion of 6A. Layer 6A also
contained moderate distributions of VGLUT2 labeling, reflect-
ing sparse geniculostriate inputs to this layer (Lund and Boothe,
1975; Lund, 1988; Casagrande and Kaas, 1994). These projec-
tions were more noticeable in New World monkeys compared to
other primates but were still visible in all species examined here.
In contrast, layer 6B showed no VGLUT2 IR in primates or tree
shrews.
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FIGURE 5 | VGLUT2 immunoreactivity reveals the continuation of

layer 4, but not layer 3Bβ, at the boundary of V1 into V2 across

(A) chimpanzees, (B) macaque monkeys, (C) squirrel monkeys,

(D) marmosets, (E) owl monkeys, (F) galagos, (G) mouse lemurs, and (H)

tree shrews. Hässler’s laminar designations are listed on each panel for both

visual areas. Arrowheads demarcate the V1/V2 border, V1 is to the left of the
arrowhead and V2 is to the right of the arrowhead in each panel. Black lines
indicate laminar boundaries and white lines indicate sublaminar boundaries in
each area. Individual panels are scaled relative to V1 of chimpanzees to
visualize laminar transitions between V1 and V2 across species.

LAMINAR SHIFTS AT THE BOUNDARY OF V1 AND V2
The distinct patterns of lamination seen in V1 of all species ended
abruptly at the border of V1 with V2, highlighting the fact that
many of the sublayers seen in V1 are specializations of primary
visual cortex in primates. When transitioning from V1 to V2, all

six neocortical layers shifted slightly toward the pial surface, and
superficial cortical layers grew more compact while deep corti-
cal layers expanded in the portion of V2 immediately adjacent to
V1 (Figures 3 and 5). This dorsal shift occurred over less than
a millimeter of cortical surface in most species and, beyond this
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border region, all layers shifted ventrally in V2, back to similar
depths as their corresponding layers in V1. This border region
between V1 and V2 contains callosal connections of both areas
across primates (Myers, 1962; Wong-Riley, 1974; Essen and Zeki,
1978; Weyand and Swadlow, 1980; Van Essen et al., 1982; Cusick
et al., 1984; Innocenti, 1986; Kennedy et al., 1986; Gould et al.,
1987; Hof et al., 1997), which may account for the change in
relative layer sizes in this region. This shift in neocortical lay-
ers was easily visible in chimpanzees and macaque monkeys, and
moderately present in New World monkeys and galagos, but only
slightly detectable in mouse lemurs. Tree shrews, in contrast, did
not show a similar shift in cortical layers along the border of V1
with V2.

The two subdivisions of layer 4 identified in NeuN prepara-
tions shifted slightly towards the pial surface when transitioning
from V1 to V2 in each case, but both layers continued into V2
as a single, dense layer of granule cells (Figure 3). Similarly, the
dense VGLUT2 IR seen in layers 4A and 4B of all species also
shifted superficially at the V1/ V2 border and merged into a single
layer of more moderate VGLUT2 IR in V2 (Figure 5). In contrast,
the thin band of granule-like cells and VGLUT2-positive termi-
nations in layer 3Bβ of monkeys did not cross the boundary of
V1 into V2; in every case, this layer ended abruptly at the V1/V2
boundary, highlighting its specialized existence in some, but not
all, primate species. Layer 3C, between layer 3Bβ and 4, did con-
tinue from V1 into V2 and could be clearly distinguished as a
pale, cell-sparse layer above the densely packed layer 4 in each
case. High magnifications of both layer 3C and 4 in V1 and V2
illustrated differences in neuronal size and density between these
layers in each area (Figure 4). Quantitative analyses of neuronal
densities in the middle layers of V1 also showed that neurons
in layer 4 were significantly more densely packed than neurons
in dorsal layer 3C, across every species examined in this study
(U = 722487.5, n = 1925, p < 0.0001). Similar analyses of the
middle layers of V2 highlighted the same relationship; layer 4 of
V2 contained significantly denser distributions neurons than layer
3C of V2 (U = 494858.5, n = 1606, p < 0.0001) in all species.
Such distinct differences between layers 3C and 4 across primates
strongly suggests that layer 3C of V1 is not part of layer 4, as orig-
inally suggested by Brodmann (1909), but instead derives from a
common layer 3 across cortical areas and species, as proposed by
Hässler (1967).

DISCUSSION
The primary goals of this study were to describe patterns of NeuN
and VGLUT2 immunoreactivity in V1 of chimpanzees, Old World
monkeys, New World monkeys, prosimians, and tree shrews, in
order to identify and compare specialized and homologous lam-
inar divisions across primates and closely related non-primate
groups. We find that NeuN immunoreactivity identifies a com-
mon pattern of lamination in V1 across all these species, regardless
of their phyletic origin in the primate lineage. Similarly, VGLUT2
identifies conserved patterns of geniculostriate terminals in layer
4 of all species, as well as specialized patterns of geniculate ter-
minals in layer 3Bβ of anthropoid monkeys, mouse lemurs, and
tree shrews. These findings provide anatomical evidence for com-
mon laminar architecture in V1, with multiple subdivisions of

the superficial and deep layers, but a single layer 4 with two
subdivisions, across primate and non-primate species.

Layers 1 and 2 of V1 were clearly homologous across primates
and tree shrews, with almost no neurons in layer 1 and small,
densely arrayed neurons in layer 2. The faint VGLUT2 IR in layer
2 of chimpanzees and macaque monkeys likely derives from pul-
vinar projections to layer 2 of V1 (Balaram et al., 2013; Marion
et al., 2013) that may also exist in New World monkeys (Tigges
et al., 1981; Stepniewska and Kaas, 1997; Soares et al., 2001; Kaas
and Lyon, 2007) and prosimians (Raczkowski and Diamond, 1980;
Wong and Kaas, 2010). The three subdivisions of layer 3 seen
in NeuN preparations also appear to be highly conserved across
primates, and are likely related to similar divisions of layer 3 in
non-primates as well. The clustered arrangement of medium and
large pyramidal neurons in 3A is morphologically similar across
primates and tree shrews, as is the dense distribution of smaller
pyramids in layer 3B. Both layers appear expanded in anthro-
poid primates compared to those in prosimians and tree shrews,
and this may reflect the greater number of total neurons in V1
of anthropoid compared to prosimian primates (Collins et al.,
2010).

Layer 3Bβ appears to be unique to anthropoid monkeys,
given the lack of dense CO reactivity or VGLUT2-positive ter-
minations in layer 3 of chimpanzees (Preuss et al., 1999; Bryant
et al., 2012), and humans (Bryant et al., 2012; Garcia-Marin et al.,
2012). In apes and humans, thalamic inputs to layer 3B of V1
appear to be reduced or absent altogether (Preuss et al., 1999;
Preuss and Coleman, 2002; Bryant et al., 2012; Garcia-Marin et al.,
2012). The presence of VGLUT2- positive geniculate termina-
tions in layer 3B of tree shrews and mouse lemurs, however,
raises the possibility that parvocellular and koniocellular inputs
to this region arose early in the ancestors of the arboreal pri-
mate lineage. In nocturnal galagos and owl monkeys, where
VGLUT2-positive terminations were more diffuse, parvocellular
projections are reduced and layer 3 is dominated by koniocel-
lular inputs instead. Thus, parvocellular inputs to layer 3Bβ

appear to have evolved early on in the primate lineage, and
they were either refined to a single layer in diurnal, arboreal
anthropoid monkeys or they gradually receded in nocturnal or
terrestrial primates such as galagos, owl monkeys, chimpanzees
and humans.

In all primates, koniocellular geniculate terminations are often
coincident with the well-known CO blobs of V1 (Livingstone
and Hubel, 1982; Horton, 1984; Lachica and Casagrande, 1992;
Casagrande et al., 2007), but the colocalization of VGLUT2 IR
with CO blobs is not well documented across primates and not
all koniocellular geniculate projections utilize VGLUT2 (Balaram
et al., 2011, 2013). In prosimians and tree shrews, VGLUT2 IR
does identify patchy blob-like structures in layer 3B of V1 that
correspond to CO-dense blobs or patches in the same layer (Wong
and Kaas, 2009b, 2010). However, in New World and Old World
monkeys, as well as humans, VGLUT2 IR only reveals sparse dis-
tributions of geniculate terminals in layer 3B that may be periodic
and coincident with the CO blobs (Bryant et al., 2012; Garcia-
Marin et al., 2012; Balaram et al., 2013). These differences in
VGLUT2-positive terminations between prosimians, anthropoid
primates, and humans suggest that geniculate terminations to
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the blob regions of V1 were more diffuse in ancestral primates,
were refined to sparser inputs in anthropoid monkeys, and may be
further reduced in present-day chimpanzees and humans.

The termination of VGLUT2-positive projections to 3Bβ at the
V1/V2 border in most species does suggest that this layer is unique
to V1. Although it has been common to conclude that layers 3Bβ

and 4 of V1 merge to form a single layer in V2, a close exam-
ination of the border region between V1 and V2 in NeuN and
VGLUT2 preparations shows that this is not the case. The slight
dorsal shift of all cortical layers at the V1/V2 boundary may give
the illusion of merging middle layers from V1 to V2, but only one
granular layer continues uninterrupted from V1 to V2 in NeuN
preparations of each species examined here. Similarly, only one
layer of dense VGLUT2-positive terminations continues from V1
to V2 in each species, the single layer 4 as previously delineated by
Hässler (1967). Further evidence for this conclusion comes from
the clear identification of layer 3C in V1, which also continues
uninterrupted into V2. The presence of large pyramidal neurons
instead of small granule cells, as well as the lack of VGLUT2-
positive geniculate projections, differentiates this layer from the
standard definition of layer 4 - a single layer characterized by small
granule cells that receive dense inputs from the LGN (Cowey, 1964;
Hubel and Wiesel, 1972; Dräger, 1974; Hubel et al., 1975; Ribak
and Peters, 1975; Glendenning et al., 1976; Kaas et al., 1976; LeVay
and Gilbert, 1976; Cooper et al., 1979; Spatz, 1979; Towns et al.,
1982; Rosa et al., 1996). Neurons in layer 3C instead receive intrin-
sic projections from layer 4, similar to 3A and 3B (Levitt et al.,
1996), and are known to project extrinsically to MT (Van Essen
et al., 1981; Maunsell and Van Essen, 1983; Shipp and Zeki, 1989)
and the thick CO bands of V2 (Federer et al., 2009; Sincich et al.,
2010), just as 3A and 3B project extrinsically to V2 and other visual
areas (DeYoe and Van Essen, 1985; Rockland, 1992; Sincich and
Horton, 2005; Sincich et al., 2010; Federer et al., 2013). Analyses of
neuronal density in layers 3C and 4 of V1 and V2 showed that both
layers are quite distinct from one another, regardless of the area
in question. Other studies on laminar specific gene expression in
macaque monkeys show that neurons in Hässler’s 3Bβ and 3C are
genetically more similar to layer 3 neurons than layer 4 neurons
across multiple areas in the neocortex. Thus, Brodmann’s delin-
eation of this layer as part of layer 4 seems inappropriate given
the evidence discussed above. Hässler’s (1967) laminar scheme for
V1 however, allows for better comparisons of V1 morphology and
function across all primates, as well as tree shrews and other visual
mammals.

Layer 4 across primates and tree shrews could be identified
by small, densely packed granule cells in NeuN preparations as
well as dense VGLUT2 IR in both subdivisions, 4A and 4B. Both
sublayers merged with a single layer 4 containing similarly sized
granule cells but more moderate VGLUT2 labeling in V2. This
layer 4, which corresponds to Hässler’s layer 4 of V1, is directly
comparable to layer 4 of V1 in rodents (Krieg, 1946; Peters and
Feldman, 1976; Caviness and Frost, 1980; Frost and Caviness, 1980;
Simmons et al., 1982; Peters, 1985), lagomorphs (Swadlow and
Weyand, 1981; Towns et al., 1982; Weyand and Swadlow, 1986),
and lemurs (Clark, 1931; Zilles et al., 1979; Preuss and Kaas, 1996),
tarsiers (Collins et al., 2005), and great apes and humans (Yoshioka
and Hendry, 1995; Preuss et al., 1999; Preuss and Coleman, 2002;

Zilles et al., 2002; Preuss, 2007; Bryant et al., 2012). By excluding
the variable sublayer 3Bβ with koniocellular LGN inputs as well
as the pyramidal sublayer 3C with no thalamic inputs, layer 4 can
be consistently identified as a single granular layer across mam-
mals, thus creating a more unified scheme of V1 lamination across
primate and non-primate species.

Layer 5 of V1 surprisingly revealed two consistent subdivi-
sions across species, which have only been previously reported in
macaque monkeys (Lund, 1973, 1987; Lund et al., 1988; Balaram
et al., 2013). The superficial sublayer, 5A, consists largely of
interneurons that project intrinsically in V1, and are identifiable in
the present results by comparatively weak NeuN labeling against
the surrounding V1 layers. In contrast, the deep sublayer 5B could
be differentiated by stronger NeuN IR and sparser distributions
of medium and large pyramidal neurons, which are known to
project subcortically to the pulvinar and superior colliculus in
most primate species (Spatz et al., 1970; Lund et al., 1975; Gra-
ham et al., 1979; Raczkowski and Diamond, 1980; Baldwin and
Kaas, 2012; Baldwin et al., 2013). The consistent identification of
two sublayers in layer 5 across primates and tree shrews suggests
that these patterns of intrinsic and extrinsic projections are highly
conserved in these closely related species. Further studies in non-
primate species will reveal if these sublayers are fundamental to
V1 organization across other mammals as well.

Similarly, layer 6 of V1 has been recently subdivided into two
layers across multiple primate and non-primate species, largely
based on distinct differences in gene expression patterns between
cells in the upper portion, 6A, and cells in the lower portion, 6B
(Yamamori and Rockland, 2006; Hevner, 2007; Belgard et al., 2011;
Bernard et al., 2012). The present results also reveal differences
in cellular density between the two layers, as well as the pres-
ence of geniculate terminations throughout 6A but not 6B. Prior
reports of V1 lamination largely consider layer 6 as a single layer
that blends into the ventral white matter (Lund, 1973; Lund et al.,
1988; Casagrande and Kaas, 1994), but subtle differences between
upper and lower tier cells in this layer have been considered (Levitt
et al., 1996; Yamamori and Rockland, 2006; Watakabe et al., 2012,
2006). Our results, in combination with recent studies of layer- and
cellular-specific gene expression, suggest that layer 6 is made up
of two functional subdivisions; a superficial sublayer with sparse
geniculate inputs as well as intrinsic and extrinsic visual projec-
tions, and a deep sublayer with separate inputs and functions. Both
sublayers are consistently present across primates and tree shrews,
and are similar to those seen in rodent species as well (Usrey and
Fitzpatrick, 1996; Hevner, 2007; Belgard et al., 2011; Bernard et al.,
2012).

The results presented here contribute to a unified understand-
ing of laminar organization in V1 across multiple primates as well
as a closely related non-primate, tree shrews. They highlight the
inconsistencies of Brodmann’s laminar scheme when comparing
V1 architecture across multiple species and augment the grow-
ing number of reports that promote the use of Hässler’s laminar
scheme in V1 research (Spatz et al., 1970; Spatz, 1977; Tigges
and Tigges, 1981; Tigges et al., 1982; Maunsell and Van Essen,
1983; Gould et al., 1987; Allman and McGuinness, 1988; Henry,
1989; Casagrande and Kaas, 1994). In conjunction with reports
of physiological and connectional differences between V1 layers,

Frontiers in Neuroanatomy www.frontiersin.org August 2014 | Volume 8 | Article 81 | 10

http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Balaram and Kaas Homologous layers in mammalian V1

they will drive further research on the homologous and specialized
laminar features of primate V1.
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