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Abstract

The S4 transmembrane domain in Shaker (Kv1) voltage-sensitive potassium channels has four basic residues (R1–R4) that
are responsible for carrying the majority of gating charge. In Kv4 channels, however, R1 is replaced by a neutral valine at
position 287. Among other differences, Kv4 channels display prominent closed state inactivation, a mechanism which is
minimal in Shaker. To determine if the absence of R1 is responsible for important variation in gating characteristics between
the two channel types, we introduced the V287R mutant into Kv4.3 and analyzed its effects on several voltage sensitive
gating transitions. We found that the mutant increased the voltage sensitivity of steady-state activation and altered the
kinetics of activation and deactivation processes. Although the kinetics of macroscopic inactivation were minimally affected,
the characteristics of closed-state inactivation and recovery from open and closed inactivated states were significantly
altered. The absence of R1 can only partially account for differences in the effective voltage sensitivity of gating between
Shaker and Kv4.3. These results suggest that the S4 domain serves an important functional role in Kv4 channel activation
and deactivation processes, and also those of closed-state inactivation and recovery.
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Introduction

The S4 transmembrane domain has been shown to play an

important role in the voltage sensitivity of Kv1 (Shaker-like)

potassium channels [1–3]. The first four arginine residues (R1–R4)

in S4 bestow voltage sensitivity and are responsible for carrying the

majority of gating charge [1–5]. This mechanism has been

assumed to underlie voltage-sensitive gating in Kv4 (Shal-type)

channels as well, which generate rapidly activating and inactivat-

ing K+ current phenotypes designated ‘‘IA’’ in neurons and

‘‘Ito,fast’’ in cardiac myocytes [6–8]. However, only recently has

experimental evidence been obtained on the roles of positively-

charged residues in S4 with respect to regulating Kv4 channel

gating transitions [9,10].

These previous studies, which eliminated individual S4 positive

charges in Kv4.3 by mutation to uncharged alanine (RRA, [9]) or

glutamine (RRQ, [10]), found that activation and deactivation

characteristics were altered in a manner consistent with S4 serving

a primary functional role of the voltage sensor domain, VSD.

However, these mutants (which perturbed both electrostatic and

structural properties of the native VSD) significantly altered closed

state inactivation (CSI) and recovery from both open and closed

inactivated states, effects that cannot be accounted for by the

conventional Shaker model [11–13]. Specifically, Kv1 channels

lack significant CSI [13,14; however, see 15], while the process is

prominent in Kv4 channels [6–10,16].

Although the mechanistic details of Kv4 channel inactivation

gating are poorly understood, it is accepted that conventional

Shaker N- and P/C-type mechanisms are not operative [6,8,16].

Also, with regard to activation, it has been noted that the steepness

of the steady-state activation curve (‘‘a4’’) is ,2–3 times less than

that of Kv1 channels [8–10,17]. While several factors likely

contribute to these unique voltage sensitivities [1–5,12,18–20], an

immediately obvious difference between the two channel types

exists in the number of putative gating charges in S4: Kv1.4 has

four (R1–R4), while Kv4.3 has three (R2–R4 using the previous

nomenclature), with R1 replaced by neutral and hydrophobic

valine at position 287.

With prior studies providing evidence that S4 arginine residues

at positions 290, 293, and 296 confer voltage sensitivity to multiple

gating transitions in Kv4.3 [9,10], we hypothesized that the

absence of R1 may account, to a degree, for noted differences in

gating and regulatory characteristics between Shaker and Kv4

channels [6–8,16]. To test this, we mutated the native residue at

position 287 to arginine (V287R), a perturbation that introduced

R1-like positive charge as well as expanded associated side chain

volume by roughly 36 cm3/mole and increased local hydrophilic

character [21,22].

Here we demonstrate that V287R increased the steepness of the

steady state activation curve and slowed activation while accelerating
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deactivation kinetics. The mutant also significantly altered the

characteristics of CSI and recovery from inactivation. Our results

suggest that the absence of R1 only partially accounts for noted

differences in voltage dependent gating characteristics between

Shaker and Kv4.3; additional structural differences between the wild

type and V287R mutant channels are likely involved. We also show

that the mutant significantly accelerates recovery kinetics from both

open-inactivated and closed-inactivated states, findings that further

suggest that recovery is coupled to deactivation [8–10,16,23]. Non-

inactivated closed states are stabilized in the mutant channel,

consistent with S4 importantly regulating not only activation and

deactivation processes, but also those of CSI and recovery. Our

results support the proposal that CSI possesses inherent voltage

dependence or is coupled to activation in a manner significantly

different from that existing in Kv1 channels.

Methods

Mutagenesis
Kv4.3 was cloned from ferret heart (long form, GenBank

AF454388) as described previously [10] and maintained in the

pBluescript KS(+) vector. Site directed mutagenesis was performed

using the Quick Change II Site-Directed Mutagenesis Kit

(Strategene, La Jolla, CA, USA) and primers designed to valine

287 (Invitrogen, Carlsbad, CA, USA) in the fourth transmem-

brane segment. Specificity of mutations was confirmed by

sequencing.

In vitro Transcription and Oocyte Preparation
Kv4.3 wild type and mutant clone plasmids were linearized with

the restriction endonuclease XhoI (New England BioLabs,

Ipswich, MA, USA). cRNA was synthesized by the mMessage

mMachine T7 Ultra Kit (Ambion, Austin, TX, USA). cRNA

quantity and quality was evaluated by spectroscopy and agarose

gel electrophoresis.

All animal protocols were conducted according to the NIH-

approved guidelines of the Institutional Animal Care and Use

Committee, University at Buffalo, SUNY. Oocytes were obtained

from mature female Xenopus laevis euthanized by soaking in

6.0 g L21 ethyl-3-aminobenzoate methanesulfonate salt and

defolliculated as previously described [10]. Twelve to 24 hours

after isolation, oocytes were injected with 4–9 ng cRNA (Nanoject

II; Drummond Scientific, Broomall, PA, USA). Injected oocytes

were incubated for 2–4 days at 18uC.

Electrophysiology
Two-microelectrode voltage clamp (TEVC) recordings (Gene-

Clamp 500B, Axon Instruments, Union City, CA, USA) were

performed on injected oocytes as described previously [10].

Previous WT Kv4.3 data [9,10,16,25] used for comparison were

acquired in each study from a minimum of three different batches

of oocytes. Recordings (2262uC) were conducted in ND96

solution (in mM: 96 NaCl, 2 KCl, 1 MgCl2, 1.8 CaCl2, 5 HEPES,

pH = 7.40). All voltage clamp recordings were conducted at the

maximal gain of the amplifier (10,0006) and clamp rise time

stability settings of 60–120 ms. Currents were acquired (filtered at

1 kHz, digitized at 5 kHz) with a Digidata 1320A 16-bit

acquisition system under pCLAMP 9 software control (Axon

Instruments).

Protocols
Analysis of activation kinetics was conducted using the 90%

voltage clamp rise time criteria employed in previous studies [9,10].

A mean voltage clamp 90% rise time of t90% = 1.5860.05 ms was

obtained (n = 11). Fits to activation kinetics were only attempted after

this time, so very rapid gating transitions that may have occurred

during the initial voltage clamp rising phase were not resolvable. No

quantitative claims regarding activation or deactivation kinetics prior

to t90% are made. Estimates of minimal effective gating charges and

voltage independent free energy changes were made using a

simplified two state gating model [10,20]. Briefly, at 22uC the

movement of one elementary charge (e0) across the entire membrane

potential field (di = 1.0) would correspond to a slope factor (for either

steady-state activation ‘‘a4’’ or inactivation ‘‘i’’) of k = 25.43 mV.

From fits to the experimentally measured ‘‘a4’’ and ‘‘i’’ curves

(Figures 1.B, 2.A) the following estimates were made: the minimal

effective gating charge q = RT/k, and the voltage independent

change in free energy DDG0
vi~{, where V1/2 is the potential (mV)

of half maximal activation or inactivation, k is the associated slope

factor (mV), R is the gas constant, and T is temperature (u K).

Kinetic estimates of q were obtained from exponential fits to the

voltage dependence of the associated time constant curves. All data

points in figures are mean6SEM values. Statistical significance

(p#0.01) was determined by ANOVA (Origin).

Potential Limitations
Addition of a single charged residue to S4 and associated

increases in ‘‘a4’’ and ‘‘i’’ slope factors, while suggestive, do not

prove that the residue contributes to voltage sensitivity. Such a

conclusion requires verification by appropriate gating current

measurements and demonstration of alterations in single subunit

gating charge [4,5,18]. We acknowledge the limitations of the two-

state model, as previously discussed in detail [10, and references

cited therein]. Further, there are several differences in uncharged

amino acid residues between the S4 segments of Shaker and Kv4.3

(see Introduction), any of which may potentially contribute to the

unique voltage sensitivities between the two channel types [24].

Results

For reference, all measurements associated with WT Kv4.3

were acquired previously [9,10,16,25], unless otherwise indicated.

In associated figures, fits to this previous data are illustrated as

smooth curves lacking data points.

Activation and Deactivation Characteristics
Mean peak transient I–V relationships for WT and V287R are

illustrated in Figure 1.A. We have previously observed an apparent

activation threshold of ,240 mV for WT channels. In contrast,

V287R resulted in a depolarizing shift, with an apparent activation

threshold of ,215 mV.

To quantify this effect, we employed a saturating tail current

protocol to directly estimate the steady-state activation relationship

‘‘a4’’, fit as a standard Boltzmann relationship (1ze{{) raised to

the fourth power. Consistent with the depolarized I–V relation-

ship, V287R produced a depolarizing shift in the mean half

activation potential of DV1/2 = +37 mV (Figure 1.B). There was

also an increase in the steepness of the ‘‘a4’’ curve (WT:

k = 14.50 mV, V287R: k = 11.62 mV). These parameters gave

the following estimates for a single a subunit: i) WT: qact = 1.76 e0,

V287R: qact = 2.19 e0, an increase of 25%, and ii) a change in the

voltage-independent free energy of activation of DDG0
vi = 2.69

RT. V287R thus increased apparent effective qact while stabilizing

non-inactivated closed states.

Consistent with the depolarizing shift in ‘‘a4’’, V287R slowed

the kinetics of activation over the range of potentials hyperpolar-

ized to 40 mV (Figure 1.C). Incorporation of R1 also reduced the

voltage-dependence of the tact2Vm curve (as determined from an

Kv4.3 R1 Alters Gating
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exponential fit to mean data points). A kinetic estimate of

qact = 0.82 e0 was obtained, a reduction of ,50% from the WT

value of 1.56 e0.

Deactivation kinetics (single exponential fits) were determined

over a range of hyperpolarized potentials where mean activation

curves indicated minimal measurable open state activity (WT:

240 to 2120 mV, V287R: 220 to 2120 mV). V287R

significantly accelerated the kinetics of deactivation (Figure 1.D)

while reducing the voltage-dependence of the tdeact2Vm curve.

The latter effect resulted in a ,25% reduction of effective qdeact

(WT: qdeact = 1.04 e0, V287R: qdeact = 0.78 e0).

Inactivation Characteristics: Kinetics of Development
The effects of V287R on the mean one second isochronal

inactivation relationship ‘‘i’’ are illustrated in Figure 2.A (fit as a

single Boltzmann relationship). In contrast to the effects on ‘‘a4’’,

V287R decreased the voltage sensitivity of ‘‘i’’ (WT: k = 6.20 mV,

V287R: k = 7.26 mV), resulting in a 15% reduction in apparent

effective qcsi (WT: qcsi = 4.10 e0, V287R: qcsi = 3.50 e0). Nonethe-

less, similar to WT, there was no significant overlap in the V287R

‘‘a4’’ and ‘‘i’’ relationships (Figure 2.B), indicating that a

prominent closed state inactivation (CSI) mechanism was still

present in the mutant channel.

The depolarizing shift in the half inactivation potential (DV1/2

= 8.60 mV) indicated that V287R stabilized non-inactivated

closed states. Within our analytical framework (see Methods), this

effect was attributed to perturbation of structural properties at the

R1 site, resulting in a change in the voltage-independent free

energy of CSI of DDG0
vi,csi = 2.60 RT. It was noted that the

depolarizing shift produced by V287R as compared to WT was

less for ‘‘i’’ than for ‘‘a4’’ (Figure 2.B).

Consistent with previous studies on WT channels [9,10,16,25],

the macroscopic inactivation kinetics of V287R (Figure 2.C)

during a one second depolarizing pulse (applied from 0 to

+50 mV) could be well described as a double exponential process

(a single exponential time constant could only be obtained reliably

hyperpolarized to 210 mV). The mean effects of V287R were

subtle, with a slowing of tfast evident in the hyperpolarized range of

potentials, an acceleration of tfast at more depolarized potentials,

and a modest slowing of tslow across all potentials analyzed

(Figure 2.C). The mean relative amplitude of the initial component

of fast inactivation (Afast) was 0.8560.01, a value similar to WT

Figure 1. Activation and Deactivation Characteristics. A) Main Panel: Comparison of normalized (peak values at +50 mV) mean peak transient
I–V relationships for V287R (n = 8) and WT Kv4.3, from [16]. HP = 2100 mV, currents elicited by one second depolarizing pulses, and mean peak
transient current defined as peak current minus residual current at the end of the depolarizing pulse. V287R mean peak current amplitude at
+50 mV = 9036141 nA. Inset: Representative current waveforms for V287R elicited in response to depolarizing voltage clamp pulses applied from
210 mV to +50 mV, 10 mV increments. Calibration bar: 200 nA, 50 ms. B) Mean steady-state activation curve ‘‘a4’’ fit as a fourth order Boltzmann
relationship (V1/2 = 1.40 mV, k = 11.62 mV, n = 11). Mean WT ‘‘a4’’ relationship: V1/2 = 236 mV, k = 14.50 mV, from [9]. C) Main Panel: V287R activation
kinetics (n = 11). Curve fits (single exponential functions) to mean data points: tact = 4.84e102mV/30.9+0.20 ms. Inset: Representative fits of V287R ‘‘a4’’
activation kinetics elicited during depolarizing pulses from 210 to +50 mV, 10 mV increments, HP = 2100 mV. tact = 1.1, 1.4, 1.9, 2.5, 4.2, 5.2, 7.7 ms,
210 to +50 mV, respectively. Calibration bar: 200 nA, 1.0 ms. D) Main Panel: V287R deactivation kinetics (n = 12). Curve fits (single exponential
functions) to mean data points: tdeact = 0.18emV/32.7+1.40 ms. Inset: Representative single exponential fits of V287R deactivation kinetics from 240 to
2100 mV, 10 mV increments, HP = 2100 mV. tdeact = 4.9, 3.9, 3.6, 2.7, 2.8, 2.2 ms, 240 to 2100 mV, respectively, 270 mV not fit. Calibration bar:
50 nA, 3.0 ms. WT data in panels C) and D) from [9].
doi:10.1371/journal.pone.0003773.g001
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(Afast = 0.8060.02). Apparent voltage sensitivity of the tfast2Vm

curve was decreased in the mutant channel (WT: qinact,fast = 2.36

e0, V287R: qinact,fast = 2.08 e0), while for the tslow2Vm curve it was

increased (WT: qinact,slow = 0.64 e0, V287R: qinact,slow = 0.75 e0).

Despite differences in these values, V287R produced no obvious

alteration in macroscopic inactivation kinetics at potentials where

the channel was nearly or fully activated.

In contrast to the minimal effects on the kinetics of macroscopic

inactivation (Figure 2.C), it was predicted that V287R would alter

the kinetics of development of CSI over a range of hyperpolarized

potentials where the ‘‘i’’ curves of both WT and V287R were

variable (Figure 2.A). To test this prediction, comparative tcsi2Vm

relationships (250 to 220 mV) were determined (Figure 2.D).

The kinetics of the development of CSI displayed an exponential

dependence upon potential. Depolarized to 240 mV, V287R

slowed the development of CSI and reduced its apparent voltage

dependence (WT: qcsi = 3.01 e0, V287R: qcsi = 2.49 e0).

Inactivation Characteristics: Kinetics of Recovery
V287R significantly altered the kinetics of recovery from

inactivation. Using a double pulse protocol (see [25]) mean

recovery kinetics at HP = 2100 mV (single exponential fits) were

significantly faster for V287R than for WT (WT: trec = 185 ms,

V287R: trec = 30.10 ms, Figure 3.A). This acceleration could not

be attributed to a simple shift in the isochronal inactivation curve,

as ‘‘i’’ = 1.0 at HP = 2100 mV for both channel constructs.

At the holding potentials analyzed (2100, 285, 270 mV) the

kinetics of recovery from macroscopic inactivation were always

faster for V287R than for WT (Figure 3.B). The voltage

dependence of the mean mutant macroscopic recovery time

constant, trec, gave an estimated effective charge of qrec = 1.16 e0,

while previous results yielded a mean WT value of qrec = 2.28 e0

[9,10].

We have observed that recovery from closed-state inactivation

(HP = 2100 mV, developed during a two second P1 pulse to

250 mV) for the WT channel is a sigmoidal process that can be

empirically fit as an ‘‘a2’’ exponential formulation [9]. To expand

upon these observations, we applied the same protocol at

HP = 285 and 270 mV to determine the voltage dependence of

the time constants. Recovery from CSI for the WT channel was

again sigmoidal at each HP and empirically fit as an ‘‘a2’’

formulation (Figure 3.C, upper panel). In contrast, recovery from

CSI for V287R could be well fit as a conventional exponential

process (Figure 3.C, lower panel). For both channels, as HP was

depolarized, CSI recovery kinetics were slowed (Figure 3.D).

Nonetheless, V287R displayed significantly faster kinetics than

WT at each HP, and increased the apparent voltage dependence

of the trec,csi curve (WT: qrec = 0.27 e0, V287R: qrec = 1.29 e0).

Discussion

In this study we found that incorporation of a single arginine

residue at position 287 in Kv4.3 increased the steepness of the

Figure 2. Inactivation Characteristics. A) Isochronal one second inactivation relationship ‘‘i’’. Mean data points (n = 13) fit to a single Boltzmann
relationship (V1/2 = 251.50 mV, k = 7.26 mV). WT data (V1/2 = 260.10 mV, k = 6.20 mV) from [9]. B) Comparative overlays of ‘‘a4’’ and ‘‘i’’ relationships
for WT and V287R channels. Both expression conditions displayed significant closed-state inactivation, with V287R stabilizing non-inactivated closed
states. The mutant channel also produced a greater depolarizing shift in ‘‘a4’’ than in ‘‘i’’. C) V287R mean tinact2Vm curves (n = 12). Curve fits:
tfast = 86.20e102mV/12.23+23.50 ms; tslow = 99.70e102mV/33.97+201.90 ms. WT data from [10]. D) Main Panel: V287R kinetics of closed-state inactivation. A
fixed one second pulse to +50 mV (P2) was preceded by a pulse of progressively increasing duration (P1) at each of the potentials indicated. The
decline of P2 current as a function of P1 duration was used to determine tcsi. V287R curve fit: tcsi = 725.68e260+mV/10.23+91.50 ms. WT data from [25].
Inset: Development of CSI at 240 mV for V287R, tcsi = 202 ms. Calibration Bar: 100 nA, 150 ms.
doi:10.1371/journal.pone.0003773.g002
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steady-state activation relationship and its associated effective qact

value. These findings complement previous work indicating that

elimination of S4 native charge at positions 290 and 293 reduced

the voltage sensitivity of ‘‘a4’’ [9,10]. However, despite an increase

in the steepness of the steady-state activation curve as compared to

WT, the mean slope factor for V287R was still greater (less voltage

sensitive) than that reported for Kv1 channels. Therefore, the

absence of R1 charge alone can only partially account for noted

differences in activation characteristics between Kv1 and Kv4.3

channels. Effects resulting from perturbation of structural

characteristics must also be considered. For example, in addition

to conferring supplementary positive charge to S4, the VRR

mutation expanded associated side chain volume by ,36 cm3/

mole and introduced local hydrophilic character. Overall effects

on activation characteristics were thus likely due to alteration of

both electrostatic and structural properties [10,20], a finding in

agreement with prior studies on Kv1 channels [26].

The effects of V287R on closed state inactivation (CSI)

characteristics were not predictable from the Shaker model, as

minimal CSI is displayed by Kv1 channels [13,14], and apparent

voltage dependence of inactivation arises from coupling to

activation [19]. While depolarizing shifts in both ‘‘a4’’ and ‘‘i’’

produced by V287R are consistent with partial coupling of

inactivation to activation, we have demonstrated previously that

charge neutralization of specific arginine residues in S4 can

produce non-parallel, and even opposite, shifts in ‘‘a4’’ and ‘‘i’’

[9,10]. This suggests that CSI can be uncoupled from activation.

In Shaker channels, Papazian et al. [26] originally demonstrated

that the S4 mutants that altered the voltage-dependence of

activation also altered inactivation to similar extents, and the

relationship between the V1/2 values of activation and inactivation

was linear with a slope close to 1.0. For comparison, a plot of all

presently available Kv4.3 S4 mutant data is illustrated in Figure 4.

A linear relationship centered on WT and with a slope of 1.0 could

not adequately describe our results, with all V1/2 shifts less than

those predicted by Shaker. In addition, V287R increased the

voltage sensitivity of ‘‘a4’’ while reducing it in ‘‘i’’.

Previously, we have analyzed the effects of S4 RRA mutant

channels and observed that R290A, R293A, and R296A produced

variable and non-parallel effects on ‘‘a4’’ and ‘‘i’’, and each

significantly slowed macroscopic recovery and deactivation

processes [9]. In comparison, we report here that V287R

depolarized ‘‘a4’’ and ‘‘i’’ (again in a non-parallel fashion), and

significantly accelerated macroscopic recovery and deactivation

Figure 3. Recovery Characteristics. A) WT and V287R macroscopic recovery kinetics (HP = 2100 mV) developed during a one second pulse to
+50 mV. Mean mutant data points (n = 7) fit as a single exponential function with trec = 30.10 ms. WT trec = 206 ms, data from [9]. B) Main Panel:
Comparison of the voltage dependence of mean trec values of V287R and WT, from [9,10,16,25]. At all HPs, macroscopic recovery kinetics were
significantly faster for V287R than for WT. Curve fits: WT: trec = 23.89emV/11.14+142.10 ms, V287R: trec = 9.42emV/21.77+13.95 ms. Inset: Representative
macroscopic recovery waveforms for V287R (P2 currents at +50 mV). Peak data points fit with a single exponential relationship with time
constant = 32 ms. Calibration bar: 200 nA, 20 ms. C) Representative recordings of recovery (HP = 285 mV) from closed-state inactivation for WT
(upper panel, fit as an ‘‘a2’’ formulation) and V287R (lower panel, exponential fit). Calibration bars: WT: 1 mA, 50 ms, V287R: 500 nA, 50 ms. D) Voltage
dependence of mean trec,csi values for WT (hollow squares, n = 5) and V287R (solid squares, n = 7). Curve fits: WT: trec,csi = 248.50emV/93.12582.10 ms,
V287R: trec,csi = 5.80emV/19.77+34.10 ms.
doi:10.1371/journal.pone.0003773.g003
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kinetics. Taken together, these studies suggest that S4 positively

charged residues are importantly involved in regulating several

unique gating transitions in Kv4.3, in particular CSI and recovery.

R302A (corresponding to Shaker R5 and localized to the

intracellular half of the S4 domain) was also analyzed in that study,

and found to produce effects similar to V287R. Specifically, both

mutants depolarized the steady-state activation relationship.

Although R302A ‘‘a4’’ could not be measured directly (explana-

tion provided in [9]), its mean peak I–V relationship was similar to

V287R, with an activation threshold near 215 mV. The kinetics

of deactivation and macroscopic recovery were also accelerated in

both mutants. However, although V287R and R302A both

depolarized the steady state inactivation relationship and reduced

voltage sensitivity of inactivation (V287R: k = 7.26 mV, qcsi = 3.50

e0; R302A: k = 7.50 mV, qcsi = 3.40 e0), the depolarizing shift in

‘‘i’’ was much greater for R302A (21.4 mV) than for V287R

(8.6 mV). This suggests that addition of a putative gating charge at

position 287 and its elimination at position 302, while yielding

superficially similar effects, do so by distinctly different mecha-

nisms. Nonetheless, it is interesting to note that opposing

mutations at opposite ends of the S4 domain can result in a

similar gating phenotype.

In contrast to Kv1 N-type inactivation [13,14,19], we propose

that Kv4.3 CSI possesses inherent voltage dependence. Partial N-

terminal deletion does not alter CSI characteristics in Kv4.2 (D2-

40, [27]) or Kv4.3 (D2-39, unpublished observations). Therefore, if

apparent voltage sensitivity of Kv4.3 CSI does arise from partial

activation of non-conducting closed states (early gating transitions

that precede the final closed-to-open state), a Kv1-like N-terminal

inactivation domain cannot be a primary inactivation mechanism.

The closed state structure of any voltage-sensitive potassium

channel has yet to be solved. As a result, all existing closed state

models are speculative and based on Kv channels that display

minimal CSI [28–30]. This is important to note considering that

Kv1 channel gating current measurements propose that the

register of S4 may be significantly different between open and

open inactivated states [31]. Our data indicate that a similar

scenario likely exists in Kv4.3 non-inactivated closed versus

inactivated closed states. Campos et al. [28] have proposed that

in the closed state, Shaker R1 is positioned in the outer half of the

membrane, oriented toward S1–S3 and in close proximity to I241

in S1 and I287 in S2. These residues, which in Kv4.3 correspond

to I198 in S1 and I236 in S2, may form a hydrophobic septum

separating the extracellular and intracellular crevices of the gating

pore [1,32,33]. Alternatively, in a study of chimaeric Kv1.2–Kv2.1

channels, Long et al. [29] have proposed that phenylalanine 233 in

S2, positioned three residues ‘‘down’’ from corresponding Shaker

I287, forms the septum. Kv4.3 has a comparable phenylalanine

residue at position 237 in S2.

During voltage dependent gating transitions, the hydrophobic

septum is believed to focus the transmembrane electric field to a

narrow region of S4 [34–36]. In the closed-state of Kv1, the field is

believed to reside across R1 [3,5]. Applying the model of Campos

et al. [28] to Kv4.3 suggests that in the non-inactivated closed state

the electric field would be focused over a region of S4 lacking

positive charge. Our results indicate that insertion of non-native

R1 increases the voltage sensitivity of steady-state activation. We

therefore propose that the outer crevice in WT Kv4.3 channels

extends further into the transmembrane domain than it does in

Shaker [10], thus allowing the field to be focused across R290 (R2

in Kv1) in the closed state. This proposal is consistent with the

model of Long et al. [29]. Alternatively, the hydrophobic septum

may be thicker in Kv4.3 than in Kv1. A thicker septum would

unfocus the transmembrane field while still allowing it to influence

R290, resulting in reduced voltage sensitivity. In both models

[28,29], insertion of R1 may alter the field sensed by other

positively-charged residues in S4. Gating current studies in Kv1

channels have demonstrated that specific S4 mutants can produce

non-additive effects, demonstrating that such mutants can alter the

voltage field sensed by other gating charges [37,38].

The majority of the Shaker S4 mutants analyzed by Papazian et

al. [26] failed to alter the kinetics of recovery. In contrast, all

Kv4.3 RRA/Q mutants significantly altered recovery kinetics.

Those that were found to stabilize closed inactivated states slowed

the process, while those that stabilized non-inactivated closed

states accelerated it [9,10]. By accelerating recovery (by nearly an

order of magnitude), we propose that V287R stabilizes non-

inactivated closed states. These findings are comparable to those

resulting from coexpression of Kv4.3 with KChIP2 isoforms

[16,25,39]. Although V287R and KChIPs likely do not accelerate

the process by the same mechanism, they do share a common

element in that both also accelerate the kinetics of deactivation.

These parallel effects further support the proposal that recovery

and deactivation processes are coupled [8–10,16,25]. Although

there is present controversy with respect to Kv4 channel gating

models [7,8,17,23,40], Wang et al. [23] have suggested that the

failure of all such models to predict the voltage dependence of

recovery arises from their inability to account for the energetic

coupling between deactivation and recovery. Our results support

this proposal.

In conclusion, the results presented here indicate that the

difference in the voltage dependence of activation between Kv1

and Kv4 channels cannot be fully accounted for by the absence of

R1 in Kv4.3. Likely, additional structural characteristics unique to

the S4 transmembrane domain of each channel are involved.

Additionally, demonstration that V287R significantly alters both

macroscopic recovery kinetics and closed-state inactivation

characteristics provides further evidence that the S4 domain not

only mediates voltage sensitivity of Kv4.3 activation and

deactivation processes, but also those of closed state inactivation

and recovery.

Figure 4. Summary of all Kv4.3 S4 mutant data collected to
date: ‘‘i’’ V1/2 values as a function of ‘‘a’’ V1/2 values. The solid
black line (centered on WT) is a linear relationship with slope = 1.0, as
predicted from previous work on Shaker channels [26]. The solid gray
line is a best fit to all mutant data points (WT excluded, slope = 0.65,
mean RRA/Q data points from [9,10]). All DV1/2 shifts were less than
those predicted from Shaker.
doi:10.1371/journal.pone.0003773.g004
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