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Abstract: Epidemiological studies have suggested that there are many risk factors 

associated with breast cancer. Silencing tumor suppressor genes through epigenetic 

alterations play critical roles in breast cancer initiation, promotion and progression. As a 

growth promoter, Zeranol (Z) has been approved by the FDA and is widely used to 

enhance the growth of beef cattle in the United States. However, the safety of Z use as a 

growth promoter is still under debate. In order to provide more evidence to clarify this 

critical health issue, the current study investigated the effect of Z on the proliferation of 

primary cultured human normal and cancerous breast epithelial cells (PCHNBECs and 

PCHBCECs, respectively) isolated from the same patient using MTS assay, RT-PCR and 

Western blot analysis. We also conducted an investigation regarding the mechanisms that 

might be involved. Our results show that Z is more potent to stimulate PCHBCEC growth 

than PCHNBEC growth. The stimulatory effects of Z on PCHBCECs and PCHBCECs 

may be mediated by its down-regulating expression of the tumor suppressor gene p53 at 

the mRNA and protein levels. Further investigation showed that the expression of DNA 

methylatransferase 1 mRNA and protein levels is up-regulated by treatment with Z in 

OPEN ACCESS 



Int. J. Mol. Sci. 2011, 12           
 

1520 

PCHBCECs as compared to PCHNBECs, which suggests a role of Z in epigenetic 

modification involved in the regulation of p53 gene expression in PCHBCECs. Our 

experimental results imply the potentially adverse health effect of Z in breast cancer 

development. Further study is continuing in our laboratory. 
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1. Introduction 

Breast cancer remains a serious problem in the U.S. It is estimated that more than one-fourth of 

cancer patients were breast cancer patients in 2010 and it ranks as the second leading cause of  

cancer-related deaths [1]. The risk factors associated with breast cancer have been well studied. 

Epidemiological studies suggest that there are many risk factors, such as dietary fat and environmental 

estrogenic endocrine disruptors. It has been reported that breast cancer cells express high levels of 

aromatase, which can convert androgens into estrogens, resulting in high concentrations of estrone (E1) 

and estradiol (E2) in breast tissue [2,3]. This finding might be the major reason for high risk of breast 

cancer in postmenopausal women and obese women.  

Zearalenone, a stable natural product that mimics estrogen activity, is carcinogenic and hazardous 

to human health [4]. It was reported that zearalenone may represent a growth promoter in exposed 

patients and there is a possible relationship between environmental mycoestrogen exposure and the 

development of central precocious puberty [5]. Zeranol (Z), produced from zearalenone, is a  

non-estrogenic anabolic growth promoter and is widely used in the U.S. beef industry to accelerate 

weight gain, improve feed conversion efficacy, and increase the lean meat-to-fat ratio [6]. It is 
approved by the FDA based on its toxicity information. However, the potentially adverse health 

concerns associated with Z have caused the European Union (EU) to refuse the import of beef products 

with any growth promoter implantation from the U.S., resulting in a serious legal issue between the 

U.S. and the EU. We need greater concrete evidence to clarify this important health issue in order to 

bring awareness to the FDA.  

Both zearalenone and Z can bind to the active site of human estrogen receptor α (ER α) and ER β in 

a manner similar to 17β-estradiol [7]. As a food contaminant, the intake of Z is very hard to avoid [8]. 

It is still not clear whether Z and its metabolites cause any adverse health risks from consuming beef 

products produced from Z-implanted beef cattle. Researchers have found that low concentrations of Z 

can increase ER α-positive human breast cell growth, but a high concentration of Z can reduce growth 

of both ERα-positive and ER-negative cell lines [9]. Our previous data showed that Z was able to 

transform normal human breast epithelial cells and increase human breast cell growth in a  

dose-dependent manner [10]. Z can also down-regulate the estrogen-regulated human breast cancer 

candidate suppressor gene, protein tyrosine phosphatase γ (PTPγ) expression [7]. Our laboratory’s 

recent experimental results showed that pre-adipocytes isolated from the cattle 60 days post  

Z-implantation (72 mg/pellets/animal) grow about 12-times faster than the pre-adipocytes isolated from 

control cattle [11]. Treatment with 0.2, 1 and 5% Z sera (ZS) harvested from the cattle 30 days post 

implantation in culture medium significantly stimulated MCF-10A and MCF-7 cell growth [12,13]. We 
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also have evidence showing that leptin, which plays a role in breast cancer development in obesity, induces 

human breast cancer epithelial cell sensitivity to Z [14].  

The relationship between the consumption of beef products with residue of Z and its metabolites 

and cancer development is still in debate. However, epidemiology studies showed that the semen 

quality of fertile U.S. males is related to their mother’ beef consumption during their pregnancy [15]. It 

has been reported that higher red meat intake in adolescence may increase the risk of premenopausal 

breast cancer [16]. Early in 1989, Aw and colleagues reported that workers were exposed to Z 

formulate pellets along with a package of animal growth promoter containing Z as its active ingredient 

in a small manufacturing plant. Their industrial exposure to Z caused one child to be afflicted with 

advanced bone aging due to his parents wearing their work clothes home (estimated 32 mg of Z on 

contaminated work clothes) [17]. It is well-known that the tumor suppressor gene p53 plays an 

important role in controlling cell life and death [18]. Loss of normal p53 function occurs in all types of 

human tumors, including breast cancer [19–21]. Baker and co-worker determined the p53 mutation 

status in 246 women with primary breast cancer and identified the p53 mutations in 26% of patients 

that may also be associated with poor prognosis [22]. It is estimated that at least one-third of  

non-familial breast cancer patients bear mutations in p53 [23]. Additionally, mutation of p53 is 

correlated with heritable mutations in BRCA1 [24]. The mechanisms of regulating p53 expression in 

breast cancer cells have been well studied. Our previous investigation found that the pre-adipocytes 

derived from the heifer after two month of Z-implantation grew about 12-times faster than those from 

the control heifer. The expression of p53 mRNA and protein was also lower in the Z treated group than 

the control [11]. However, the function of growth promoter-Z on regulation of p53 in primary cultured 

human normal and cancerous breast epithelial cells is still unknown. 

Epigenetics is the study of nuclear inheritance that is not based on differences in DNA sequences, 

but the changes in DNA structure partially due to altered DNA methylation. DNA methyltransferase 1 

(DNMT1) is known to be a major DNA methyltransferase that can catalyze a methyl group in cytosine 

residues within CpG dinucleotides and lead to the tumor suppressor gene silencing [25–27]. CpG 

methylation in the p53 promoter region was detected in breast cancer [28]. Our investigation has 

centered around determining whether Z stimulates breast cancer cell lines as well as primary cultured 

human normal and cancerous breast epithelial cells mediated by regulating DNA methyltransferase 1 

(DNMT1) and hypermethylation in the promoter regions, thus resulting in the silencing of the tumor 

suppressor gene, p53 expression. The current study investigates the effect of Z on the growth of 

primary cultured human normal and cancerous breast epithelial cells as well as the underlying 

mechanisms. Our results indicate that Z is more potent to stimulate primary culture human breast 

cancer epithelial cells (PCHBCECS) growth than primary culture human normal breast epithelial cells 

(PCHNBECS) and the stimulatory effects may be mediated by regulating the expression of DNMT1 

and down-regulating p53 expression in PCHBCECs but not in PCHNBECs. 

2. Results and Discussion 

2.1. Z Increases the Proliferation of PCHNBECs and PCHBCECs  

Our previous experimental results showed that Z stimulates MCF-7 cell and MCF-10A cell 

growth [10]. The serum harvested from the heifer one month post Z implantation is more potent in 
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stimulating human breast cancer cell lines as well as PCHBCEC growth than that from control heifers. 

In the current study, we evaluated the effects of Z on PCHNBEC’s and PCHBCEC’s growth. The 

results show Z increased the proliferation of both PCHNBECs and PCHBCECs in a dose-dependent 

manner (Figure 1). PCHBCECs are more sensitive in response to Z treatment than 

PCHNBECs (Figure 1). 

Figure 1. Effects of zeranol on the proliferation of PCHNBECs and PCHBCECs. 

PCHNBECs and PCHBCECs (5 × 10
3
 cells/well) were treated with 0.1% DMSO (as a 

vehicle control), 7.5, 15 and 30 nM zernaol in 96-well plates for 24 h. Non-radioactive cell 

proliferation assay was performed after 24 h treatment. Each bar represents the mean ± SD 

of 4 replicate wells. The asterisks show statistically significant differences between Z 

treatment groups and the control groups (p < 0.05). The figure illustrates that PCHBCECs 

are more sensitive to Z treatment than PCHNBECs. 

 

2.2. Regulatory Effects of Z on p53 mRNA and Protein Expression in PCHNBECs and PCHBCECs  

In order to explore the possible mechanisms involved in Z stimulation of PCHNBECs and 

PCHBCECs proliferation, we examined the expression of the p53 gene at the mRNA and proteins 

level. p53 is involved in many important physiological processes such as cell cycle arrest, gene 

transcription, DNA repair, and apoptosis. Our result illustrated that Z treatment significantly 

suppressed the level of p53 mRNA and protein expression in PCHBCECs in comparison to the levels 

in the control group (Figures 2 and 4). However, Z did not show significant reduction of p53 mRNA 

and protein expression in PCHNBECs when compared to the control (Figure 2). 
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Figure 2. Comparison of effect of Z on the expression of p53 mRNA in PCHNBECs and 

PCHBCECs. PCHNBECs and PCHBCECs (1 × 10
5
 cells/well) were seeded in 6-well 

plates and treated with 0.1% DMSO, 7.5, 15, and 30 nM Z. After 24 h treatment, total 

RNA was isolated from each treatment group and RNA concentrations were measured. 

Then, cDNA was synthesized and real time PCR was performed to amplify p53 and 36B4 

genes. The mRNA ratios of p53 to 36B4 were calculated using the ΔΔCt method. Each bar 

represents mean ± SE of three independent experiment. The asterisks show statistically 

significant differences between Z treatment groups and the control groups (p < 0.05). 

It shows that Z decreases the expression level of p53 mRNA in PCHBCECs but not 

in PCHNBECs. 

 

2.3. Z Regulates the Expression of DNMT1 mRNA and Protein in PCHNBECs and PCHBCECs 

DNMT1 plays an important role in silencing tumor suppressor genes, such as BRCA1, p16, and p21 

in breast cancer development. It was reported that DNMT1 is over-expressed in breast cancer [29,30]. 

To explore the possible mechanisms of Z regulating p53 gene expression, we investigated the effects 

of Z on DNMT1 mRNA and protein expression in PCHNBECs and PCHBCECs after 24 h treatment. 

The results are shown in Figures 3 and 4. It is illustrated that Z treatment significantly increased the 

expression of DNMT1 mRNA and protein levels in PCHBCECs in a dose-dependent manner when 

compared to the control. However, Z did not significantly increase the expression of DNMT1 mRNA 

and protein in PCHNBECs when compared to the control. Our results suggest that Z regulate the 

expression of p53 in PCHBCECs, maybe through its epigenetic modification.  
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Figure 3. Effects of Z on regulation of the expression of DNMT1 mRNA in PCHBCECs 

and PCHNBECs. The expression levels of DNMT1 mRNA were evaluated in PCHBCECs 

and PCHNBECs after treatment with vehicle control or 7.5–30 nM Z using real time PCR 

analysis. 36B4 was used as an internal control. The mRNA ratios of DNMT1 to 36B4 were 

calculated using the ΔΔ Ct method. The asterisks show statistically significant differences 

between Z treatment groups and the control groups (p < 0.05).  

 

Figure 4. Zeranol regulates the expression of p53 and DNMT1 proteins in PCHNBECs 

and PCHBCECs. PCHNBECs and PCHBCECs were seeded in 10 cm culture dishes at a 

density of 1 × 10
6
 cells/dish and then treated with 7.5, 15, 30 nM Z or 0.1% DMSO as a 

vehicle control for 24 h. Proteins were extracted from each treatment group and Western 

blot analysis was conducted. -actin was used to confirm equal loading of total proteins 

during SDS-PAGE. 

 

2.4. Discussion 

Breast cancer development occurs in multiple stages, which are triggered by the evolution of altered 

gene function. Many of the gene changes that disrupt their coding regions are involved in initiation, 

promotion and progression [31]. P53 is a tumor suppressor gene which plays a crucial role in 

regulating cell growth following exposure to various stress stimuli. It induces growth arrest or 

programmed cell death (apoptosis) and it also plays an important role in the control of cell cycle 

checkpoints. Research found that p53 is the most frequently mutated gene in human cancers. An 

estimated 15–60% of breast cancers contain p53 mutations [32] and loss of p53 occurs in 

approximately 80% of colorectal tumors [33]. Consequently, its function has been extensively studied. 

It was reported that tumor cells with mutant p53 protein might be associated with poor prognosis [32].  
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The tumor suppressor p53 can regulate both cell proliferation and apoptosis. An imbalance between 

cell proliferation and apoptosis results in a rapid increase in cell number, the most prominent 

characteristic of tumors. Normal breast epithelial cells induce p53-dependent apoptosis and  

p53-independent cell cycle arrest of breast cancer cells [34]. In addition, p53 was also expected to play 

an important role in cancer treatment with its mutation predicting a substantially worsened 

prognosis [33]. Several retrospective studies have suggested p53 gene mutation as an adverse 

prognostic indicator in breast cancer patients; it can predict early recurrence, sensitivity to 

chemotherapy, and death in breast cancer patients [35].  

Recently, it is becoming understood that epigenetic events, or heritable changes in gene expression 

capacity without DNA sequence alterations, are also central to tumor progression. Understanding the 

differential roles of regional hypermethylation and global hypomethylation in breast cancer will 

facilitate novel therapeutic approaches to breast cancer therapy. It was found that hypomethylation of 

the global genome can lead to genomic instability that is exemplified by misalignments, DNA 

breakage, deletions and duplications during DNA replication [36].  

DNA methylation is one of the major epigenetic modifications in cancer development which has a 

long-standing relationship with gene inactivity and has been implicated as an important factor in gene 

silencing [37,38]. In humans and most mammals, DNA methylation is the only known natural 

modification of DNA and only affects cytosines at the 5’ position when it is followed by a guanosine, 

known as CpG dinucleotides. Depending on the cell types and tissue, 3–4 % of all cytosine residues in 

vertebrate DNA may be present as 5-methylcytosine and approximately 70 to 80% of all CpG 

dinucleotides in human DNA are methylated [39]. However, this methylation occurs primarily in areas 

where CpG density is low, or at repeat DNA sites. Most CpG islands, especially those located in 

promoter region of a specific gene, are completely unmethylated. Interestingly, fully methylated CpG 

islands are found only in the promoters of silenced alleles for selected imprinted autosomal genes and 

multiple silenced genes on the inactivated X-chromosomes of females [40]. It is well established that 

almost half of the tumor suppressor genes that cause familial cancers through germline mutations can 

be inactivated in association with promoter hypermethylation in sporadic cancers [41]. Huang and 

colleagues, using a novel DNA array based technique called differential methylation hybridization, 

performed a genome wide screen for hypermethylated CpG islands in a panel of breast cancer cell 

lines. They found that approximately 10% of CpG islands exhibited methylation in normal breast 

epithelial cells. In contrast, breast cancer cell lines show methylation at a considerably larger fraction 

of CpG islands (15–25%) [42]. In clinical research, it was reported that DNA methylation in serum of 

breast cancer patients may be considered as an independent prognostic marker [43].  

Methylation-dependent gene silencing is now thought to be mediated through local changes in 

chromatin conformation that limit promoter accessibility [44]. 

DNA methyltransferases (DNMTs) are critical enzymes that regulate DNA methylation. DNMT1 is 

the most important one; the N-terminus of DNMT1 contains regions responsible for targeting the 

enzyme to replication foci [45], as well as for discriminating between unmethylated and  

hemi-methylated DNA [46]. Overexpression of all the DNMTs at the mRNA level has been shown for 

several cancers [47–49]. Conversely, a mouse model for colon cancer demonstrated that reducing 

DNMT1 expression and activity via hemizygous knockout of the gene and treatment with a DNMT1 

inhibitor greatly reduced the number of intestinal adenomas [50]. Similarly, Macleod and Szyf found 
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that transfection of a murine adrenocortical tumor cell line with DNMT1 antisense expression vectors 

resulted in general DNA hypomethylation, growth inhibition in vitro, and decreased tumorigenicity  

in vivo [51]. Our laboratory recently reported PTP γ expression was reduced in breast cancer cell lines, 

SK-Br-3 and MCF-7 cells, and it can be re-activated with the treatment of deoxy-5-azacytidine, a  

well-known DNMT1 inhibitor [52]. These results suggest that DNMT1 can be thought of as a new 

target for novel drug development. 

Our data indicated that 24 h Z treatment stimulated both PCHNBEC’s and PCHBCEC’s 

proliferation in a dose-dependent manner, and PCHBCECs were more sensitive to Z than PCHNBECs. 

Z increased the DNMT1 expression in PCHBCECs and decreased the p53 expression at both the 

mRNA and protein levels; however, no such effect was found in PCHNBECs, suggesting Z might be 

more harmful to cancer patients than normal and Z might have adverse health problem when cancer 

patients intake beef products produced by Z-implanted beef cattle containing Z or its metabolites. One 

of the mechanisms is due to the increase of DNMT1 and decrease of p53 expression. In addition, all 

our experimental data was collected from matched human breast tissues, which can provide better data 

for analyzing the difference between PCHNBECs and PCHBCECs with the same treatment of 

different concentrations of Z to decrease the possible influence of age, sex, medication, life style, etc. 

In summary, our data show PCHBCECs may be more sensitive to exposure to Z. The stimulatory 

effects of Z on PCHBCECs might be possible through down-regulation of the expression of the p53 

gene and up-regulation of DNMT1 mRNA and protein. This result suggests that suppressed expression 

of the p53 gene in PCHBCECs might be mediated through its epigenetic modification. Further 

investigation into this critical issue is in progress in our laboratory.  

3. Experimental Section 

3.1. Isolation of Primary Cultured Human Normal Breast Epithelial Cells (PCHNBECs) and Cancer 

Epithelial Cells (PCHBCECs)  

Human normal and cancerous breast tissues from the same patient were obtained through the Tissue 

Procurement Program of The Ohio State University Comprehensive Cancer Center Hospital in 

Columbus, OH, USA. After tissues were transferred in our laboratory, they were minced and then 

digested using digestion buffer which consisted of phenol red-free high calcium Dulbecco’s modified 

Eagle’s medium and Ham’s F12 medium (1:1) (DMEM/F12) (1.05 mM CaCl2) with 2% Bovine 

Serum Albumin (BSA) (Invitrogen, Carlsbad, CA, USA) containing 10 ng/mL Cholera toxin (Sigma, 

St. Louis, MO, USA), 6300 U/mL Collagenase (Invitrogen), and 100 U/mL Hyalurinidase 

(Calbiochem, Gibbstown, NJ, USA). After the mixture was incubated in a humidified incubator (5% 

CO2, 95% air, 37 °C) overnight, the solution was transferred to a 50 mL tube and centrifuged at  

1200 rpm for 5 min. The upper layer containing pre-adipocytes and middle layer containing stromal 

cells were transferred to another 15 mL tube separately while the pellet containing epithelial cells 

remained in the tube. All the pellets were washed by DMEM/F12 medium with antibiotic-antimycotic 

(100 U/mL penicillin G sodium, 100 µg/mL streptomycin sulfate and 0.25 µg/mL amphotericin B) 

(Invitrogen) and centrifuged again. This wash procedure was repeated three times. The final pellet in 

the tube contains PCHBCECs or PCHNBECs. The pellet was then resuspended in 10 mL low calcium 

(0.04 mM CaCl2) DMEM/F12 medium supplemented with 10% of low calcium FBS (Atlanta 
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Biologicals, Norcross, GA, USA) and then transferred into a T75 flask for culturing. The method and 

the specific cultural medium ensure the purity of PCHBCECs or PCHNBECs isolated from  

normal or cancerous breast tissues. Our lab members have determined the purity of the isolated 

primary cultured human normal and cancerous breast epithelial cells or stromal cells by using  

immunocytochemistry [53]. 

3.2. PCHBCECs and PCHNBECs Culture 

The isolated PCHNBECs and PCHBCECs were cultured in 75 cm
2
 culture flasks in a humidified 

incubator (5% CO2, 95% air, 37 °C) with 10 mL low calcium (0.04 mM CaCl2) DMEM/F12 mixture 

(Atlanta Biologicals, Norcross, GA, USA) supplemented with 10% of Chelex-100 (Bio-Rad 

Laboratories, Richmond, CA, USA) treated FBS (Invitrogen). The low calcium DMEM/F12 medium 

was changed every two days [10]. This was done to ensure the purity of PCHNBECs and PCHBCECs. 

When the cells grew to 85–90% confluence, cells were washed with 10 mL of calcium- and 

magnesium-free Phosphate Buffered Saline (PBS, pH 7.3), and then trypsinized with 3 mL of 0.25% 

trypsin–5.3 mM EDTA (Invitrogen) for 5–8 min at 37 °C. The trypsinization was stopped by addition 

of 10 mL of DMEM/F12 medium with 10% FBS. After centrifugation, the dissociated cells were 

resuspended in low calcium DMEM/F12 medium with 10% low calcium FBS and sub-cultured into  

75 cm
2
 culture flasks at a ratio of 1 flask to 3 flasks. All experiments were conducted on primary 

cultured human normal breast epithelial cells not generated beyond the fourth passage. 

3.3. Cell Proliferation Assay (MTT Assay) 

A total volume of 100 µL medium containing 5000 PCHNBECs or PCHBCECs/well was seeded in  

96-well plates in low calcium DMEM/F12 medium and incubated at 37 °C for 24 h. The following day, 

medium was replaced by 100 µL low calcium DMEM/F12 supplemented with 0.2% BSA and 

incubated at 37 °C for another 24 h. After, the treatment of 7.5, 15, 30 nM Z was given for 24 h (0.1% 

DMSO to control group), the proliferation of PCHNBECs and PCHBCECs was measured by adding  

20 µL of a fresh mixture of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-

sulfophenyl)-2H-tetrazolium (MTS) and phenazine methosulfate (PMS) (20:1) solution (Promega, 

Madison, WI, USA) to each well. After incubation at 37 °C for 1–3 h, optical density were measured 

by kinetic microplate reader (Molecular Devices Cooperation, Menio Park, CA, USA) at 490 nm 

wavelength and cell growth was compared.  

3.4. Cell Treatment, RNA Isolation and cDNA Synthesis 

A total of 1 × 10
5
 viable PCHNBECs and PCHBCECs/well were seeded in 6-well plates in 5 mL 

low calcium DMEM/F12 medium supplemented with 10% of Chelex-100 (Bio-Rad Laboratories, 

Hercules, CA, USA) treated FBS (Invitrogen). After 24 h, medium was replaced with low calcium 

DMEM/F12 supplemented with 10% dextran coated charcoal (DCC) stripped FBS, and the cells were 

cultured overnight. After PCHNBECs and PCHBCECs were treated with 0.1% DMSO, 7.5, 15 and 

30 nM Z for 24 h, total RNA was isolated in 1 mL TRIZOL Reagent (Invitrogen) according to the 

manufacturer’s instructions. RNA concentration was measured by DU-70 spectrophotometer 

(Beckman Instruments Inc. Fullerton, CA, USA). RNA (1 µg) from cultured cells was reverse 
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transcribed with 200 UM-MLV Reverse Transcriptase (Invitrogen) at 37 °C for 50 min then 70 °C for 

15 min in the presence of 1 µL 10 mM dNTP (10 mM each dATP, dGTP, dCTP, and dTTP at neutral 

PH) (Invitrogen), 1 µL 50 µM Random hexamer (Amersham, Piscataway, NJ, USA), 10 µL 5× First 

Strand buffer, 5 µL 0.1 M DTT and 1 µL RNase Inhibitor (Invitrogen) in a total volume of 50 µL in a 

gradient mastercycle (Eppendorf
®

, Westbury, NY, USA). 

3.5. Real Time PCR 

After cDNA was synthesized, real-time PCR was conducted to amplify p53, DNMT1 and 36B4 

genes. The PCR reactions for p53, DNMT1 and 36B4 were performed using the SYBR Green I 

detection chemistry system and detected with the Stratagene M3005XP system (Agilent Technologies, 

Cedar Creek, TX, USA). For each PCR run, a mixture contained 10 µL 2× SYBR
®

 Green PCR master 

mix (Applied Biosystems, Foster City, CA, USA), 2µL newly synthesized cDNA, 5µL primer mixer 

and 3µL PCR grade water in a total volume of 20 µL. The thermal cycling condition comprised an 

initial step at 50 °C for 2 min, 95 °C for 10 min, and 45 cycles at 95 °C for 15 s and annealing and 

elongation at 55 °C for 1 min. Dissociation curves were also conducted after amplification to ensure 

the reaction specificity. The primer sequences for p53 were 5’-GCT CCT GTG CTG CGA AGT GG-3’ 

(sense) and 5’-TGG AGG CGT CGG TGT AGA TG-3’ (antisense, product size 372 bp). The primer 

sequences for DNMT1 were 5’-CAT TTT ATC CCC ATT GAG AAG TA-3’ (sense) and 5’-CTG 

AAA ATT AAG TCC TTG TGC CCA G-3’ (antisense, product size 273 bp). The primer sequences 

for 36B4, an internal control were 5’-AAA CTG CTG CCT CAT ATC CG-3’ (sense) and 5’-TTT 

CAG CAA GTG GGA AGG TG-3’ (antisense, product size 563 bp). The results were presented as the 

ratio of p53 or DNMT1 to 36 B4.  

3.6. Western Blotting Assay  

PCHBCECs and PCHNBECs were plated in a 10 cm culture dish with a density of 1 × 10
6
 viable 

cells/dish within 10 mL low calcium DMEM/F12 supplement with 10% FBS and cultured overnight. 

The media was replaced with low calcium DMEM/F12 supplemented with 5% DCC treated FBS and 

was cultured for another 24 h. PCHBCECs and PCHNBECs treatment were the same as previously 

described. After 24 h treatment, proteins were extracted from each treatment group using M-PER
®

 

mammalian protein extraction reagent (Pierce, Rockford, IL, USA) according to the manufacturer’s 

instructions. Protein concentrations were measured using a Micro BCA
TM

 protein assay reagent kit 

(Pierce, Rockford, IL, USA) following the manufacturer’s protocol. Proteins (50 µg) from each 

treatment group were separated by 4–15% Tris-HCl gel electrophoresis and then transferred to a 

Polyvinylidine Fluoride (PVDF) membrane (Bio-Rad Laboratory, Hercules, CA, USA). The 

membrane was first blocked in Phosphate Buffered Saline −0.1% Tween 20 (PBST) containing 10% 

fat free dry milk for 1 h and then incubated with DNMT1 goat polyclonal antibody (dilution 1:500,  

sc-10219, Santa Cruz Biotechnology, Inc. Santa Cruz, CA, USA), p53 antibody (1:1000 dilution, Cell 

Signaling Technology
®
 Danvers, MA, USA) and β-actin antibody (1:2000 dilution, Santa Cruz 

Biotechnology, Inc.) for 1 h. The membrane was rinsed in PBST three times, each time for 5 min. In 

the following step, the membrane was incubated with second antibody (donkey anti-goat  

IgG-horseradish peroxidase HRP for DNMT1 and β actin; ECLTM anti-rabbit IgG-HRP for detecting 
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p53) for 1 h. After washing the membrane in PBST three times, p53, DNMT1, and -actin protein 

were visualized with a chemiluminescent detection system (ECL, Amersham Pharmacia Biotech, 

Buckinghamshire, UK). Pictures were taken using a FujiFilm LAS-300 imaging system (FUJIFILM 

Medical Systems USA, Inc.). The protein ratios of p53 to β-actin and DNMT1 to β-actin were 

calculated by measuring the density of the specific band using Multi-Gauge software (v3.0).  

3.7. Statistical Analysis 

The results for the cell proliferation assay are presented compared to the control group as  

mean ± standard deviation (SD) for 4 replicate culture wells. The results for the mRNA expression are 

presented compared to the control group as mean ± standard deviation (SD) for 3 replicates. Analyses 

were performed using Minitab 15 software (Minitab Inc. PA, USA). Statistical differences were 

determined by using two sample t-test or ANOVA analysis for independent samples. P-values of less 

than 0.05 were considered statistically significant differences. 

4. Conclusions 

Our experimental results demonstrated that the growth promoter Z stimulates the proliferation of 

PCHBCECs. The stimulatory effects of Z on the cells may be mediated by down-regulating the tumor 

suppressor gene p53 at the mRNA and protein levels. Further investigation illustrated that the DNA 

methylatransferase 1 mRNA and protein levels were up-regulated by the treatment of Z in PCHBCECs 

as compared to PCHNBECs, which suggests a role of Z in epigenetic modification involved in the 

regulation of p53 gene expression in PCHBCECs. Our experimental results imply the potential adverse 

health effect of Z in breast cancer development. Further study is under process in our laboratory 

Acknowledgements 

The authors thank Rikihisa’s laboratory for providing photo-documentation equipment. This work 

was supported by the RO1 ES 015212 (National Institutes of Health, USA) 

References 

1. Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer Statistics, 2010. CA Cancer J. Clin. 2010, 60,  

277–300. 

2. Chetrite, G.S.; Cortes-Prieto, J.; Philippe, J.C.; Wright, F.; Pasqualini, J.R. Comparison of 

estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, 

human breast tissues. J. Steroid Biochem. Mol. Biol. 2000, 72, 23–27. 

3. Haynes, B.P.; Straume, A.H.; Geisler, J.; A'Hern, R.; Helle, H.; Smith, I.E.; Lonning, P.E.; 

Dowsett, M. Intratumoral estrogen disposition in breast cancer. Clin. Cancer Res. 2010, 16,  

1790–1801. 

4. Minervini, F.; Giannoccaro, A.; Cavallini, A.; Visconti, A. Investigations on cellular proliferation 

induced by zearalenone and its derivatives in relation to the estrogenic parameters. Toxicol. Lett. 

2005, 159, 272–283. 

5. Massart, F.; Meucci, V.; Saggese, G.; Soldani, G. High growth rate of girls with precocious 

puberty exposed to estrogenic mycotoxins. J. Pediatrics 2008, 152, 690–695. 



Int. J. Mol. Sci. 2011, 12           
 

1530 

6. Takemura, H.; Shim, J.Y.; Sayama, K.; Tsubura, A.; Zhu, B.T.; Shimoi, K. Characterization of 

the estrogenic activities of zearalenone and zeranol in vivo and in vitro. J. Steroid Biochem. Mol. 

Biol. 2007, 103, 170–177. 

7. Liu, S.; Sugimoto, Y.; Kulp, S.K.; Jiang, J.; Chang, H.L.; Park, K.Y.; Kashida, Y.; Lin, Y.C. 

Estrogenic down-regulation of protein tyrosine phosphatase gamma (PTP gamma) in human 

breast is associated with estrogen receptor alpha. Anticancer Res. 2002, 22, 3917–3923. 

8. Coe, J.E.; Ishak, K.G.; Ward, J.M.; Ross, M.J. Tamoxifen prevents induction of hepatic neoplasia 

by zeranol, an estrogenic food contaminant. Proc. Natl. Acad. Sci. USA 1992, 89, 1085–1089. 

9. Yuri, T.; Tsukamoto, R.; Miki, K.; Uehara, N.; Matsuoka, Y.; Tsubura, A. Biphasic effects of zeranol 

on the growth of estrogen receptor-positive human breast carcinoma cells. Oncol. Rep. 2006, 16, 

1307–1312. 

10. Liu, S.; Lin, Y.C. Transformation of MCF-10A human breast epithelial cells by zeranol and  

estradiol-17beta. Breast J. 2004, 10, 514–521. 

11. Ye, W.; Xu, P.; Threlfall, W.R.; Jen, R.; Li, H.; Lin, S.H.; Kuo, C.T.; Lin, Y.C. Zeranol enhances 

the proliferation of pre-adipocytes in beef heifers. Anticancer Res. 2009, 29, 5045–5052. 

12. Ye, W.; Xu, P.; Zhong, S.; Threlfall, W.R.; Frasure, C.; Feng, E.; Li, H.; Lin, S.H.; Liu, J.Y.; 

Lin, Y.C. Serum harvested from heifers one month post-zeranol implantation stimulates MCF-7 

breast cancer growth. Exp. Ther. Med. 2010, 1, 963–968. 

13. Ye, W.; Xu, P.; Zhong, S.; Jen, R.; Threlfall, W.R.; Frasure, C.V.; Feng, E.; Li, H.; Lin, S.H.; 

Liu, J.Y.; Lin, Y.C. In vitro transformation of MCF-10A cells by sera harvested from heifers two 

months post-Zeranol implantation. Int. J. Oncol. 2011, 38, 985–992. 

14. Xu, P.; Ye, W.; Jen, R.; Lin, S.H.; Kuo, C.T.; Lin, Y.C. Mitogenic activity of zeranol in human 

breast cancer cells is enhanced by leptin and suppressed by gossypol. Anticancer Res. 2009, 29, 

4621–4628. 

15. Swan, S.H.; Liu, F.; Overstreet, J.W.; Brazil, C.; Skakkebaek, N.E. Semen quality of fertile US 

males in relation to their mothers’ beef consumption during pregnancy. Hum. Reprod. 2007, 22, 

1497–1502. 

16. Linos, E.; Willett, W.C.; Cho, E.; Colditz, G.; Frazier, L.A. Red meat consumption during 

adolescence among premenopausal women and risk of breast cancer. Cancer Epidemiol. 

Biomarkers Prev. 2008, 17, 2146–2151. 

17. Aw, T.C.; Smith, A.B.; Stephenson, R.L.; Glueck, C.J. Occupational exposure to zeranol, an 

animal growth promoter. Br. J. Ind. Med. 1989, 46, 341–346. 

18. Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature 2000, 408, 307–310. 

19. Golubovskaya, V.M.; Conway-Dorsey, K.; Edmiston, S.N.; Tse, C.K.; Lark, A.A.; Livasy, C.A.; 

Moore, D.; Millikan, R.C.; Cance, W.G. FAK overexpression and p53 mutations are highly 

correlated in human breast cancer. Int. J. Cancer 2009, 125, 1735–1738. 

20. Dinu, I.; Potter, J.D.; Mueller, T.; Liu, Q.; Adewale, A.J.; Jhangri, G.S.; Einecke, G.; Famulski, 

K.S.; Halloran, P.; Yasui, Y. Gene-set analysis and reduction. Briefings Bioinf. 2009, 10, 24–34. 

21. Hassan, N.M.; Tada, M.; Hamada, J.; Kashiwazaki, H.; Kameyama, T.; Akhter, R.;Yamazaki, Y.; 

Yano, M.; Inoue, N.; Moriuchi, T. Presence of dominant negative mutation of TP53 is a risk of 

early recurrence in oral cancer. Cancer Lett. 2008, 270, 108–119. 

  



Int. J. Mol. Sci. 2011, 12           
 

1531 

22. Baker, L.; Quinlan, P.R.; Patten, N.; Ashfield, A.; Birse-Stewart-Bell, L.J.; McCowan, C.; 

Bourdon, J.C.; Purdie, C.A.; Jordan, L.B.; Dewar, J.A.; Wu, L.; Thompson, A.M. p53 mutation, 

deprivation and poor prognosis in primary breast cancer. Br. J. Cancer 2010, 102, 719–726. 

23. Lai, H.; Lin, L.; Nadji, M.; Lai, S.; Trapido, E.; Meng, L. Mutations in the p53 tumor suppressor 

gene and early onset breast cancer. Cancer Biol. Ther. 2002, 1, 31–36. 

24. Xu, X.; Wagner, K.U.; Larson, D.; Weaver, Z.; Li, C.; Ried, T.; Hennighausen, L.;  

Wynshaw-Boris, A.; Deng, C.X. Conditional mutation of Brca1 in mammary epithelial cells 

results in blunted ductal morphogenesis and tumour formation. Nat. Genet. 1999, 22, 37–43. 

25. Ting, A.H.; Jair, K.W.; Schuebel, K.E.; Baylin, S.B. Differential requirement for DNA 

methyltransferase 1 in maintaining human cancer cell gene promoter hypermethylation. Cancer 

Res. 2006, 66, 729–735. 

26. Xu, X.L.; Yu, J.; Zhang, H.Y.; Sun, M.H.; Gu, J.; Du, X.; Shi, D.R.; Wang, P.; Yang, Z.H.;  

Zhu, J.D. Methylation profile of the promoter CpG islands of 31 genes that may contribute to 

colorectal carcinogenesis. World J. Gastroenterol. 2004, 10, 3441–3454. 

27. Datta, J.; Ghoshal, K.; Denny, W.A.; Gamage, S.A.; Brooke, D.G.; Phiasivongsa, P.; Redkar, S.; 

Jacob, S.T. A new class of quinoline-based DNA hypomethylating agents reactivates tumor 

suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. 

Cancer Res. 2009, 69, 4277–4285. 

28. Kang, J.H.; Kim, S.J.; Noh, D.Y.; Park, I.A.; Choe, K.J.; Yoo, O.J.; Kang, H.S. Methylation in the 

p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG 

methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal 

carcinoma in situ to invasive ductal carcinoma. Lab. Invest. 2001, 81, 573–579. 

29. Girault, I.; Tozlu, S.; Lidereau, R.; Bieche, I. Expression analysis of DNA methyltransferases 1, 

3A, and 3B in sporadic breast carcinomas. Clin. Cancer Res. 2003, 9, 4415–4422. 

30. Agoston, A.T.; Argani, P.; de Marzo, A.M.; Hicks, J.L.; Nelson, W.G. Retinoblastoma pathway 

dysregulation causes DNA methyltransferase 1 overexpression in cancer via MAD2-mediated 

inhibition of the anaphase-promoting complex. Am. J. Pathol. 2007, 170, 1585–1593. 

31. Weiss, R.A. Multistage carcinogenesis. Br. J. Cancer 2004, 91, 1981–1982. 

32. Hartmann, A.; Blaszyk, H.; Kovach, J.S.; Sommer, S.S. The molecular epidemiology of p53 gene 

mutations in human breast cancer. Trends Genet. 1997, 13, 27–33. 

33. McGill, G.; Fisher, D.E. p53 and cancer therapy: a double-edged sword. J. Clin. Invest. 1999, 104, 

223–225. 

34. Toillon, R.A.; Chopin, V.; Jouy, N.; Fauquette, W.; Boilly, B.; Le Bourhis, X. Normal breast 

epithelial cells induce p53-dependent apoptosis and p53-independent cell cycle arrest of breast 

cancer cells. Breast Cancer Res. Treat. 2002, 71, 269–280. 

35. Blaszyk, H.; Hartmann, A.; Cunningham, J.M.; Schaid, D.; Wold, L.E.; Kovach, J.S.; Sommer, 

S.S. A prospective trial of midwest breast cancer patients: A p53 gene mutation is the most 

important predictor of adverse outcome. Int. J. Cancer 2000, 89, 32–38. 

36. Baylin, S.B.; Herman, J.G.; Graff, J.R.; Vertino, P.M.; Issa, J.P. Alterations in DNA methylation: 

A fundamental aspect of neoplasia. Adv. Cancer Res. 1998, 72, 141–196. 

  



Int. J. Mol. Sci. 2011, 12           
 

1532 

37. Ai, L.; Tao, Q.; Zhong, S.; Fields, C.R.; Kim, W.J.; Lee, M.W.; Cui, Y.; Brown, K.D.;  

Robertson, K.D. Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic 

silencing is a common event in breast cancer. Carcinogenesis 2006, 27, 1341–1348. 

38. Rivenbark, A.G.; Jones, W.D.; Risher, J.D.; Coleman, W.B. DNA methylation-dependent 

epigenetic regulation of gene expression in MCF-7 breast cancer cells. Epigenetics 2006, 1, 32–44. 

39. Razin, A.; Riggs, A.D. DNA methylation and gene function. Science 1980, 210, 604–610. 

40. Surani, M.A. Imprinting and the initiation of gene silencing in the germ line. Cell 1998, 93, 309–312. 

41. Baylin, S.B.; Herman, J.G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. 

Trends Genet. 2000, 16, 168–174. 

42. Huang, T.H.; Perry, M.R.; Laux, D.E. Methylation profiling of CpG islands in human breast 

cancer cells. Hum. Mol. Genet. 1999, 8, 459–470. 

43. Muller, H.M.; Widschwendter, A.; Fiegl, H.; Ivarsson, L.; Goebel, G.; Perkmann, E.; Marth, C.; 

Widschwendter, M. DNA methylation in serum of breast cancer patients: An independent 

prognostic marker. Cancer Res. 2003, 63, 7641–7645. 

44. Razin, A. CpG methylation, chromatin structure and gene silencing-a three-way connection. 

EMBO J. 1998, 17, 4905–4908. 

45. Leonhardt, H.; Page, A.W.; Weier, H.U.; Bestor, T.H. A targeting sequence directs DNA 

methyltransferase to sites of DNA replication in mammalian nuclei. Cell 1992, 71, 865–873. 

46. Bestor, T.H.; Gundersen, G.; Kolsto, A.B.; Prydz, H. CpG islands in mammalian gene promoters 

are inherently resistant to de novo methylation. Genet. Anal. Tech. Appl. 1992, 9, 48–53. 

47. Issa, J.P.; Vertino, P.M.; Wu, J.; Sazawal, S.; Celano, P.; Nelkin, B.D.; Hamilton, S.R.; Baylin, S.B. 

Increased cytosine DNA-methyltransferase activity during colon cancer progression. J. Natl. 

Cancer Inst. 1993, 85, 1235–1240. 

48. Robertson, K.D.; Uzvolgyi, E.; Liang, G.; Talmadge, C.; Sumegi, J.; Gonzales, F.A.; Jones, P.A. 

The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in 

normal tissues and overexpression in tumors. Nucleic Acids Res. 1999, 27, 2291–2298. 

49. Ahluwalia, A.; Hurteau, J.A.; Bigsby, R.M.; Nephew, K.P. DNA methylation in ovarian cancer. II. 

Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial 

cells. Gynecol. Oncol. 2001, 82, 299–304. 

50. Laird, P.W.; Jackson-Grusby, L.; Fazeli, A.; Dickinson, S.L.; Jung, W.E.; Li, E.; Weinberg, R.A.; 

Jaenisch, R. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 1995, 81, 197–205. 

51. MacLeod, A.R.; Szyf, M. Expression of antsense to DNA methyltransferase mRNA induces DNA 

demethylation and inhibits tumorigenesis. J. Biol. Chem. 1995, 270, 8037–8043. 

52. Shu, S.T.; Sugimoto, Y.; Liu, S.; Chang, H.L.; Ye ,W.; Wang, L.S.; Huang, Y.W.; Yan, P.; Lin, 

Y.C. Function and regulatory mechanisms of the candidate tumor suppressor receptor protein 

tyrosine phosphatase gamma (PTPRG) in breast cancer cells. Anticancer Res. 2010, 30, 1937–1946. 

53. Liu, S.; Kulp, S.K.; Sugimoto, Y.; Jiang, J.; Chang, H.L.; Lin, Y. Involvement of breast  

epithelial-stromal interactions in the regulation of protein tyrosine phosphatase-γ (PTP γ) mRNA 

expression by estrogenically active agents. Breast Cancer Res. Treat. 2002, 71, 21–35. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


