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ABSTRACT Here, we describe the draft genome sequence of Microbacterium sp.
strain Alg239_V18, an actinobacterium retrieved from the marine sponge Spongia sp.
Genome annotation revealed a vast gene repertoire involved in antibiotic and heavy
metal-resistance, and a versatile carbohydrate assimilation metabolism with potential
for chitin utilization.

Microbacterium spp. are aerobic, Gram-positive actinobacteria found in diverse
environments (1)—including marine habitats such as deep-sea sediments (2, 3),

seawater (4), bivalves (5), and marine sponges (6–8)—and possess the ability to
produce pharmaceutically important natural products such as the bioactive compound
glucosylmannosyl-glycerolipid (7). Although several Microbacterium genomes are pub-
licly available, most derive from terrestrial sources and very few represent host-
associated strains. Microbacterium spp. are among the prevalent actinobacteria culti-
vated from marine sponges (9, 10), but little is known about their functional features
and possible roles in this interaction. To increase our understanding of the metabolic
potential of these marine sponge associates, we report here the draft genome se-
quence of Microbacterium sp. strain Alg239_V18, cultivated from the marine sponge
Spongia sp. sampled off the coast of Algarve, South Portugal. Genomic DNA of
Microbacterium sp. strain Alg239_V18 was extracted with the Wizard genomic DNA
purification kit (Promega Corporation, Madison, WI, USA) after cultivation and purifi-
cation of the colony on VXA medium (double-strength VL55 medium (11) supple-
mented with 0.05% xylan and solidified with agar) and subsequent overnight growth
in liquid VX medium. Genome sequencing was performed at Mr. DNA (Shallowater, TX,
USA) on an Illumina MiSeq device using paired-end, 2 � 301-bp libraries. Sequencing
depth was 0.97 Gb, leading to 298� coverage of the genome, which was assembled de
novo into 22 Microbacterium contigs with the NGen DNA assembly software by
DNAStar, Inc. The resulting draft genome sequence was annotated with the Rapid
Annotations Using Subsystems Technology (RAST) prokaryotic genome annotation
server (version 2.0) using standard procedures (12). Secondary metabolite- and
antibiotic-encoding gene clusters were predicted with antiSMASH (13) and NapDos
(14).

The genome is 3,228,018 bp in length, featuring a GC content of 69.4% and
3,061coding sequences, in addition to five rRNAs and 45 tRNAs. Microbacterium sp.
strain Alg239_V18 displayed 98.8% 16S rRNA gene similarity with its closest relative, M.
aquimaris JS54-2(T), isolated from seawater (4). Genome annotation displayed a broad
range of genes possibly involved in antibiotic (e.g., fluoroquinolones) and heavy metal
resistance (e.g., arsenic, cobalt, copper, and mercury); the latter observation is consis-
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tent with the recent isolation of several Microbacterium strains from heavy metal–
contaminated soils (15). A diversified carbohydrate metabolism can be inferred from
the annotated genome, encompassing multiple genes involved in the assimilation of
various mono-, di-, and oligosaccharides, and 17 genes related to chitin and
N-acetylglucosamine utilization. Using antiSMASH, we found a putative tetraterpene
biosynthetic gene cluster displaying similar architecture to that of M. testaceum
StLB037, in addition to one type III polyketide synthase gene cluster resembling that of
M. yannicii PS01. Curiously, terpene classes such as furanoterpenes, furanosesterter-
penes, and sesterterpenes are regularly retrieved from Spongia officinalis, and some
display biofilm-inducing capacities (16). The search for natural product domains using
NaPDoS retrieved a putative modular KS domain similar to that involved in the
biosynthesis of candicidin, an antifungal compound usually obtained from the actino-
bacterium Streptomyces griseus and applied in the treatment of candidiasis.

Accession number(s). This draft genome sequence of Microbacterium sp. strain
Alg239_V18 was deposited in the European Nucleotide Archive (ENA) (http://www
.ebi.ac.uk/ena) under the accession numbers FMSE01000001 to FMSE01000022. The
study identification number is PRJEB15584.
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