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Abstract

Background: Germline mutations in the coding sequence of the tumour suppressor APC gene give rise to familial
adenomatous polyposis (which leads to colorectal cancer) and are associated with many other oncopathologies.
The loss of APC function because of deletion of putative promoter 1A or 1B also results in the development of
colorectal cancer. Since the regions of promoters 1A and 1B contain many single nucleotide polymorphisms (SNPs),
the aim of this study was to perform functional analysis of some of these SNPs by means of an electrophoretic
mobility shift assay (EMSA) and a luciferase reporter assay.

Results: First, it was shown that both putative promoters of APC (1A and 1B) drive transcription in an in vitro
reporter experiment. From eleven randomly selected SNPs of promoter 1A and four SNPs of promoter 1B, nine and
two respectively showed differential patterns of binding of nuclear proteins to oligonucleotide probes
corresponding to alternative alleles. The luciferase reporter assay showed that among the six SNPs tested, the
rs75612255 C allele and rs113017087 C allele in promoter 1A as well as the rs138386816 T allele and rs115658307 T
allele in promoter 1B significantly increased luciferase activity in the human erythromyeloblastoid leukaemia cell line
K562. In human colorectal cancer HCT-116 cells, none of the substitutions under study had any effect, with the
exception of minor allele G of rs79896135 in promoter 1B. This allele significantly decreased the luciferase reporter’s
activity

Conclusion: Our results indicate that many SNPs in APC promoters 1A and 1B are functionally relevant and that
allele G of rs79896135 may be associated with the predisposition to colorectal cancer.
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Background
The adenomatous polyposis coli (APC) gene is mapped
to chromosome 5q and encodes a protein consisting of
2843 amino acid residues that has been implicated in
various cellular functions [1, 2]. In particular, the APC
protein is best known as a negative regulator of the tran-
scription factor (TF) β-catenin, an effector of the Wnt
signaling pathway [3]. As a component of this signaling

pathway, APC participates in a multiprotein ‘destruction
complex’ that targets the proto-oncogene β-catenin for
ubiquitin-mediated proteolysis [4]. The loss of APC
function leads to translocation of β-catenin from the lat-
eral cell membrane to the nucleus, where it promotes
transcription of multiple genes involved in tumour
growth and invasion [2].
Germline mutations in this tumour suppressor gene

(APC) give rise to familial adenomatous polyposis (FAP).
The latter is an autosomal-dominant colorectal-cancer pre-
disposition syndrome and accounts for ~1% of newly diag-
nosed cases of colorectal cancer. FAP is characterised by
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the development of multiple adenomatous polyps (from
hundreds to thousands) in the large intestine [5]. The great
majority of the mutations observed in the APC gene in pa-
tients with FAP are detected in the coding part of the gene.
Usually, these are frameshift mutations caused by insertions
or deletions of nucleotides and point mutations that pre-
dominantly generate a truncated APC peptide. Most of
known mutations in APC affect codons 1250–1464 [6, 7].
Many other oncopathologies are also associated with

mutations in APC’s coding sequence. For example, in the
case of pancreatic acinar cell carcinomas, there is a report
of a frameshift mutation characterised by an insertion of
170 nucleotides after nucleotide 4177 and resulting in a
truncated protein [8]. Likewise, the molecular basis of
Turcot syndrome (colonic polyposis and a primary brain
tumour in the same patient) is truncated variants of the
APC protein [9]. Moreover, mutations in APC’s coding re-
gions were detected in 23% of cases of ileal enterochro-
maffin cell neuroendocrine neoplasms; in particular, 57%
were missense and 14% were nonsense or frameshift mu-
tations [10]. Mutations in exon 15 of the APC gene were
detected in 22.1% of cases of gastric cancer [11].
In addition to mutations in the coding sequence, a loss

of APC gene function can occur through alternative gen-
etic and epigenetic mechanisms such as promoter dele-
tion or methylation. At present, there are two known
alternative start sites for APC that are located 17 and
47 kb upstream of the initiating methionine codon, re-
spectively; from these start sites, alternative mRNAs
containing exon 1A or 1B are transcribed. By default it
is believed that these transcripts originate in alternative
promoters 1A and 1B [12] although direct evidence for
the existence of these promoters has not been obtained
yet. It is known that big deletions encompassing any of
these start sites cause FAP. Thus, Charames et al. identi-
fied a germline deletion corresponding to promoter 1A
and 5′ untranslated regions of APC in 28-year-old pro-
band of Canadian Mennonite FAP family. This large de-
letion results in allele silencing and was also detected
among the proband’s other clinically affected siblings
while the unaffected ones do not carry the same deletion
[13]. Then a deletion (61 kb) encompassing half of pro-
moter 1B was identified in the largest family of the
Swedish Polyposis Registry, that leads to an imbalance in
allele-specific APC expression. The deletions were de-
tected in all of the affected 11 individuals, but not in the
normal controls (50 individuals) [14]. Additionally a
novel ~11 kb deletion that encompasses the APC 1B
promoter and exon was detected in affected (but not in
unaffected) family members of three kindreds from USA
FAP registry. This deletion was accompanied by silencing
of one of the APC alleles as well [15] Hypermethylation of
putative promoter 1A has also been reported for familial
polyposis and human colorectal cancer [16, 17].

According to dbSNP NCBI, the regions of promoters
1A and 1B contain a multitude of single nucleotide poly-
morphisms (SNPs). It is well known that if SNPs that
are located in promoter regions of candidate genes
change a TF’s binding pattern or the affinity for these
proteins and thus influence the level of gene transcrip-
tion, then they may be promising biomarkers of genetic
predisposition to various diseases [18–20]. Nevertheless,
SNPs of APC promoters are still poorly studied. There-
fore, in the present study, we conducted a functional
analysis of some SNPs located in the regions of pro-
moters 1A and 1B; this analysis included assessment of
the influence of nucleotide substitutions on binding pat-
ters of nuclear proteins in an electrophoretic mobility
shift assay (EMSA) and on activity of these promoters in
luciferase reporter experiments.

Methods
Cell lines, nuclear extract preparation and electrophoretic
mobility shift assays
The cultivation of cell lines (human hepatoma cells HepG2,
human cervical adenocarcinoma cells HelaS3, human ery-
thromyeloblastoid leukemia cells K562, human colorectal
cancer cells HCT-116), preparation of nuclear extracts and
Electrophoretic Mobility Shift Assays (EMSA) has been de-
scribed previously [21].

Construction of plasmids containing 1A и 1B APC
promoter regions
To construct the target 1A и 1B APC promoter-reporter
plasmids, we synthesized the DNA fragments by ampli-
fying the 517-bp 1B promoter region (chr5:112042901–
112043417; GRCh37/hg19) and the 435-bp 1A promoter
region (chr5:112073194–112073721; GRCh37/hg19)
using HCT-116 genomic DNA as a template. The
primers were 5′- CTCTCTCGAGTCATCTTTCTATCA
TCAGCGTCTA −3′ (1BXho forward) and 5′- ACCCAA
GCTTATAGGGGGCGCCGAGGCC −3′ (1BHind re-
verse) CTCTCTCGAGGTGCTGCAAAAATCATAGCA
ATCG −3′ (APCXhoI forward) and 5′- ACCCAAGCT
TTGTGCCAAGGAAAGGCCATC −3′ (APCHindIII re-
verse) correspondingly. To facilitate plasmid construc-
tion, two endonuclease sites, XhoI and HindIII were
inserted to both ends of the amplicon (underlined se-
quences). PCR was performed as follows: 200 μM dNTP;
10-x As-buffer (65 мM Tpиc-HCl pH 8,9; 1,6 мM
(NH4)2SO4; 0,05% Tween 20, 15мM MgCl2); 2,5 pmole
of reverse APCHind primer + forward APCXho primer
or 2.5 pmole of forward 1BXho primer + reverse 1BHind
primer; 0,25 μg ДHК; 1 U Taq - polymerase (SibEnzyme,
Russia). The amplified fragment was digested with XhoI
and HindIII, and then cloned into the luciferase expres-
sion vector pGL4.10[luc2] (Promega) with T4 ligase. The
constructs were all confirmed by DNA sequencing.
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Site-directed mutagenesis
The 6 pairs of mutagenic oligonucleotide primers used
in this study are listed in Table 2, which were designed
to amplify the mutant fragments. These primer pairs
were overlapped by 2/3 of the length, with mutated
bases at the position 8 in the direction of 5'- > 3'. PCR
reaction was performed in a two steps. As a first PCR
template the promoter-reporter plasmids pGL4.10 - 1A
and pGL4.10 – 1B were used. The first PCR mixture
contained 200 μM dNTP; 10-x As-buffer (65 мM Tpиc-
HCl pH 8,9; 1,6 мM (NH4)2SO4; 0,05% Tween 20,
15мM MgCl2); 2,5 pmole of reverse APCHind or of re-
verse 1BHind primer + forward mutagenic oligonucleo-
tide primer (step 1–1) or 2.5 pmole of forward APCXho
primer or of forward 1BXho primer + reverse mutagenic
oligonucleotide primer (step 1–2); 0,25 μg ДHК; 1 U
Taq - polymerase (SibEnzyme, Russia). As the second
PCR template amplicons from the first PCR reactions
were used adds primers. The presence of the mutations
was confirmed by Sanger′s sequencing as described [22].

Luciferase reporter assay
For luciferase reporter assays HCT −116 and K562 cells
were used. The plasmids under study were co-transfected
with pRL-TK using Screen FectA (Incella GmbH,
Germany). Luciferase activity was measured 24 h after
transfection by using the dual-luciferase reporter assay kit
(Promega, USA).

Statistical analysis
STATISTICA 6 was used for statistical analysis.

Results
Both putative 1A и 1B APC promoters drive transcription
in the in vitro reporter assay
Previously, we developed a method for whole-genome
identification of regulatory regions on the basis of the
assumption that enrichment of a genomic region for
peaks from high-throughput sequencing of chromatin
immunoprecipitation material (ChIP-Seq) indicates that
this is a regulatory region [21]. Application of this ap-
proach to APC revealed large clusters of ChIP-Seq peaks
(up to 28) in two distinct regions (Additional file 1).
These regions include start sites for APC’s alternative
transcripts containing exon 1A or 1B, which apparently
originate in alternative promoter 1A or 1B [12]. To date,
there are some data on the expression patterns of the
above-mentioned alternative transcripts of APC in various
organs and tissues [13, 23], but experiments on direct
study of activity of promoters 1A and 1B have not been
conducted. To close this gap, we created reporter con-
structs containing either a distal (1B) (−301; +216; chr5:
112042901–112043417) or proximal (1A) (−315; +120;
chr5: 112073194–112073721) APC promoter by cloning

of the corresponding fragments into the promoterless
plasmid pGL4.10. The results showed that after transfec-
tion of the K562 cells with one of these plasmid con-
structs, expression of the luciferase reporter gene
under control of promoter 1A was fourfold stronger
than that of the reference promoterless plasmid
pGL4.10. After transfection with the plasmid contain-
ing promoter 1B, the relative luciferase activity was
22-fold greater than the reference activity (Fig. 1).
Therefore, activity of promoter 1B was approximately
sixfold higher than that of promoter 1A.
Similar results were obtained with HCT-116 cells al-

though in this case, both promoters showed even higher
activity. In particular, under the control of promoter 1A,
expression of the luciferase gene increased 10-fold,
whereas under control of promoter 1B as much as 80-
fold in comparison with the reference plasmid (pGL4.10;
Fig. 1). The two constructs differed by the factor of 8,
which approximately matches the difference in activity
of promoters 1A and 1B in K562 cells.
Overall, this analysis revealed that, when cloned into a

promoterless plasmid, the above-mentioned regions of
the APC gene indeed behave as a promoters in transfec-
tion experiments, and promoter 1B was found to en-
hance expression of the reporter gene more strongly
than promoter 1A did.

Influence of SNPs from promoters 1A and 1B on nuclear
proteins binding
According to data from dbSNP NCBI [24] there are many
SNPs in promoter regions of APC. For empirical analysis,
we randomly selected 15 SNPs (rs75612255, rs79734816,
rs77733015, rs78597499, rs35417795, rs113017087, rs75996
864, rs115242894, rs80112297, rs76241113, rs80313086,
rs115658307, rs138386816, rs79896135, and rs78429131)
(Fig. 2). For each of them, double-stranded oligonucleotides
(corresponding to alternative alleles) were synthesised
(Table 1). These oligonucleotides were then used as DNA
probes in EMSA experiments with nuclear extracts
from four human cell lines (HepG2, HeLaS3, HCT-
116, and K562). We used two to three independent
replicates in each EMSA.
The typical example of changes in a binding pattern is

shown in Fig. 3. One can see that when nuclear extracts
from HeLaS3, HCT-116, and K562 cells were used, allele
C (rs75612255) differed from allele T by the absence of
the highest retarded band. When HepG2 cell extract was
used, this band was not observed for both alleles, appar-
ently as a result of the absence of the corresponding TF in
these cells. On the other hand, in the binding assay of pro-
teins from this cell line, a new retarded band appeared,
and its intensity was much lower in the case of allele C.
Final results of EMSAs are shown in Table 1. A result

was deemed positive (labelled with the + sign) if at least
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one cell line showed a change in the binding pattern of
nuclear proteins. Such changes were observed for 11
(rs75612255, rs79734816, rs35417795, rs113017087, rs759
9864, rs115242894, rs80112297, rs76241113, rs80313086,
rs138386816, and rs79896135) of the 15 SNPs tested. This
finding suggests that the SNPs in question can destroy (or

create) a binding site for some TFs and/or enhance or
weaken the binding sites for other TFs, and under appro-
priate conditions, may influence the regulation of gene ex-
pression at the transcriptional level.
For experiments with the luciferase system, we selected

two SNPs from each alternative promoter - rs75612255:

Fig. 1 Analysis of activity of APC promoters in the reporter constructs. The luciferase activity was measured by the dual-luciferase reporter assay
kit (Promega, USA). Firefly luciferase activity was normalized to Renilla luciferase activity. The bars indicated the mean ± SE of the luciferase
activity (N = 7)

Fig. 2 The scheme of location of the two APC promoter regions (1A and 1B) and the position of the SNPs selected in the present study
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Table 1 List of oligonucleotide probes tested in EMSA

SNP identifier in dbSNP NCBI database Sequences of oligonucleotides 5’- > 3’ Coordinates (hg19) Minor Allele
Count (MAF)

Promoter

Rs75612255: T > C Allele T: ATTTATTACTCTCCCTCCCACCTCCGGCATC
Allele C: ATTTATTACTCTCCCCCCCACCTCCGGCATC

Chr5:112737543
(−316), 5'-flank

NA 1A

Rs79734816: T > C Allele T: TCTGCCCTGCGGACCTCCCCCGACTCTTTAC
Allele C: TCTGCCCTGCGGACCCCCCCCGACTCTTTAC

Chr5: 112737587
(−272), 5'-flank

NA 1A

Rs77733015: T > G Allele T: GGGCTAGGCAGGCTGTGCGGTTGGGCGGGGC
Allele G: GGGCTAGGCAGGCTGGGCGGTTGGGCGGGGC

Chr5: 112737699
(−160), 5'-flank

NA 1A

Rs78597499: T > G Allele T: AGGCAGGCTGTGCGGTTGGGCGGGGCCCTGT
Allele G: AGGCAGGCTGTGCGGGTGGGCGGGGCCCTGT

Chr5: 112737704
(−155), 5'-flank

NA 1A

Rs35417795: 112737713delG Allele del: GTGCGGTTGGGCGGG-CCCTGTGCCCCACTG
Allele G: GTGCGGTTGGGCGGGGCCCTGTGCCCCACTG

Chr5: 112737713
(−146), 5'-flank

NA 1A

Rs113017087: T > C Allele T: GTGTAATCCGCTGGATGCGGACCAGGGCGCT
Allele C: GTGTAATCCGCTGGACGCGGACCAGGGCGCT

Chr5: 112737780
(−79), 5'-flank

C = 0.0032/16 1A

Rs75996864: T > G Allele C: ACCGACATGTGGCTGTATTGGTGCAGCCCGC
Allele G: ACCGACATGTGGCTGGATTGGTGCAGCCCGC

Chr5: 112737860
(1), 5'-UTR

NA 1A

Rs115242894: G > C Allele G: GTATTGGTGCAGCCCGCCAGGGTGTCACTGG
Allele C: GTATTGGTGCAGCCCCCCAGGGTGTCACTGG

Chr5: 112737874
(15), 5'-UTR

C = 0.0042/21 1A

Rs80112297: A > G Allele A: GCTTGCTGCGGGGGGAGGGGGGAAGGTGGTT
Allele G: GCTTGCTGCGGGGGGGGGGGGGAAGGTGGTT

Chr5: 112737967
(108), intron

NA 1A

Rs76241113: A > G Allele A: GCGGGGGGAGGGGGGAAGGTGGTTTTCCCTC
Allele G: GCGGGGGGAGGGGGGGAGGTGGTTTTCCCTC

Chr5: 112737974
(115), intron

NA 1A

Rs80313086: T > G Allele T: GGGGAGGGGGGAAGGTGGTTTTCCCTCGCAC
Allele G: GGGGAGGGGGGAAGGGGGTTTTCCCTCGCAC

Chr5: 112737978
(119), intron

NA 1A

Rs115658307: C > T Allele C: CAAGATGGCGGAGGGCAAGTAGCAAGGGGGC
Allele T: CAAGATGGCGGAGGGTAAGTAGCAAGGGGGC

Chr5: 112707537
(33), 5'-UTR

T = 0.0054/27 1B

Rs138386816: C > T Allele C: GCGGGGTGTGGCCGCCGGAAGCCTAGCCGCT
Allele T: GCGGGGTGTGGCCGCTGGAAGCCTAGCCGCT

Chr5: 112707566
(62), 5'-UTR

T = 0.0088/44 1B

Rs79896135: C > G Allele C: AGCCTAGCCGCTGCTCGGGGGGGACCTGCGG
Allele G: AGCCTAGCCGCTGCTGGGGGGGGACCTGCGG

Chr5: 112707585
(81), 5'-UTR

G = 0.1777/890 1B

Rs78429131: T > G Allele T: AGGAAGGTGAAGCACTCAGTTGCCTTCTCGG
Allele G: AGGAAGGTGAAGCACGCAGTTGCCTTCTCGG

Chr5: 112707687
(183), 5'-UTR

G = 0.0767/384 1B

Fig. 3 Rs75612255: T > C alters the binding patterns of nuclear proteins from HeLaS3, HepG2, HCT-116, and K562 cells. Changes in the binding of
allelic variants with the nuclear proteins are indicated by arrows
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T > C and rs113017087: T > C (from 1A) and rs138
386816: C > T and rs79896135: C >G (from 1B)—that
showed differential patterns of binding of nuclear proteins
to oligonucleotide probes representing the alternative al-
leles. Besides, we analysed two SNPs from promoter 1B
(rs115658307: C > T and rs78429131: T >G) that did not
change the protein binding pattern, because it is known
that substitutions that do not affect the binding of
nuclear-extract proteins can nevertheless influence the ex-
pression of a reporter [22].

Effect of SNPs from promoters 1A and 1B on
transcriptional activity
To evaluate the effects of rs75612255 T > C, rs113017087
T > C, rs138386816: C > T, rs79896135: C >G, rs11565
8307: C > T, and rs78429131: T >G on transcriptional ac-
tivity, we prepared a series of reporter plasmids containing
the corresponding substitutions in promoter 1A or 1B
(Table 2). For transfection experiments, we used the hu-
man colorectal cancer HCT-116 cells and the human ery-
thromyeloblastoid leukaemia cell line K562.
According to the data in Fig. 4, the majority of SNPs

under study were functionally active in a luciferase re-
porter assay, however pointing the obvious cell-specific
effects. In K562 cells, the rs75612255 C allele and
rs113017087 C allele of promoter 1A as well as alleles
rs138386816 T and rs115658307 T of promoter 1B sig-
nificantly increased luciferase activity, whereas in HCT-
116 cells, there was no difference in the activity of the
promoters containing alternative alleles at these posi-
tions. In contrast, minor allele G of rs79896135 from
promoter 1B, which has no effect on the reporter gene
expression in K562 cells, significantly decreased the lu-
ciferase activity in HCT-116 cells. Among these five
SNPs, four (rs75612255, rs113017087, rs138386816, and
rs79896135) also yielded differential binding patterns of
nuclear proteins in EMSAs. Rs115658307 manifested a
functional activity only in a luciferase reporter assay.

This may be because the transfection experiments were
performed on live cells, whereas EMSA was an in vitro
(cell-free) method. Preparation of nuclear extracts for an
EMSA is time-consuming, and some nuclear proteins
may lose activity by the end of this procedure. Accord-
ingly, the reporter assays may be more informative.
Rs78429131 was found to have no effect in both assays
of functional activity.

Discussion
APC (adenomatous polyposis coli) was originally identi-
fied as a gene mutated in colorectal cancers associated
with the FAP syndrome, hence the name [1, 25]. Now-
adays, the APC protein is considered a universal tumour
suppressor mostly acting as an antagonist of the Wnt
signaling pathway [26–28]. Moreover, a growing body of
evidence supports the idea that APC performs numerous
functions outside the Wnt pathway: e.g., roles in cell mi-
gration [29], adhesion [30], chromosome segregation
[31], apoptosis [32], and neuronal differentiation [33].
Multifunctionality of the APC protein and the complex
expression pattern of its gene [13, 23] are suggestive of
fairly complicated organisation of the regulatory regions
in the APC gene. So far, however, there is almost no in-
formation about these regions.
In the present study, we for the first time obtained dir-

ect evidence of promoter activity of the distal (1B)
(−301; +216; Chr5: 112042901–112043618) and prox-
imal (1A) (−315; +120; chr5: 112073194–112073721) re-
gions of APC, which include start sites for APC’s
alternative transcripts containing exon 1A or 1B. For
these experiments, we cloned these regions into the lu-
ciferase expression vector pGL4.10. The analysis was
conducted on two human cell lines: the colorectal can-
cer HCT-116 cells and erythromyeloblastoid leukaemia
K562 cells: in both cases, activity of promoter 1B was
substantially (approximately sixfold-eightfold) higher
than that of promoter 1A. This result is consistent with
the in vivo data showing that the levels of expression
from promoter 1B are 15- to 250-fold higher as com-
pared with transcripts generated from promoter 1A in
healthy human tissues (gastric and colorectal mucosa,
blood, brain, and small intestine) [13, 23]. In our experi-
ments, the differences in the level of transcription driven
by promoters 1B and 1A were found to be more modest;
this result may have something to do with insufficient size
of the regions inserted into the plasmids and/or differ-
ences in the set of regulatory proteins between tissues of a
live individual and cultured cells. Be that as it may, our re-
sults also clearly show greater activity of promoter 1B.
Next, we studied eleven randomly selected SNPs of

promoter 1A and four from promoter 1B by the EMSA.
Nuclear extracts were prepared from four human cell
lines (HepG2, HeLaS3, HCT-116, and K562). These cell

Table 2 Primers for site-directed mutagenesis

SNP Mutagenic oligonucleotide primer 5’- > 3’

rs115658307: C > T Forward:GGAGGGTAAGTAGCAAGGGGGCGG
Reverse:GCTACTTACCCTCCGCCATCTTGTGGG

rs138386816: C > T Forward:GGCCGCTGGAAGCCTAGCCGCTGCT
Reverse:GCTTCCAGCGGCCACACCCCGCCC

rs79896135: C > G Forward:GCTGCTGGGGGGGGACCTGCGGGCT
Reverse:CCCCCCCAGCAGCGGCTAGGCTTCC

rs78429131:T > G Forward:AAGCACGCAGTTGCCTTCTCGGGC
Reverse:CAACTGCGTGCTTCACCTTCCTCA

rs75612255: T > C Forward:CTCTCCCCCCCACCTCCGGCAT
Reverse:AGGTGGGGGGGAGAGTAATAAATTA

rs113017087: T > C Forward:GCTGGACGCGGACCAGGGCGCTCCCC
Reverse:GTCCGCGTCCAGCGGATTACACAGC

Note: The points of site-direct mutagenesis is marked in italic
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lines originate from different tissues; this situation ex-
panded the range of nuclear proteins that can bind to
specific DNA sites. The results of the EMSA revealed
that respectively nine and two of the selected SNPs—in
at least one cell line—manifest substantial differences in
patterns of binding of nuclear proteins to oligonucleo-
tide probes corresponding to alternative alleles. These
differences represented either an increase or decrease in
the affinity of some TFs, or even disappearance or ap-
pearance of binding sites for TFs. Such alterations in TF
binding patterns can strongly influence gene expression
[22, 34–36]. Indeed, the luciferase reporter assay sug-
gested that all four analyzed SNPs (which demonstrated
differential binding patterns in the EMSA) were func-
tionally active. The most interesting among them was

minor allele G (MAF = 0.18) of rs79896135 from pro-
moter 1B; this allele decreased luciferase activity 1.5-fold
in the human colorectal cancer HCT-116 cells. Although
APC promoter 1B for a long time had been thought to
play a minor role in the regulation of this gene, several
large deletions that encompass this promoter were found
to cause allelic silencing and are known to cause FAP.
Our data indicate the possibility of such a negative effect
of the substitution C >G (rs79896135) on APC expression
in vivo and development of predisposition to FAP, and
subsequently colorectal cancer. There are some other
interesting substitutions in promoter 1B (rs138386816:
C > T and rs115658307: C > T) and in promoter 1A
(rs75612255: T > C and rs113017087: T > C), which, on
the contrary, increased the luciferase reporter activity.

Fig. 4 Analysis of activity of reporter constructs. The luciferase activity was measured by the dual-luciferase reporter assay kit (Promega, USA).
Firefly luciferase activity was normalized to Renilla luciferase activity. The bars indicated the mean ± SE of the luciferase activity (N = 3–7). a Cell
line HCT-116. Significant differences * p < 0,05 was assessed by Students t test, compared to promoter 1B (Student t-test). b Cell line K562.
Significant differences *** p < 0,001 was assessed by Students t test, compared to promoter 1B. Significant differences # p < 0,05 was assessed by
Students t test, compared to promoter 1A
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These findings are suggestive of a possible oncoprotective
effect of these substitutions.

Conclusion
Overall, our functional analysis uncovered new possible
mechanisms of resistance/susceptibility to oncopatholo-
gies with involvement of APC because we demonstrated
the effect of a number of rare SNPs located in the alter-
native promotes of this gene both on nuclear protein
binding and promoter activity.

Additional file

Additional file 1: The large clusters of ChIP-Seq peaks is in two distinct
regions of APC gene (promoter 1A and promoter 1B). (PNG 44 kb)
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