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Abstract
Evolution has developed a set of principles that determine feasible domain combinations analogous to
grammar within natural languages. Treating domains as words and proteins as sentences, made up of
words, we apply a linguistic approach to represent the human proteome as an n-gram network.
Combining this with network theory and application, we explore the functional language and rules of the
human proteome. Additionally, we explored subnetwork languages by focusing on reversible
post-translational modifications (PTMs) systems that follow a reader-writer-eraser paradigm. We find
that PTM systems appear to sample grammar rules near the onset of the system expansion, but then
convergently evolve towards similar grammar rules, which stabilize during the post-metazoan switch. For
example, reader and writer domains are typically tightly connected through shared n-grams, but eraser
domains are almost always loosely or completely disconnected from readers and writers. Additionally,
after grammar fixation, domains with verb-like properties, such as writers and erasers, never appear –
consistent with the idea of natural grammar that leads to clarity and limits futile enzymatic cycles.
Then, given how some cancer fusion genes represent the possibility for the emergence of novel language,
we investigate how cancer fusion genes alter the human proteome n-gram network. We find most cancer
fusion genes follow existing grammar rules. Collectively, these results suggest that n-gram based analysis
of proteomes is a complement to the more direct protein-protein interaction networks. N-grams can
capture abstract functional connections in a more fully described manner, limited only by the definition
of domains within the proteome and not by the combinatorial challenge of capturing all protein
interaction connections.

Introduction1

Domains are modular units of structure and function that enable protein complex formation or translate2

biochemical information between signaling effectors[1]. About half of the human proteome is comprised3

of multidomain proteins, where domains help define overall protein functionality through their4

independent contributions. The combination of domains within a protein, or domain architecture, arises5

primarily through the shuffling of preexisting domains, rather than the emergence of new domains[2–4].6

Evolutionary jumps, encoded within the domain architectures of protein families, can predict the7

acquisition of new protein functions[3, 5]. Changes in domain architectures most commonly occur from8

the gain or loss of domains from the terminal ends of preexisting proteins[6]. Interestingly, only a small9

fraction of possible domain combinations are observed, which cannot be described by the random10

shuffling of domains during genetic recombination events[3, 4, 7], but can be attributed to few domains11

having multiple domain partners[8, 9]. These observations have motivated the representation of proteins12

as vectors comprised of their domains for evaluating the evolution of protein families and the complete13

proteome[3, 5, 10]. Further, these representations have been used to predict the subcellular localization14

and gene ontology terms for individual proteins[11, 12] demonstrating the breadth of information15

encoded within overall protein domain architectures.16
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Insights from broad surveys of both protein domain architectures and amino acid sequences suggest17

that proteins operate with sets of rules akin to grammar within natural languages[10, 13, 14]. However,18

the development of protein language models often focus on the amino acid sequence to predict the19

structure, function, and evolution of unresolved proteins or guide novel protein design[13, 15–17].20

Despite the breadth of information encoded within domain architectures few linguistic approaches have21

used domains as the fundamental unit of the protein language. Applications that utilize domains as22

"words" within a protein have shown linguistics can recover protein functionality and evolution across23

the tree of life independent of known protein interaction networks or signaling pathways[5, 10]. However,24

these past methods rarely consider the word ordering and word repeats, which likely reflect the25

evolutionary pressures related to the non-random shuffling of domains and the observation of the26

predominant modification of domain architectures at the terminal ends[3, 4, 6, 7]. The sequential order27

can have important consequences on protein functions like modifying the avidity or specificity of28

catalytic domains like the tyrosine kinase domain[18, 19]. Like natural languages, there are likely29

constraints on the relative location and combination of certain word types that make up human proteins.30

For example, catalytic domains might represent verbs and the binding domains they appear with are31

adverbs, or possibly as the nouns or subject of the sentence that help define the action the verb will have.32

Certain types of adverbs or the combination of too many verbs without modifying nouns may be33

prohibited from a language that ultimately needs to be interpreted by the biochemical networks of the34

cell, while also maintaining sentence clarity (akin to minimizing energy usage).35

N-gram analysis is a linguistic approach which maintains both the composition and sequential order36

of words within natural languages and can be adapted to protein domain architectures. By treating37

individual domains as words and the complete domain architecture as a sentence, n-grams with n38

domains can be extracted from either single or multiple domain architectures. A 2-gram model has39

shown that pairwise domain combinations can recapitulate the evolution of proteome complexity[10].40

The smaller fraction of multidomain proteins in prokaryotes than eukaryotes[20] has limited n-gram41

analysis to mostly 2-gram models for comparative genomic studies. However, certain 2-3 domain42

combinations, or supra-domains, are rearranged together as a unit across protein families[21]. If an43

n-gram model does not extract n-grams longer than these supra-domains, the diversity of feasible domain44

combinations in a proteome may not be sufficiently recovered.45

Here, we evaluate n-gram models of various lengths to describe the human proteome. We integrate46

these models with network analysis techniques to identify protein domains and multidomain n-grams47

that act as hubs to connect obligate domain families, enabling a simplification of the overall network. An48

advantage of representing the human proteome as a language-based network is that all proteins have49

defined domains, unlike networks that rely on protein-protein interactions that have yet to be fully50

annotated[22, 23]. However, the connections within the network reflect more about the related functional51

connections amongst key words in the human proteome than it does direct protein-protein interactions.52

Here, we develop and test n-gram networks at the level of the entire proteome, characterizing the53

entropic information needed to recover most of the proteome. Next, we applied n-gram analysis to54

measure the emergent properties of the specific words and languages within reader-write-eraser systems55

that coordinate post-translational modifications (PTMs). Surprisingly, we find that despite vastly56

different evolutionary timescales, most reversible PTM-systems convergently evolved to have tight57

connections between the readers and writers and very loosely, if at all connected, erasers. Looking across58

evolution, it appears that how PTM systems sampled different word ordering gives a possible measure of59

the relative time since the appearance of the system and the time at which the language becomes fixed60

in terms of its grammar rules and composition. We then ask if n-gram based network analysis can lead61

to novel insights to how cancer gene fusions alter, or not, the functional connections within the proteome.62

Interestingly, we find that predominantly somatic fusion genes arise with the same characteristics that63

appear to guide the overall evolution of most multidomain protein architectures[3, 4]. Hence, we find64

that n-gram linguistic analysis of proteomes is highly useful at making entire proteome-level insights65

about the functional connections between proteins and systems within cells, along with being useful for66

subnetwork analysis, such as evaluated in the PTM system.67
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Results68

Generating domain n-gram networks to describe the domain architecture69

landscape70

In order to describe the entire human (or other species) proteome as an n-gram network, we relied on the71

InterPro database, using our recently developed python-based package CoDIAC[24] to annotate the72

unique proteome domain and domain architecture (sequential ordering of domains in a protein). The73

InterPro database[25] consolidates annotations from databases such as Pfam[26], SMART[27],74

CATH-Gene3D[28] and others into one central database to define domain families. Importantly, InterPro75

is closely integrated with the UniProt database that serves as a central, comprehensive repository of76

protein sequences and functions. The result of our access is a controlled vocabulary based on the77

InterPro IDs of the architecture and the order of domains in proteins within the proteome of interest.78

For example, the SRC and ABL kinase families have the domain architecture SH3-SH2-Kinase. We then79

define all possible n-grams within each protein, maintaining the continuous sequence of domains from the80

N- to C-terminal. For the SRC and ABL family kinases, this includes three 1-grams (SH3, SH2, Kinase),81

two 2-grams (SH3|SH2, SH2|Kinase), and one 3-gram (SH3|SH2|Kinase).82

We applied this n-gram extraction to the entire human proteome, and then broadly surveyed domain83

architectures to identify highly prevalent domains and n-grams that span multiple protein families.84

About 95% of the proteome have domain architectures containing up to 10 domains (Fig. 1B, S1A). The85

two longest domain architectures were for the protein Titin (TTN, UniProt ID: Q8WZ42) at 30386

domains and Obscurin with 66 domains (OBSCN, UniProt ID: Q5VST9) (Fig S1A). Given the roughly87

5-fold difference between the two largest domain architectures and TTN being an outlier in our protein88

set, we extracted n-grams with a length up to 66 domains. In total, 44,425 n-grams were extracted from89

>18000 proteins. The majority of n-grams were found in only one protein (Fig. 1C). Eight out of the top90

ten most reoccurring domain n-grams were repeats of the Zinc Finger C2H2 type (Znf-C2H2) domain91

(Fig. S1B). Beyond the highly repetitive Znf-C2H2 domain containing n-grams, the protein kinase92

domain and the seven transmembrane region of rhodopsin-like G-protein coupled receptors93

(GPCR_Rhodpsn_7TM) were the only additional 1-grams within the top 10 overall n-grams (Fig. S1B).94

Given the dominance in overall n-grams due to repetition, we identified additional n-grams that contain95

domain repeats. We retrieved n-grams with 2 or 3 domain repeats and found n-grams consisting entirely96

of the EGF-like, Cadherin-like, Fibronectin type 3 (FN3), Ig-subtype 2 (Ig_sub2), or the RNA97

recognition motif (RRM) domains, which occured in more than 100 proteins each (Fig. S1C). Only one98

heterotypic n-gram (an n-gram that contains different domains) existed within the top 10, which99

contained both the Znf-C2H2 domain and the KRAB (Krueppel-associated box) domain (Fig. S1C). The100

KRAB domain has been noted to only occur in proteins with Znf-C2H2 domains and acts as a101

transcriptional repressor[29, 30]. Interestingly, n-grams with repetitive domains occurred within roughly102

100-200 proteins except for n-grams containing the Znf-C2H2 domain that occur in about 700 proteins.103

Further, the KRAB and Znf-C2H2 domain n-gram was also the only multidomain n-gram that was104

returned when retrieving either 1-grams or heterotypic n-grams (Fig S1D). Interestingly, Znf-C2H2105

containing proteins are one of the largest classes of transcription factors and Znf-C2H2 domain mediates106

DNA interactions by recognizing 3 or more bases to create a diverse range of recognition motifs[31, 32].107

However, while the Znf-C2H2 domain was the smallest of the domains identified in the top n-grams (Fig.108

S1E), other small domains like the homeobox domain (HD) and Znf-RING domains were not found in109

large protein families with highly repetitive copies of each domain. Collectively, these results establish110

the diversity of domain n-grams that exist across the proteome along with helping identify obligate111

grammar structures (such as the KRAB|Znf-C2H2|Znf-C2H2 3-gram). However, these results highlight112

that certain protein families, such as the Znf-C2H2 containing proteins, dominate n-gram counting113

metrics and may obscure the importance of other critical domain families.114

Given that n-grams are structured units of language, we can consider n-grams that share common115

words to have a connection between the individual n-grams, which represents a functional property that116

determines feasible domain locations and combinations. Thus, we assembled the n-grams of the complete117

proteome as a network where nodes represent individual n-grams (e.g. SH2, SH3|SH2, or118
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KRAB|Znf-C2H2), and edges designate parent-child relationships where shorter n-grams are found119

within the longer n-grams (Fig. 1D). For example, if we consider the SH3|SH2 2-gram found within the120

SRC and ABL kinase family architecture, it will be connected directly to the SH2 and SH3 1-grams, and121

the SH3|SH2|Kinase 3-gram. We extended this to the 44,245 n-grams we extracted from the proteome to122

construct a complete n-gram network (Fig. 1D). We then used gross topographical network features, like123

the number of connected components, to identify n-gram families that share a common set of words. The124

n-gram network of the proteome contained 1345 connected components and 700 isolates, which represent125

domains only found on their own across proteins (Fig. S2A). Most non-isolate connected components126

represented 5 or less proteins, while the largest connected component represented 9937 proteins (Fig.127

1E). Given that only a small number of domains have a diverse number of domain partners[8], and whole128

protein families may be represented within individual connected components of the n-gram network, we129

determined how integrating a node collapsing step within the domain n-gram network construction alters130

the overall network topology. By collapse groups of n-grams that fully represent the same set of proteins131

we can reduce the redundancy of information encoded by each node, and further identify n-grams that132

represent distinct grammar structures (Fig. 1F). The collapsed network (Fig. 1G) increased the number133

of isolates to 1106 nodes with most representing n-grams of length 5 or less, but one isolate represents an134

n-gram family containing 14 domains (Fig. S2). Altogether, this suggests that the collapsed n-gram135

network maintains connections that represent non-redundant grammar structures, which can then be136

used to explore the rules within the human proteome.137

Next, we asked if we can use node-specific metrics to identify critical n-grams of the network. For138

this, we calculate: 1) the degree centrality – to identify the domains or domain combinations with a139

diverse set of domain partners, and 2) the betweenness centrality – to identify domain n-grams that140

connect n-gram families by laying on the shortest path between individual nodes. Using the largest141

connected component, which represents the most proteins within the proteome, we showcase how these142

centrality measurements can identify important domain n-grams within the subnetwork. For each143

n-gram, the degree and betweenness centrality was calculated and shows that a small fraction of n-grams144

have high values (>0.01) for each metric (Fig. 1H). Exploring the relationship between each centrality145

measurement (Fig. 1I), we can identify which n-grams act as hubs to connect other n-gram families146

within the network, and thus represent words with a diverse set of grammar contexts or functions.147

N-grams with high degree and betweenness centrality values, such as the protein kinase, EGF-like, and148

Znf-C2H2 domains, have a diverse set of domain partners that demonstrate their flexibility in generating149

word structures that maintain clear functionality. However, n-grams with only high degree centrality150

values can represent domain combinations that have several partners but only connect a distinct n-gram151

family (e.g. highly repetitive domain n-grams that only link to other repetitive n-grams). If an n-gram152

has a high betweenness centrality but low degree centrality, like the GPCR_Rhodpsn_7TM domain,153

then it likely acts as a connection between a small fraction of other n-grams to the rest of the network.154

Even if the individual n-gram is highly prevalent across the proteome, it is highly constrained in what155

are considered feasible domain partners. This category of n-grams can represent grammar structures that156

rarely require modifiers to define their action. Altogether, our results demonstrate how an n-gram157

network can be used to explore the rules of the protein language, and can find abstract connections158

which maintain protein functionality.159

Characterizing the information content and network topology of different160

n-gram length models161

Since prior studies used 2-gram models to study domain architectures[3, 8, 10], we set out to evaluate162

how different n-gram lengths alter the grammar structures of the protein language, which are captured163

within the topography of the n-gram networks. Importantly, we had found that more than 100 n-gram164

families comprised of 5 to 14 domains can be collapsed as isolates in the n-gram network (Fig. 1, S2),165

which suggests 2-gram models may overlook the contributions of supradomains in defining the166

connections that determine protein functionality[21]. We extracted n-grams ranging from 2-grams up to167

15-grams, and constructed n-gram networks. Thus, the 3-gram model contained 1-,2-, and 3-grams, while168
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Figure 1. Human proteome n-gram network characterization. A) Overview of extracting
n-grams of length n from a collection of protein domain architectures. B) The cumulative distribution of
domain architecture lengths across all proteins in the human proteome. C) The number of proteins for
each 44,425 domain n-grams. D) The schematic (left) of how the n-gram network was constructed with
individual n-grams as nodes within the network and edges representing parent-child relationships where a
shorter n-gram is found in a longer n-grams. The actual n-gram network of the complete proteome (right).
E) The number of proteins represented for each connected component except the largest connected
component which has 9937 proteins. F) Schematic of collapsing n-grams that which fully represent the
same set of proteins. G) The collapsed n-gram network of the human proteome. H) Network centrality
measurements for each node in the largest connected component of the collapsed n-gram network in rank
order. I) The relationship of each centrality measurement with each other and marker size representing
the protein count of each n-gram.
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the 5-gram model contained all those n-grams plus 4- and 5-grams. We measured the entropy of each169

network model to understand broad changes through emergence or modification of grammatical rules as170

longer n-grams are included. We compared these entropy values to the natural distribution of domains171

represented by 1-grams alone, to calculate the relative information gain for each n-gram model, and172

relative to the full network model. A large information gain of 2 bits occurs with the 2-gram model,173

however gains became more modest as longer n-grams were included in each model’s corpus. The 5-, 10-,174

and 15-gram models had information gains of 3.77, 4.56, and 4.85 bits respectively, which correspond to175

71%, 85%, and 91% of the information captured in the full, collapsed n-gram model (Fig. 2A). Using the176

n-gram networks for the 2-, 5-, 10-, and 15-gram models (Fig 2B), we find most isolates from the original177

n-gram model were retained across each model. However, the 2-gram and 5-gram models also generated178

771 and 28 additional isolates respectively (Fig 2C), which suggests that the n-gram families that179

represent the same set of proteins are being spread across multiple nodes. We next analyzed the changes180

in non-isolate connected components, and found the 2-gram model only recapitulated half of the existing181

components in their entirety, and split 16 components into two or more additional components.182

Meanwhile, the 5-gram split 2 connected components and the 10- and 15-gram models only truncated183

the connected components by removing nodes associated with longer n-grams (Fig 2D). The 15-gram184

model only truncated the largest connected component. We calculated the relative entropy of each model185

to the complete n-gram model to determine the divergence of the n-gram probability distribution, and186

thus the information content, within each individual model. Like the network changes, the 2-gram model187

exhibit the highest relative entropy (i.e. largest difference), while the 5-, 10-, and 15-gram models had188

relative entropy values less than 0.5 bits. Collectively, our results suggest that a 2-gram model is189

insufficient to accurately recapitulate the diversity of domain n-grams while representing the same set of190

proteins across different 2-grams. However, n-gram models that include up to 15 domains within an191

individual n-gram can recapture most of the diversity, but will lose information related to longer n-grams192

found in roughly 5% of the proteome. However, we observed relatively minimal gains in information193

content and minimial changes in network topology between 10- and 15-gram models. Thus, for194

representing the human proteome, we selected a 10-gram model, which appears to be a nice tradeoff195

between maximizing the information encoded within protein domain architectures and complexity.196

Domain modules within reversible PTM systems infrequently share n-grams.197

Given that we have established a representation of domain architectures for the entire proteome, we198

wanted to explore the insights that can be generated from n-gram networks constructed for individual199

signaling subnetworks, like the phosphorylation system. Phosphorylation is found across many biological200

processes[33], and is suggested to have developed because the biochemical properties of phosphate groups201

allow it to be rapidly and readily reversible[34]. This diversity of biological functions can also help202

explain why the kinase domain is one of the critical n-grams within the complete proteome n-gram203

network. Signal transduction pathways mediated by phosphorylation are tightly controlled by a three204

module system which operates under a reader-writer-eraser paradigm. For example, the pTyr machinery205

consists of the Tyr kinase (writer), Tyr phosphatase (PTP, eraser), SH2 and PTB (readers) domains.206

Kinases families fall under two broad families: the pTyr and pSer/Thr. However, the pTyr system is207

considered to be evolutionarily newer having evolved near the origins of metazoan species[35, 36].208

Unfortunately, the transient nature of phosphorylation and the relatively low affinity of reader domains209

have made protein-protein interaction network definition especially challenging. To evaluate if linguistic210

approaches can identify unique characteristics that differ between the two systems, we generated n-gram211

networks on the components of each phosphorylation system separately (domains and classification in212

Table S1). Specifically, we generated two n-gram networks for each system, one which contains the213

complete n-gram corpus, and one with n-grams that only contain at least one of the domains of the PTM214

system (PTM System Domain Focused). By analyzing the PTM System Domain Focused networks, we215

can study broad differences in the grammar of system, and how it constrains the combinations of216

different word types represented by each domain to modulate the overall system. The pTyr system217

generated a complete connected graph (i.e. a single connected component), while the pSer/Thr system218

had multiple connected components with n-grams containing the phosphatase (eraser), 14-3-3 (reader),219
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A.

C.

B.

D. E.

Figure 2. Comparison of different n-gram length models. A) Information gain of different n-gram
models relative to a unigram model. B) The n-gram networks of the specified n-gram models. C) The
number of isolates generated or retained in each individual n-gram model. D) The number of connected
components that were either truncated, split, or fully preserved. E) The relative entropy of each n-gram
model to the complete proteome model.

or MH2 (reader) domains as individual, disconnected nodes from the rest of pSer/Thr machinery (Fig.220

3A). Comparing the complete versus PTM System Domain Focused n-gram networks of the pTyr system221

highlighted that only the erasers PTPN6 and PTPN11 with the domain architecture SH2|SH2|PTP use222

other pTyr regulatory domains. Meanwhile, the SH2 and Tyr Kinase domains share multiple n-grams223

supporting findings that SH2 domains modulate kinase processivity[19, 37]. Within the PTM system224

domain focused network of the pSer/Thr system only the FHA domain was directly connected to225

Ser/Thr-kinase domain subnetwork (Fig. 3A). Collectively, these results suggest a common set of rules226

between the two systems, which includes that eraser domains rarely if at all use the other system227

components to modify their function.228

To determine if the network topologies of the pTyr or pSer/Thr systems were characteristic of other229

reversible PTM systems that share the reader-writer-eraser paradigm, we generated networks for the230

acetylation, methylation, and ubiquitin systems. From these networks, we found they more closely231

resembled the pSer/Thr system with multiple connected components (Fig. 3B, S3A). However, the232

methylation system had n-grams with JmjC eraser domains connected to the rest of the network within233

the PTM domain focused network, and the DOT writer domains were isolated within both networks234

(Fig. S3A). Notably, the PTM System Domain Focused n-gram networks showed each PTM system the235

eraser domains are rarely found within the n-grams that contain other system components. To determine236

if the PTM System Domain Focused networks were sufficient to recapture the information within the237

complete n-gram networks, we calculated the relative entropy between the two models, and found that238

the domain focused networks encode similar n-gram distributions across each system (Fig. S3B).239

Collectively, these results suggest these PTM systems have developed a common set of grammatical rules240

that determine the feasible domain combinations to maintain biochemical functions. Interestingly, these241

rules suggest that eraser domains do not require additional domains of the system to modify their242

activity. Thus reader domains that act as "adverbs" to modify activity of the writer domains, rarely are243

used to modulate erasers. Additionally, these networks suggest a constraint that the catalytic domains -244

writers and erasers - that act as "verbs" must be on separate proteins that likely prevents inefficient and245

futile processing of the PTMs.246
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Figure 3. Characterizing the n-gram networks or reversible PTM systems. A) N-gram networks
for the phosphotyrosine (pTyr) or phosphoserine/threonine (pSer/Thr) machinery. The top row contains
all possible domain n-grams to represent a complete network representation, while the bottom row has
n-grams that must contain individual components of the machinery. With the PTM System Domain
Focused networks any node which represents both a reader and writer/eraser domain will be colored
based on writer/eraser colors. B) The number of connected components for both the phosphorylation
systems and additional reversible PTM systems which operate under a reader-writer-eraser paradigm. M:
methylation, A: Acetylation, Ub: Ubiquination

Characterizing the evolution of the phosphorylation domain modules.247

Since the pTyr n-gram networks was the only PTM system that could be represented as a complete248

graphs and it is considered one of the most recently evolved PTM systems[35, 36], we wanted to249

determine if the n-gram network topology had evolved over time and could reflect the evolutionary age of250

the system. We retrieved both the pTyr and pSer/Thr systems from 20 species starting from251

Saccharomyces cerevisiae, which contains a single proto-SH2 domain and three PTP domains[35] (Fig.252

S4). Assembling the n-gram networks for each species, we observe a rapid expansion of both the n-grams253

and edges between n-grams for the pTyr system but not the pSer/Thr system (Fig. 4A, S7, S8). The254

emergence of metazoans led to the stabilization of the pTyr n-gram network, and is reflected in the255

number of connected components and the relative distributions of individual domains (Fig. 4A,B, S4).256

For the pSer/Thr system network topology, the separated Ser/Thr phosphatase subnetwork was257

established early and few changes in the distribution of individual domains (Fig. 4A,B, S5). These258

observations were further supported by using relative entropy to compare the n-gram distributions for259

each species to a network generated from all species (Fig. 4C). The relative entropy for the pSer/Thr260

networks were lower to begin with in most pre-metazoan species, which reflects the increased similarity261

index of the n-grams found within the pSer/Thr network for these species (Fig. S6). Interestingly, these262

results suggest a potential convergence of n-grams in both systems during the evolution of vertebrates263

within our queried species. However, the individual species networks show an interesting evolution of the264

PTM system, which is not readily observed when using the number of individual domains to study the265

system evolution alone. The pTyr network of the pre-metazoan species Capsaspora owczarzaki and266

Monosiga brevicollis had several n-grams that connect the PTP domain to the rest of the network that267

are lost within metazoans. However, once processes advantageous to metazoans evolved, these n-grams,268

with the exception of the SH2|SH2|PTP architecture, were lost. Interestingly, these involved connections269

between both catalytic domains, but the only metazoan species where a connection remained was in270

Nematostella vectensis, which is one of earliest metazoans included in our analysis. This suggests during271

this evolutionary period representing the transition to metazoans, species were sampling several272

configurations of the network during the rapid pTyr system expansion. However, the pTyr system273
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converged to the similar set of grammatical rules as the other PTM systems, where eraser domains are274

loosely connected to the rest of the network, and domains with opposing verb actions are not found275

within the same protein.276

Using n-gram networks to study gene fusion domain architectures.277

While advantageous domain architectures have been selected for throughout evolution, selective pressures278

during the development and progression of cancer present new opportunities for the exploration of new279

grammatical structures. In particular, the development of cancer fusion genes represents one avenue for280

generating novel architectures by forming chimeric proteins from genes with disparate functions. For281

example, the FGFR3-TACC3 fusion gene combines the kinase domain from FGFR3, a receptor Tyr282

kinase, with the TACC domain (a coiled coil domain) from TACC3, a protein involved in the283

organization of microtubules during mitosis to form a constitutively active FGFR variant[38]. Relative to284

the complete n-gram network, gene fusions can generate domain architecture that relate to the gross285

topology of the n-gram network in three different fashions: 1) the fusion n-gram already exists within the286

network, and leads to no change, as seen with STK11-TYK2 fusion gene, which retains only the two287

kinase domains from TYK2 (referred to as no change), 2) a novel domain architecture is generated,288

which uses domains that share a common domain or n-gram partner to shorten the network path and289

reinforce an existing connected component, as seen with the BCR-ABL1 fusion gene (referred to as290

reinforcement), or 3) the novel domain architecture connects domains that do not share any common291

domain partners and thus only creates articulation points to bridge connected components like the292

FGFR3-TACC3 fusion (Fig 5A) (referred to as connected components). To investigate the nature and293

extent of how cancer gene fusions alter n-gram networks, we retrieved gene fusions identified in patients294

from 20 study cohorts within the Cancer Genome Atlas (TCGA) from the ChimerDB[39]. We limited295

fusions to those mapped to the current human genome build (hg38) and result in in-frame fusions.296

Predicted domain architectures were generated by mapping genomic breakpoint information to the297

protein coding sequence, and identifying the domains being donated from each parent gene (Fig. S9).298

Across 20 cancer types, at least 40% of all unique fusion gene domain architectures do not create a novel299

domain architecture with the exceptions of Acute Myeloid Leukemia (LAML) and Testicular Germ Cell300

Tumors (TGCT). However, for both of these cancers, fewer than 50 fusion genes were identified in their301

respective studies and resulted in less than 20 unique domain architectures (Fig. 5B). Meanwhile, most302

of the novel domain architectures reinforced existing domain connections (20-30%), and only 10% of all303

fusions bridge connected components within the n-gram network (Fig. 5B). The low degree of novelly304

connected components across pancancer gene fusions, suggests that fusion sampling and evolutionary305

pressures during tumor progression rarely expand the proteome to generate proteins that span disparate306

functions. However, given the novelty of those fusions that do create new connections, we evaluated307

whether these fusions represent highly advantageous grammatical structures, which encourage a308

widespread development across multiple cancers. For each fusion gene, we retrieved their impact on the309

n-gram network, and then determined whether they were a recurrent fusion across multiple cancer types310

or within a single cancer. For example, the FGFR3-TACC3 fusion is highly recurrent across multiple311

cancers[38] and represents a fusion that bridge connected components within the n-gram network.312

Meanwhile, the TMPRSS2-ERG fusion is highly recurrent within prostate cancer[40], and does not alter313

the n-gram network. Comparing the n-gram network effects by novel domain architectures generated by314

these and singleton gene fusions, which have only been identified in one patient, we found irrespective of315

their recurrent status each group of gene fusions primarily reinforce existing domain combinations (Fig.316

5C). Altogether, these results suggest that the domain architectures of gene fusions still adhere to the317

same grammatical rules that were established for domain architectures within the complete proteome.318

Having established that gene fusions do not readily expand the proteome, we next sought to319

determine if the few fusions that do connect disparate n-gram families impact patient survival. We320

stratified patients based on the network impact of their the predicted protein domain architecture of321

their gene fusion, and if a patient had multiple gene fusions. A pan-cancer, univariate analysis suggested322

that only patients with gene fusions that reinforce existing domain connections or had multiple fusions323

were predicted to have worse overall survival (Fig. S10). However, for individual cancer cohorts, the324
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Figure 4. The evolution of the protein domain architectures of the pTyr and pSer/Thr
systems. A) Complete n-gram networks of the phosphotyrosine (left) or phosphoserine/threonine (right)
systems for species ranging from Dictyostelium discoideum to humans. B) The number of connected
components for each species phosphorylation system. C) The complete n-gram network containing all
n-grams across all queried species and the relative entropy for each species compared to the all species
network. Hs: Homo sapiens, Ms: Mus musculus, Rn: Rattus norvegicus, Oc: Oryctolagus cuniculus, GG:
Gallus gallus, Xt: Xenopus tropicalis, Dr: Danio rerio, Ca: Carassius auratus, Sp: Strongylocentrotus
purpuratus, Dm: Drosophila melanogaster, Ce: Caenorhabditis elegans, Nv: Nematostella vectensis, Ta:
Trichoplax adhaerens, Mb: Monosiga brevicollis, Co: Capsaspora owczarzaki, Sa: Sphaeroforma arctica,
Ac: Acanthamoeba castellanii, Dd: Dictyostelium discoideum, Sc: Saccharomyces cerevisiae
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Figure 5. Characterizing predicted protein domain architectures of cancer gene fusions.
A) Schematic of the possible changes to the n-gram network caused by individual fusion genes with
example fusion genes are predicted domain architectures. For novel domain architectures these can
either reinforce existing connected components or reduce the number of connected components. B)
The fractional distribution of fusion gene impacts on the n-gram network (top) and the total number
of fusion genes (bottom) retrieved for each TCGA study cohort. C) The distribution of architecture
n-gram network impacts for recurrent or singleton fusions within either multiple or single cancer. D)
Representative Sankey diagrams of select protein domains that exhibit 5’/3’ donation propensity and/or
generation of novel domain architectures, and diagrams for the top 3 most prevalent domains across
the human proteome. E) Network centrality measurements relative to the fraction of novel domain
architectures individual domain n-grams generate. N-grams which contain the protein kinase domain are
highlighted in red.
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presence of gene fusions generally did not predict worse patient survival, except for seven cancers (Fig.325

S11). Further, stratification by network impacts of gene fusions, and excluding patients with multiple326

fusions, showed most cancers did not have significant changes in patient survival. However, three cancer327

cohorts had significantly worse patient survival based on fusion gene stratification, but each cohort had328

less than 25 patients (5-10% of the patient population) with a single fusion gene limiting the conclusions329

that can be made on changes in survival probabilities by the n-gram network categories (Fig. S12).330

Together, these results corroborate that gene fusions are relatively rare events compared to somatic point331

mutations[41–43]. Further, our results suggest that while gene fusions can identify therapeutic332

candidates[40, 44], they may not be bona fide biomarkers to predict patient survival, and can even333

represent passenger mutations[45].334

Given that our results have established that n-gram networks can highlight broad descriptions of the335

rules guiding domain architecture development, we constructed an n-gram network on the gene fusions336

and analyzed the domain architectures of the parent genes. Similar to the natural proteome, most parent337

genes have domain architectures with two or fewer domains (Fig. S13A). Extracting the individual338

n-grams donated by the parent genes and the final fusion architecture, we generated a new n-gram339

network that tracked whether an n-gram was from a parent gene or the final fusion. Thus, if a kinase340

domain was donated from the 3’ fusion gene (e.g. with TYK2) it would be a separate node in the341

network than a kinase domain that represents the fusion gene (e.g. the complete STK11-TYK2 fusion).342

From this network, a total of 106 fusion gene domain architectures utilized domain architectures only343

found from their parent genes to form unique complete domain fusion families (Fig. S13B). The large344

connected component within the network suggests several domain architectures are highly recurrent345

across either parent genes or the final fusion and span multiple fusion families. Importantly, while most346

parent genes have domains, many of the fusion genes did not involve any of the domains from at least one347

parent gene (Fig. S13B-D). Without a domain from one of the parent genes, a novel domain architecture348

was not produced, which would explain the large fraction of fusion genes that led to no change in the349

n-gram networks across the TCGA cohorts (Fig. 5B). Next, we identified domain n-grams that either 1)350

generate a large fraction of novel domain architecture or 2) display a propensity to be donated by either351

the 5’ or 3’ parent genes. We find domains such as the KRAB domain and Paired domain are frequently352

donated by the 5’ parent, while the homeobox domain (HD) is donated by the 3’ gene. However, most353

fusions involving the KRAB or HD domains frequently have no domains donated from the other partner354

gene, resulting in a fusion with only the KRAB or HD domain. If the fusion gene partner for the KRAB355

containing proteins does donate a domain, it results in a novel domain architecture. Meanwhile, some356

domains like the Paired domain only result in novel domain architectures (Fig. 5D). When analyzing357

fusions containing the Znf-C2H2 or protein kinase domains given their importance in the natural358

proteome, we find each had at least 50% of fusion result in novel domain architectures. However, when359

we analyze fusions with the GPCR-Rhodpsn-7TM domain, which is found in >600 proteins in the360

proteome, but does not appear to have a critical role in the n-gram network architecture (Fig. 1I), we361

find it only within seven fusion genes, and it rarely results in novel domain architectures. Altogether,362

these results suggest that individual domains have an intrinsic property that determines their role within363

generating gene fusions, which can be uncovered with these linguistic networks.364

Individual domains can vary in the number of multiple domain partners[4, 7, 8] they combine with,365

and our networks can identify this through centrality measurements. To determine if domains involved in366

gene fusions were the promiscuous domains, we calculated the Gini-Simpson Diversity Index for these367

domains within the natural proteome. For the diversity index, we calculated it for both the diversity of368

domains that precede an individual n-gram and the domains that follow the n-gram. This allows us to369

determine whether an n-gram has a propensity to have a diverse set of partners before or after it, and370

relate it to whether the n-gram is donated primarily by the 5’ (reflecting diversity indices for n-grams371

following it), or the 3’ (reflecting the preceding n-gram diversity index). For all n-grams within fusions372

genes, the distribution of the diversity indices were skewed slightly higher than the rest of the proteome,373

but this was not a defining characteristic of the top overall fusion n-grams (Fig. S14). However, for the374

KRAB and Znf-C2H2 domains, their propensity to generate novel domain architectures may be related375

to having multiple existing domain partners – as reflected in a high degree centrality – but being376
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comprised of one dominate n-gram, lowers their diversity index (Fig. 1I, S14B). Alternatively, the377

GPCR-Rhodpsn-7TM domain suggests its propensity to not form novel domain architectures may be due378

to having few other n-grams it connects, and having single n-gram dominate the collection of domains in379

combines with and result in a diversity index close to 0 (Fig. 1I, S14B). Meanwhile, for the protein kinase380

and HD domains, these trends with the diversity index could not explain their properties within fusion381

gene domain architectures. Rather, their centrality measurements within the complete n-gram network382

could help explain their involvement in both preexisting and novel domain architectures. However, when383

plotting the novel domain architecture fraction against the centrality metrics for all n-grams within384

fusion genes, we found no correlation (Fig. 5E). Altogether, our results further suggest that the fusion385

gene domain architectures follow the principles regulating domain architecture development. Further, the386

collection of properties including the diversity of domain partners and the involvement in connecting387

obligate proteins can contextualize the grammatical rules for individual n-grams.388

Kinase fusion have been frequently identified across most cancers[44] with the tyrosine kinase domain389

specifically being overrepresented within gene fusions[42, 46, 47]. We wanted to understand whether390

kinase fusions identified in our analysis differed if a kinase domain was related to the pTyr or pSer/Thr391

system. We found similar numbers of both the pSer/Thr and pTyr kinase domains across all fusions and392

both domain families generated the same fraction of novel domain architectures (Fig. S15A,C).393

Constructing an n-gram network from these gene fusions only 20 n-grams were common to both kinase394

fusion types and the most highly connected nodes within the network were either specific to pSer/Thr395

kinases (AGC-kinase, C-terminal domain) or common to both (FN3, Ig subtype 2, or the PH domains)396

(Fig. S15B-D). Collectively, these results suggest that kinase domains generally have intrinsic properties397

that enable neofunctionalization through diverse domain combinations. This result further supports our398

suggestion that the high centrality measurements of the kinase domain reflect its involvement across399

biological functions by connecting distinct n-gram families.400

Discussion401

Here, we applied n-gram analysis with network approaches to characterize the protein domain and402

multidomain landscape of the human proteome. Assembling the domain n-grams into networks agrees403

with past findings, that a small fraction of domains combine with a diverse set of domain404

partners[3, 7, 8] (Fig. 1, S1), but also highlights that about 300 multidomain architectures represent405

single proteins or protein families (Fig. S2). About 95% of the human proteome contains up to 10406

domains which allows for a 10-gram model to sufficiently recover the distribution of domain n-grams and407

recreate a complete n-gram network that 2-gram networks cannot (Fig. 2). To understand the insights408

n-gram networks can provide for individual signaling subsystems, we further investigated the different409

phosphorylation systems. We found that the domains making up the pTyr system were unique in410

generating a complete connected graph and that this property likely evolved during the origins of411

metazoan species (Fig. 3, 4). Interestingly, the n-gram network topologies highlights how selective412

pressures from evolution can generate specific n-grams to bridge different PTM system components such413

as the SH2|SH2|PTP architecture, but represent a small fraction of the complete system. Further, this414

evolutionary analysis suggests that each PTM system converges toward a common set of grammatical415

rules, such as eraser domains being loosely connected to the rest of system, that reflects the evolutionary416

age of the PTM system. Since cancer progression can represent a potentially active selection process that417

can create novel domain architectures to expand the grammatical rules of the proteome, we analyzed the418

gene fusions. We found few fusions connect domains with obligate functions that do share common419

domain partners (Fig. 5), but certain domains such as the protein kinase domain are frequently found420

within fusion genes (Fig. 5F). However, these fusions cannot easily predict patient survival outcomes.421

Studying gene fusions highlight that the principles that determine feasible domain combinations from422

evolution remain during cancer progression. Collectively, the results highlight the uses of domain423

architectures to study molecular functions beyond predicting the evolution and functionality of protein424

families. Further, these results highlight that our n-gram network analysis can uncover rules akin to425

grammar that determine feasible domain combinations, which can complement existing protein-protein426
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interaction networks by abstracting the functional connections within signaling subnetworks.427

We applied the n-gram network analysis to cancer fusion genes to understand the frequency and428

types of novel domain architectures being generated. From this analysis we found that most predicted429

fusion gene domain architectures result in preexisting n-grams agree and that novel domain architectures430

primarily utilizes domains with common domain partners (Fig. 5), but rarity of gene fusions compared431

to other somatic mutations[41–43] makes findings on changes in patient survival inconclusive (Figs. S10,432

S11). Kinase fusions though represent one of the largest classes of gene fusions and have been widely433

identified across a variety of cancers[42, 44], which our full pancancer n-gram network analysis434

corroborated (Fig. 5F). One of the other major classes of frequent gene fusions are transcription factors435

fusions, which when involved in gene fusions are suggested to exert dominant negative effects[46]. In our436

analysis, only Pointed|ETS transcription factor domain architecture was one of the most common437

domain n-grams in our dataset, but rarely generated novel domain architectures (Fig. S13C) nor438

impacted n-gram network topology. This reflects the prevalence of ETS fusions especially through the439

TMPRSS2-ERG fusion within prostate cancer[39, 48], but has limited correlations to clinical440

outcomes[40, 49]. However, this in combination with our results on patient survival (Fig. S10, S11)441

emphasize the complexity of interpreting the presence of gene fusion in patient prognosis. Few gene442

fusions are considered to be putative drivers of disease[50], and results have suggested in some instances443

gene fusions are passenger aberrations[45]. However, recent studies have identified chimeric mRNA444

species predicted to generate fusion genes within disease-free tissues[51, 52], but the contributions of445

these gene fusions to cancer development or prognosis remain unclear.446

Interestingly, by incorporating evolutionary analysis of the n-gram networks for the pTyr and447

pSer/Thr systems (Fig. 4), we uncovered a set of grammatical rules that each reversible PTM system448

appears to converge towards. During the rapid expansion of the pTyr system, which established pTyr449

residues as novel, orthogonal signaling currency[36, 53], species are sampling several configurations of the450

rules that determine domain ordering. However, evolution still promotes a convergence of rules which451

keep domains that act as "verbs" separate from one another, and loosely connect the eraser domains if at452

all with the rest of the system. The pTyr system is not the only signaling system that recently evolved.453

The KRAB domain, which was also identified across our analyses to exert some influence in the n-gram454

network, recently evolved during the transition towards vertebrates[54] to counter the expansion of455

transposable elements within mammalian genomes[55]. While the function of many KRAB containing456

Zinc-finger proteins (KRAB-ZFPs) have not been widely characterized, their role in embryonic457

development have been widely appreciated due to KRAB-ZFPs recruitment of KAP1 to modulate458

chromatin states[56]. This rapid evolution, similar to the pTyr system, emphasize that domains and459

their combinations not only encode the evolutionary jumps of protein families[5] but reflect changes in460

the molecular ecosystems available to cells. However, our n-gram networks can uncover the guiding461

grammatical rules of individual signaling subnetworks, and could be applied to further study and462

understand KRAB-ZFPs and the wider transposable element regulatory system.463

Our analysis has generated a computational framework for describing domain architectures using464

both linguistics and network approaches. However, our analysis still is limited in describing the complete465

domain landscape present within cells. We retrieved and analyzed only the canonical protein isoforms,466

which can omit proteoformes of individual genes that arise due to alternative splicing that impact467

protein-protein and domain-domain interactions[57]. However, alternative splicing infrequently impacts468

domain architectures but when reported involves repetitive domains such as the Znf-C2H2 and Ig-like469

domains[58]. Additionally, the continued improvement of protein structure algorithms like AlphaFold[16]470

have led to an expansion of the predicted structural folds without known functions but still represent the471

evolution of protein families[28, 59]. Altogether, these suggest the proteome continues to evolve through472

various mechanisms. However, the computational framework we have described here is flexible towards473

describing and characterizing the expanded proteome, which can be further supplemented by molecular474

interaction or function annotations.475
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Materials and Methods476

Retrieving UniProt IDs for the human proteome and post-translational modification477

systems for additional species. For the human proteome, UniProtKB IDs were retrieved using478

pybiomart to map between Ensembl gene IDs and reviewed UniProtKB IDs. For individual479

post-translational modification (PTM) systems, InterPro IDs for the different domains that make up the480

PTM system were retrieved using the IDs listed in Table S1 using the InterPro module of CoDIAC[24].481

For analyzing the phosphorylation systems in all species except humans, mice (Mus musculus) and rats482

(Rattus norvegicus) both reviewed and unreviewed UniProt records were fetched. To ensure unreviewed483

UniProtKB records are not mapping to same gene within individual species, UniProt entries on the484

evidence level, cross references to Ensembl, the NCBI Gene, and RefSeq databases, protein length, and485

gene symbol were fetched to determine which record represented identified genes and full protein coding486

sequences. Reviewed records were given top priorty followed by records with cross references to other487

databases. Records which mapped to the same cross reference IDs were then compared by protein488

existence levels and finally amino acid length sequence. For UniProtKB records which required489

comparing amino acid length sequences, the record with the longest length was retained. The complete490

list of species and strain names used during fetching is provided in Table S2.491

Fetching InterPro protein domain architectures and generating domain n-grams. To fetch492

protein domain architectures from InterPro, we utilized the UniProt module from our recently developed493

python package CoDIAC[24] by inputting fetched UniProtKB IDs into the UniProt module from494

CoDIAC. The resulting reference file contains all InterPro and UniProt domain architectures and495

reference sequences for each queried protein and was used for downstream analysis. All results were496

fetched using the 2024 September 4th build of the InterPro and UniProt databases. The retrieved497

protein domain architectures were then separated into n-grams of the length of interest for each n-gram498

model. For building the PTM System Domain Focused n-gram models, only n-grams that contained499

domains of interest were fetched from the complete protein domain architecture.500

Measuring n-gram model information gain and relative entropy. N-gram models rely on the501

Markov assumption where the probability of a specific n-gram depends on the conditional probability of502

the next domain, dn, given the preceding sequence of domains, dn−N+1. This can can be estimated for503

n-gram using the maximum likelihood estimate (MLE):504

pMLE(dn|dn−N+1:n−1) =
C(dn+N−1:n−1, dn)

C(dn+N−1:n−1)

Where N represents the maximum length of n-grams being evaluated (i.e. N=2 for bigrams or N=5 for505

5-grams). The counts of a specific n-gram (dn+N−1:n−1, dn) is represented by C(dn+N−1:n−1, dn). These506

probabilities are then used to calculate the entropy of an n-gram model (Hn(x)) using Shannon’s entropy:507

Hn(x) = −
∑

p(x) log2 p(x)

For individual domains the probabilities are given by the relative frequencies for each domain within the508

corpus of domain architectures. For longer n-grams, the entropy represents the sum of weighted509

probabilities which can be estimated by:510

Hn(x) = − 1

Nng

∑
C(dn+N−1:n−1) log2

C(dn+N−1:n−1, dn)

C(dn+N−1:n−1)

= − 1

Nng

∑
C(dn+N−1:n−1) log2 pMLE(dn|dn+N−1:n−1)

Where Nng represents the total number of n-grams with length N. The entropy of an n-gram model is511

then used to determine the relative information gain I(x) from the unigram (only single domain512
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frequency distributions) model (H1(x)):513

I(x) = Hn(x)−H1(x)

To compare how the distributions of n-grams change using different n-gram models we use the relative514

entropy also known as the Kullback-Leibler divergence defined as:515

DKL(P ||Q) =
∑

P (X) log2
P (X)

Q(X)

Where P (X) and Q(X) represent the probability distributions within both n-gram models and Q(X) is516

the baseline model that contains all n-grams within P (X).517

Calculating network centrality measurements. For nodes within the largest connected518

component, the betweenness and degree centrality measurements were calculated as implemented in the519

networkx python package. Degree centrality is defined as the total fraction of all nodes connected to520

node v. The betweenness centrality measurement of node v is the sum of fractions of pairwise shortest521

paths that pass through node v, which is defined as:522

cB(v) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

Where V is the set of nodes, σ(s, t) represents the number of shortest paths between nodes s and t, while523

σ(s, t|v) represents the number of shortest paths that go through node v.524

Predicting domain architectures for gene fusions. Genomic breakpoints for gene fusions were525

retrieved from the ChimerDB[39] for the TCGA cohort. Fusions that were mapped to the current human526

genome build (hg38), predicted to be in-frame, and were designated as found within the ChimerSeq+527

dataset representing high confidence fusions were selected for further analysis (5579 total fusions).528

Genomic breakpoints were then retrieved for each parent gene and mapped to exon and the protein529

coding sequence positions. The base pair position was then translated to an amino acid position and530

used to determine which domains were donated towards the fusion gene (Fig. S9). Domains which were531

truncated by the breakpoint location were not included in the final predicted domain architecture.532

Calculating Gini-Simpson Diversity Index for domain n-grams. For n-grams of with a length533

of 10 or less, for each domain n-gram of interest dn all n+1 n-grams containing the n-gram were534

retrieved. The set of domain n-grams were then split into n-grams where dn started or ended the n-gram.535

For the n-grams starting with dn were used to calculate the diversity index for following n-grams, while536

those ended were used for the diversity index of preceding n-grams. The diversity index was calculated537

using the Gini-Simpson Diversity Index as defined for small datasets:538

D = 1− l = 1−
∑R

i=1 ni(ni − 1)

N(N − 1)

Where R is the collection of n+1 domain n-grams, N is the total count of the n-grams in the set, and ni539

is the count for each individual domain n-gram.540

Species N-gram Similarity Index For comparing the n-grams of the pTyr and pSer/Thr systems541

between individual species, the Jaccard similarity index, J , was calculated using:542

J(A,B) =
|A ∩B|
|A ∪B|

Where A and B represent the sets of domain n-grams found within individual species.543
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TCGA Patient Survival Analysis. Clinical attributes for the TCGA study cohorts were retrieved544

from cBioPortal[60]. For univariate patient survival analysis, patients were stratified on if a tumor545

harbored one or multiple of the fusion genes within our analyzed fusion gene dataset. Patients with546

single fusions were then further stratified based on the n-gram network impacts caused by the fusion547

gene (Fig. 5A). Statistically significant changes in survival probabilities were determined by using548

pairwise log-rank tests as implemented in the lifelines python package.549
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