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SUMMARY

The extensive genetic heterogeneity of cancers can
greatly affect therapy success due to the existence
of subclonal mutations conferring resistance. How-
ever, the characterization of subclones in mixed-
cell populations is computationally challenging due
to the short length of sequence reads that are gener-
ated by current sequencing technologies. Here, we
report cloneHD, a probabilistic algorithm for the
performance of subclone reconstruction from data
generated by high-throughput DNA sequencing:
read depth, B-allele counts at germline heterozygous
loci, and somatic mutation counts. The algorithm can
exploit the added information present in correlated
longitudinal or multiregion samples and takes into
account correlations along genomes caused by
events such as copy-number changes. We apply
cloneHD to two case studies: a breast cancer sample
and time-resolved samples of chronic lymphocytic
leukemia, where we demonstrate that monitoring
the response of a patient to therapy regimens is
feasible. Our work provides new opportunities for
tracking cancer development.

INTRODUCTION

Cancer develops via the accumulation of genetic alterations dur-

ing an evolutionary process (Stratton et al., 2009). Recent years

have seen a torrent of genetic data from cancer genomes gener-

ated at different levels of resolution ranging from low-density

genotyping array data for gauging copy-number profiles to

whole-genome sequencing to capture all genetic aberrations.

These data have been hugely informative in discovering driver

mutations that are causally responsible for the development

and progression of cancer (Garraway and Lander, 2013; Vogel-

stein et al., 2013; Wheeler and Wang, 2013). However, the

ascent of cancer genomics has not been without formidable

challenges. For instance, a breast cancer can harbor thousands

of point mutations together with some smaller number of large-

scale copy-number alterations (Nik-Zainal et al., 2012a; Stratton
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et al., 2009). Out of these variants, most are likely to be of no

great relevance for the cancer phenotype of the cell and are

considered passengers. Even focusing solely on nonsynony-

mous coding variants would leave tens to hundreds of mutations

for further analysis depending on the cancer type (Garraway and

Lander, 2013; Vogelstein et al., 2013; Wheeler and Wang, 2013).

But such a drastic filtering would also carry the risk of missing

some important mutations, as was underlined by a recent dis-

covery of TERT promoter mutations driving melanoma (Horn

et al., 2013; Huang et al., 2013). An obvious computational

challenge is to prioritize candidate causal variants for follow-up

functional validation (Gonzalez-Perez et al., 2013). The sheer

volume of data is of help in achieving this aim in a virtuous cycle;

for instance, it is now possible to determine region-specific

mutation rates by pooling gene-activity data to construct a base-

line model for subsequent driver-gene detection (Lawrence

et al., 2013). These high-resolution statistical models are pushing

forward the field of cancer genomics as a whole.

While progress has beenmade in understanding the vast num-

ber ofmutations in sequenced tumor samples and the processes

generating them (Alexandrov et al., 2013a, 2013b; Fischer et al.,

2013; Lawrence et al., 2013; Nik-Zainal et al., 2012a), another

layer of variability has been discovered in the form of subclonal

population structure. It is often the case that a sample of cells

from a single tumor can not be considered as an isogenic lineage

of cancer cells with stromal contamination, not even to a first

approximation (Burrell et al., 2013). The fraction of cancerous

cells rather consists of a collection of subclones, with private

and shared mutations, related by their joint evolutionary history

going back to the most recent common ancestor (Nik-Zainal

et al., 2012b) (see Figure 1). Clonal heterogeneity can be de-

tected using next-generation DNA sequencing (Shah et al.,

2009) and has important biological and medical implications

(Aparicio and Caldas, 2013; Bedard et al., 2013). First, naive

sample extraction strategies will lead to an underestimation of

real tumor heterogeneity. Second, subclones can be resistant

to a particular therapy and are then amplified in a process called

competitive release, whereby the drug eradicates any suscepti-

ble competitors (Greaves and Maley, 2012; Wargo et al., 2007).

Rather than waiting for de novo resistance mutations to emerge,

cancer likely escapes using existing subclonal variation (Bozic

et al., 2012). As a result, clonal dynamics and changes in clonal

composition can inform therapy, highlighting the importance of
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Figure 1. Reconstruction of Clonal Heterogeneity

(A) Schematic view of subclonal diversification. In this example, mutations in daughter cells of a single founder cell (left) diverge into subclones (reflected by

different colors). A point mutation occurs early on with a subsequent gain of a chromosome arm and a short deletion at a later stage, each followed by clonal

expansion (subclones 1, 2, and 4). A short-lived lineage arises independently (subclone 3).

(B) In the left column, the demarcation of the clonal lineages using CNA and SNV information is shown. Middle and right columns show different decompositions

using only one of these data types.

(C) DNA sequencing of a cell population in a tumor sample and a matched normal. The different data layers (left) can be used to infer the underlying population

structure (right); vertical lines highlight shared SNVs.
monitoring cancer progression. While emerging single-cell tech-

nologies are showing great promise, it is still not possible to

sequence individual cells routinely to capture the full information

about their genotype and copy-number profiles (e.g., Navin

et al., 2011; Potter et al., 2013; Shapiro et al., 2013). This leaves

the field reliant on short-read sequencing as the main experi-

mental assay for cancer genomics in the near future. Therefore,

computational inference of subclonal population composition

from short-read data is an important challenge.

Existing computational methods have so far mostly focused

on the decomposition of the sample into tumor and normal cells,

estimating its purity while trying to account for an aberrant ploidy

of the tumor cells. Early attempts of purity and mean ploidy esti-

mation were designed for SNP array data and used relative read

depth and/or B-allele fractions (such as Rasmussen et al., 2011;

Song et al., 2012; Van Loo et al., 2010; Yau et al., 2010). The

value of using correlations along the genome was realized in

some methods employing hidden Markov models (HMMs)

(Greenman et al., 2010; Li et al., 2011; Liu et al., 2010; Sun

et al., 2009). Several methods for purity estimation have been re-

viewed and compared (Mosén-Ansorena et al., 2012). More
C

recent computational methods try to leverage the large amount

of information gathered in next-generation sequencing (NGS)

to estimate tumor purity and characterize tumor ploidy (Carter

et al., 2012; Chen et al., 2013; Larson and Fridley, 2013; Su

et al., 2012). While these methods increasingly use probabilistic

modeling, including HMMs (Ha et al., 2012), to account for noisy

data, they do not infer individual subclonal fractions and copy-

number profiles and often include only one or two of the available

data types. If methods for purity estimation assume a fully clonal

tumor population, they can give unreliable results if there

is considerable subclonality. Models that try to account for

possible subclonality can producemore robust estimates (Carter

et al., 2012; Chen et al., 2013; Larson and Fridley, 2013).

More recently, a few studies have started to infer the subclonal

structure from NGS data. In the analysis of breast cancer ge-

nomes (Nik-Zainal et al., 2012b), the histogram of observed

single-nucleotide variants (SNVs) has been explained with a

small number of mutation clusters using a Dirichlet process.

These clusters are then used to manually derive a consistent

phylogenetic tree. This ansatz has recently been extended to

the case of multiple samples (Bolli et al., 2013). The THetA
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algorithm (Oesper et al., 2013) uses genome-wide segmented

read-depth information to find mixtures of subclonal copy-num-

ber profiles. For the limit case of a fully clonal tumor, THetA out-

performs previous purity estimators and runs efficiently. Since

the inference in THetA is based on read depth alone, there can

be several equivalent copy-number profiles explaining the

data. The PyClone algorithm (Roth et al., 2014), on the other

hand, tries to deconvolve the tumor into subclones based on

somatic SNVs from deep sequencing using a hierarchical

Bayesian clustering model that can incorporate local copy-num-

ber information. Within the same category, the recent PhyloSub

algorithm uses deeply sequenced SNVs and phylogenetic tree

constraints to infer subclonal frequencies (Jiao et al., 2014).

We here describe a probabilistic algorithm, cloneHD, to

perform subclone reconstruction from short-read data. Our algo-

rithm offers three qualitatively new additions that differentiate it

from existing methods.

First, our method addresses the clonal inference problem

using data of multiple types, both at the level of copy-number

aberrations (CNAs), using read depths and B-allele fractions

(BAFs) (denoted cna-mode, cna-baf-mode) and at the level of so-

matic SNVs (denoted snv-mode). Inferences are performed with

a set of coupled hidden Markov models jointly across all data

types, which can greatly improve the evidence for one of several

competing solutions. However, the resulting clonal decomposi-

tions need not be the same at the two levels. For instance, two

clones with identical copy-number profiles can still have different

somatic mutations. In snv-mode, cloneHD tries to find this alter-

native partitioning while respecting the overall copy-number sta-

tus of the population.We can also perform an integrative analysis

to seek a clonal decomposition jointly at the level of CNAs, BAFs,

and SNVs (i.e., cna-snv-mode and cna-baf-snv-mode).

As a result of this, the method generates inferences of the

number of clones detected in the sample, their population fre-

quencies across time and/or space, and subclone-specific pos-

terior probabilities of copy-number profiles and somatic variant

genotypes. To our knowledge, the calculation of consistent

locus- and subclone-specific posterior probabilities across all

three levels, namely total copy number, B-allele status, and

SNV genotype, has not been done before. This reconstruction

facilitates subclone-specific computational analyses at high

definition and so opens new ground for exploration.

Finally, our algorithm is designed to take account of datawhere

multiple samples have been sequenced from a single patient.

Our approach exploits correlations across time (longitudinal

data) or across space (multiregion and/or metastatic samples).

To achieve computational efficiency, the algorithm employs a

fuzzy data segmentation scheme, which coarse-grains the data

while retaining most of the correlation information (see Experi-

mental Procedures, Supplemental Experimental Procedures,

and Figure S1 for details). The inference of two subclones in a

single whole-genome cancer sample at full data resolution

(1 kb) with hundreds of segments can thus be performed within

minutes running cloneHD on a standard personal computer.

In the following, we demonstrate the performance of the

approach using simulated data and two case studies: a breast

cancer sample (Nik-Zainal et al., 2012b) and time-resolved sam-

ples of chronic lymphocytic leukemia (Schuh et al., 2012).
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RESULTS

Benchmarking against Simulated Data
We first measured the performance of cloneHD by running it

against simulated data to demonstrate that the algorithm can

successfully infer the number of subclones and their frequencies

and reconstruct their copy-number and somatic SNV states. The

simulation ensemble consisted of 100 data sets, where each

sample had a purity of 0.7 (i.e., 30% of the DNA was derived

from noncancerous cells) and further contained two cancer sub-

clones of variable sizes. In our simulations, we constructed

evolutionary trajectories where the initially smaller subclone

gained in frequency over time while the other subclone

decreased. Their copy-number profiles and SNV genotypes,

and therefore their subclonal identity, remained the same at all

times. Each simulated genome was composed of 20,000 loci,

out of which a mean of 2,500 loci contained somatic mutations

and a mean of 2,342 loci were germline heterozygous

(generating B-allele counts). These simulated cancers were

‘‘sequenced’’ at a depth of 15X (fold coverage, the average num-

ber of reads representing a nucleotide) per haploid chromosome

at up to three time points in their evolution (for detailed descrip-

tion of the simulations, see Supplemental Experimental Proce-

dures). With real data, the effective sequencing depth is not

exactly known. In cloneHD, this parameter is learned as a sam-

ple-specific mass, defined as the mean sequencing depth per

haploid chromosome. Figure 2 shows one representative simu-

lated data set and its particular explanation using cloneHD.

We considered two main performance measures for the

inferences: reconstruction fidelity and mean error in clone fre-

quencies per sample point. We defined the fidelity of an infer-

ence as the amount of posterior probability per locus assigned

to its true state. For instance, fidelities close to one mean that

the algorithm has correctly reconstructed the copy-number pro-

file or somatic SNV genotypes for a subclone. Although this

metric is a useful indicator for the overall performance of subclo-

nal reconstruction it has some limitations. For example, even

with perfect clonal frequencies, at low sequencing depths and/

or a small number of samples, a substantial uncertainty about

the hidden state remains and cannot be removed without more

data. This is especially the case for the somatic SNV genotype

state, which in general has no persistence along the genome.

Such uncertainty reflects the inherent limits of inference rather

than any shortcomings of the reconstruction algorithm. In Fig-

ure 3A, we show that cloneHD successfully reconstructed the

clonal copy-number states and somatic SNV genotypes from

the simulated data, obtaining fidelities close to the maximum

achievable given the noise level. As expected, the performance

increases when more samples (time points in the simulations)

and/or data types (cna-mode, cna-baf-mode, cna-baf-snv-

mode) are added.

We note that our model selection criterion (Bayesian informa-

tion criterion [BIC]) undercalled the number of clones in up to 13

of 100 runs (cna-mode). With additional time points, this under-

estimate disappeared and there was some overcalling in up to 6

of 100 runs (cna-baf-mode). However, the clones that were iden-

tified in the miscalled runs have meaningful fidelities, while some

smaller clones are missed. In analyzing real data, we suggest



Figure 2. Example Reconstruction of a Simulated Data Set

(A)–(C) show the hidden data that are inferred from the sequencing experiment.

(A) An example simulated data set containing two subclones (red and blue) with fractions summing up to 0.7, a contamination from normal cells of 0.3, and with

three time points.

(B) True underlying copy-number states for the cancer subclones, where the B-allele copy number is shown in dark blue (two values reflect that we do not know

the parental chromosome of origin for these variants).

(C) Somatic variants for each subclone.

(D–F) Read-depth track, here 15X per haploid chromosome, from the mixture of normal plus subclones that can be used to infer copy-number profiles of the

subclones (we show true copy-number changes as vertical lines to guide the eye) (D), B-allele counts (fractions plotted) for the mixture help to decide between

balanced and unbalanced copy-number changes (E), and somatic mutation counts (fractions plotted) (F). (D)–(F) show only the data for time point t1, while there

are two more sets of data guiding the inference (not shown). The bottom row shows the cloneHD inference output using cna-baf-snv-mode for this data set. As

already shown in (A), inferred clone frequencies closely match the input.

(G) The posterior probability of subclone-specific copy-number states closely matches the true profiles shown in (B) (there is only a short segment that is wrongly

assigned).

(H) The posterior probability of subclone-specific B-allele states closely matches the true profiles shown in (B).

(I) For each SNV, the observed allele fraction was scaled by one half of its local mean total copy number and a genotype state was randomly assigned based on

the cloneHD posterior. The histograms for the most prevalent states are shown. The vertical lines denote for each genotype state the predicted frequency in

diploid DNA (even for genotypes higher than 2, where this number could go beyond one).
that BIC be regarded as an informed heuristic, with emphasis

being placed on the stability (or lack thereof) of the solution

when changes are made to the total number of subclones or

the copy-number range. Figure 3B shows that the mean error

per sample between the true frequencies and the inferred ones

is small and decreased as a function of sample points and with

the addition of data types. This result is clearly not independent

of the fidelity and shows how closely the underlying subclonal

dynamics can be learned. We also note that inferences where

the mass was not accurately captured often show poor fidelities
C

because the solution found differs from the correct copy-number

profile by an overall shift (typically by one copy).

In summary, cloneHD can successfully reconstruct subclonal

frequencies and the underlying copy-number profiles and SNV

genotypes from complex simulated mixtures. Although these

simulated data sets provide a demanding test for our algo-

rithm, they are not ideal; it is not clear how comparable they

are to real cancer cell populations. Biological data sets cannot

be expected to follow specific emission models verbatim. How-

ever, our choices for the simulations were set with themotivation
ell Reports 7, 1740–1752, June 12, 2014 ª2014 The Authors 1743



Figure 3. Benchmarking of cloneHD against

a Simulated Data Set

Inferences of 100 evolutions with two cancer

subclones and a purity of 0.7 demonstrate

strong performance in the reconstruction of sub-

clonal copy-number profiles, genotypes, and fre-

quencies. In the box plots, bars denote minimum

and maximum values, while areas show upper and

lower quartiles. Horizontal black lines denote

median values.

(A) Fidelities of copy-number state and SNV

genotype (bold text in the legend) as a function

of the number of samples (t1, t1-t2, t1-t3) and

data types considered, including the case where

the correct frequencies are given (denoted

fgiven). Using more data types (e.g., cna-baf-mode instead of cna-mode) and using more samples each help achieve a higher performance.

(B) The mean errors of inferred frequencies per subclone, averaged over time points, show an increasingly accurate inference of subclonal trajectories.
of reproducing the complexities observed in real data. Therefore,

we believe that our simulations are valuable in providing an

assessment of the performance of our method. We next applied

cloneHD to two real tumor data sets that have been thoroughly

studied earlier and that can be considered as cases where the

real solution is already known, at least to a first approximation.

Inference from a Normal-Tumor Pair: Subclones in a
Single Breast Cancer
The 188X breast cancer sample PD4120a has been used as a

showcase data set, demonstrating that the cellular composition

and evolutionary history of a tumor can be retraced from whole-

genome sequencing (WGS) to considerable detail (Nik-Zainal

et al., 2012a, 2012b). In this first extensive analysis, as many

pieces of evidence from different data types as possible were

collected to draw a comprehensive picture of its subclonal struc-

ture and the life history most compatible with it. The ambition of

cloneHD is to automate some of the steps of this analysis, while

being routinely applicable to whole-cancer-genome data at

moderate sequencing depth. As compared to Nik-Zainal et al.

(2012b), we note that we are currently not factoring in the

phasing of somatic mutations to individual chromosomes using

germline SNVs in conjunction with a large number of haplotypes

from an external database, such as the 1000 Genomes Project

(1000 Genomes Project Consortium, 2012). The special status

of PD4120a suggests its use as a real data benchmark, as has

been done in a previous attempt to resolve the subclonal struc-

tures of cancer samples (Oesper et al., 2013).

The data used for the inference consisted of (1) the integer

mean read depth in each of the 2,727,971 windows of 1 kb

genome-wide for both PD4120a and itsmatched normal sample,

PD4120b; (2) read counts of both alleles at the 1,116,088 origi-

nally heterozygous loci; and (3) read counts of both alleles at

the 70,690 somatic SNV loci. The matched normal sample was

used to prefilter the data and to derive a read-depth bias field,

reflecting technical rather than biological sources of variation in

the read depth. This modulation was observed with high agree-

ment in the tumor read-depth data and could be included in the

cloneHD analysis (see Figure S1, where we also describe the

heuristic prefiltering steps we used to mask out centromeric

and telomeric regions as well as very short-scale variation).

Coarse-graining the data in a way that neighboring segments
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are in different copy-number states with a probability of 1% or

greater resulted in 580 segments genome-wide. We then per-

formed the inference of subclonal structure incrementally adding

data types (cna-mode, cna-baf-mode, cna-baf-snv-mode, snv-

mode). We here report the findings for two and three subclones

with up to four chromosome copies. Explanations with a single

subclone could all be decisively ruled out.

In cna-mode, cloneHD consistently found two subclones at

fractions of 0.65 and 0.096 with a mass of 107.7. The two sub-

clones are mostly diploid with several single-copy gains and

losses along the genome. Finding this solution, however, de-

pends on penalizing states with zero total copies, for which the

prior expectation is smaller on biological grounds. Without this

penalty, the best solution (0.33, 0.096, and mass 107.7) finds

the bigger subclone at about half the size and visiting states 0,

2, and 4 instead, suggesting a spurious solution.

In cna-baf-mode, cloneHD found two subclones at fractions of

0.69 and 0.11 (mass 102.1). The copy-number profile of the

larger clone (shown in Figure 4) is the same as the one found in

cna-mode, whereas the smaller subclone is shifted up by one

copy and could plausibly be explained as tetraploid with losses

of one and up to two copies in some of its chromosomes. This is

in close agreement with the solution in (Nik-Zainal et al., 2012b)

and further discussed in (Oesper et al., 2013). This solution also

confirms the balanced and unbalanced loss of two copies of

chromosomes 2 and 7 in the minor clone, respectively.

In cna-baf-snv-mode, trying to decompose the population

across all data levels, cloneHD returned the cna-baf solution

as the best explanation with almost identical fractions and

mass. In the course of the inference, another solution was tran-

siently visited with fractions of 0.62 and 0.092 (mass 103.4),

which explained the SNV data slightly better at the expense of

the first two data layers.

Finally, in snv-mode, using the local copy-number information

from the best cna-baf-mode solution, cloneHD found support for

three subclones at fractions 0.47, 0.23, and 0.084, summing to

about the same purity as the cna-baf solution. This fact is not

predetermined by using the copy-number constraint. In Fig-

ure 4E, the goodness of fit of this solution is shown, assigning

each SNV to a genotype according to the cloneHD posterior

probability and comparing the observed SNV allele fraction, cor-

rected for local ploidy, to the one predicted by the model. An



Figure 4. The 188X Breast Cancer PD4120a and its Interpretations

(A and B) The goodness of fit of the best explanation found with cloneHD in cna-baf-mode (subclonal fractions of 0.11 and 0.68 and a mass of 102.3, red line) for

the read-depth data (A, gray dots, corrected for bias field) and the B-allele data (B, frequencies reflected at 0.5).

(C and D) The posterior distribution of the total copy-number states (C) and the B-allele copy number (D) for the cloneHD solution show the larger subclone with

large scale deletions in chromosomes 1p, 4q, 13, 16q, 21q, and 22 aswell as duplication of 1q. The smaller subclone 2 has several chromosomes in three and four

copies and a copy-neutral loss of heterozygosity in chromosomes 7 and 17p.

(E) In snv-mode, there is support for three subclones at fractions 0.47, 0.23, and 0.08. The SNV goodness of fit is shown in terms of genotype-specific histograms

(see Figure 2I).
interpretation of this result is that the larger cna-baf subclone is

split in two smaller sets when considering also SNVs.

To compare our findings with the ThetA result, we fixed the

subclonal fractions found therein (0.619 and 0.101) in cloneHD.

In cna-mode, the optimal mass was learned to be 113.2 (not

penalizing zero-copy states), leading to a good explanation of

the CNA data. The copy-number profile found in this case is in
C

almost perfect agreement with Oesper et al. (2013). However,

for both BAF and SNV data, this candidate is clearly a poor

explanation. At closer inspection, we note that it differs from

the minor-tetraploid solution by shifting the smaller subclone

two copies downward. This shift-by-two operation could, in

principle, leave both the CNA and BAF level unaffected if all

chromosomes were balanced in the minor allele. The decisive
ell Reports 7, 1740–1752, June 12, 2014 ª2014 The Authors 1745



Table 1. Statistical Evidence for Different Subclones in the 188X Breast Cancer PD4120a

Mode f1 f2 M �LðCNAÞ �LðBAFÞ �LðSNVÞ
cna 0.651 0.096 107.7 11,443,900 3,134,300 360,100

cnaa 0.329 0.096 107.7 11,476,400 4,190,100 379,500

cna-baf 0.687 0.109 102.1 11,449,300 3,018,500 351,900

cna-baf-snvb 0.687 0.111 102.0 11,450,300 3,017,700 351,200

cna-baf-snvc 0.617 0.092 103.4 11,463,500 3,041,800 347,400

THetA (cna)a 0.619 0.101 113.4 11,447,000 3,046,900 376,441

Overview of several candidate explanations of PD4120a in terms of two subclones. The first columns show the way in which a particular solution was

found, the subclonal fractions, andmass parameter. The next three columns show the log-likelihood values (rounded to 100 units) for the different data

tracks. Note that the best cna-mode solution fails to explain the BAF data.
aNot penalizing zero-total-copy states.
bThis is the solution shown in Figures 4A–4D.
cThis solution represents a recurring minor solution.
chromosomes are 7 and 17p, which are much better explained

with a copy-number-neutral loss of heterozygosity. It is a com-

mon feature that solutions that were strong competitors at one

level are ruled out completely when trying to explain data at

the next (see Table 1).

This analysis sheds some further light on this fascinating and

highly complex cancer genome and the different explanations

put forward in Nik-Zainal et al. (2012b) and Oesper et al.

(2013). It also clearly demonstrates the added value of using all

available data sets in a comprehensive and integrated inference

framework.

Temporally Correlated Samples: Clonal Dynamics in
Chronic Lymphocytic Leukemia
We next analyzed a chronic lymphocytic leukemia (CLL) whole-

genome-sequence data set. CLL exhibits extensive clinical and

biological heterogeneity, and none of the conventional treatments

are curative (Alsolami et al., 2013). Furthermore, subclonality

adversely affects clinical outcomes for CLL patients (Landau

et al., 2013). Our case study data set consists of samples of a

matched normal and five separate longitudinal tumor samples re-

ported in Schuh et al. (2012) (patient ID CLL003). The time points

correspond to changes in therapeutic regimen: (a) before chlor-

ambucil; (b) before fludarabine, cyclophosphamide, rituximab;

(c) immediatelyafter six cyclesof fludarabine, cyclophosphamide,

rituximab; (d) before ofatumumab; and (e) after ofatumumab.

The patient CLL003was studied by the authors in detail via tar-

geted deep sequencing of the coding variants observed with

WGS to a mean depth of 100,000X in order to reconstruct the

clonal evolution of the tumor. Here, we used only the WGS

data consisting of 4,406 SNVs and genome-wide read-depth

data (in 20 kb windows with 10 kb overlap) to infer the clonal

evolution of CLL003. Figures 5A and 5B show these SNV fre-

quencies and read-depth profiles across time.

We first ran cloneHD on the data in cna-mode and identi-

fied three subclones (and a normal) as shown in Figure 5C.

The inferred temporal evolution closely matches the one ob-

tained from targeted deep sequencing and presented by

Schuh et al. (who identified a fourth subclone that is at a very

small frequency only at time point (a) before disappearing; Schuh

et al., 2012).
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Interestingly, running cloneHDwith snv-mode, using the copy-

number information from the cna-mode analysis, gave a very

closely matching temporal evolution (see Figure 5C). The main

difference to the cna-mode solution is that the small green sub-

clone is here at slightly higher frequencies. Indeed, this snv-

mode solution is even closer to the one reported by Schuh

et al. with the green subclone present in a finite fraction at all

time points. Such consistency across levels need not be the

case, as the cell population can be split in different ways at

the level of somatic CNAs and SNVs as shown in Figure 1. The

importance of this consistency in terms of the respective roles

of CNAs versus SNVs driving these subclones is not presently

clear and suggests a direction for future investigation.

Finally, the result of the inference in cna-snv-mode is consis-

tent with the other two being almost identical to the cna-mode-

solution. Inspection of the copy-number posterior for the green

subclone, which is visible only in time points (a), (c), and (e), sug-

gests that it represents a fitting of noise: these three time points

possibly have a slightly different technical bias so that the bias

field, derived from the matched normal sample, cannot fully cor-

rect for it. In Figure 5D, we show genome-wide copy-number

profiles for the dominant red and blue subclones.

In Figure 5E, we also report the posterior genotype probabili-

ties for each coding mutation predicted to have a functional

effect (Ensembl Variant Effect Predictor was used to select these

mutations; McLaren et al., 2010). We note that using snv-mode

does not force the clone decomposition to be the same at the

CNA and SNV levels, so the discrepancy of the role of the green

subclone could be biological. However, owing to the greater

weight of the CNA data in the combined inference, we suspect

that the SNV data supporting the green subclone are over-

whelmed and that subclone is used instead to fit the bias field

discrepancy. This is further supported by the SNV part of the

log likelihood, which is �5,000 units better when the green sub-

clone is at frequencies given by the snv-mode compared to

those from the cna-snv-mode.

Assessing the Potential of Near-Real-Time Monitoring
of Clonal Dynamics
The CLL003 results presented here demonstrate the power of

cloneHD to quantify the subclonal evolution and the subclone



Figure 5. Clonal Dynamics in Chronic Lymphocytic Leukemia

(A and B) SNV trajectories for patient CLL003 (A) and genome-wide read-depth tracks (every 100th point shown) (B) across five time points together with a

matched normal sample (not shown) form the input data.

(C) cloneHD identified three cancer subclones and a normal (white area) for this cancer. The evolutions inferred from SNV and CNA data are in close agreement.

(D) Genome-wide subclone-specific copy-number states for the major subclones red and blue have different aberration at chromosome 8 and shared ones at

chromosomes 11 and 13.

(E) Subclone-specific SNV and locus copy-number state for variants that were identified as having a possible functional effect using the Ensembl Variant Effect

Predictor.
genotypes from a WGS data set, facilitating the interpretation of

tumor progression under a variable drug regimen. Such sub-

clone trajectories can potentially be used to quantitatively study

the underlying fitness landscape of CLL evolution under drugs

once more similar data sets are analyzed. However, the analysis

presented so far was purely retrospective in nature and thus
C

would not have been of direct clinical utility in providing deci-

sion-making support for the clinician. To have an idea of the

potential clinical utility, we formed partial data sets consisting

of all data up to a given time point tomimic a real-timemonitoring

scenario. Figure 6 shows the results of these inferences running

cloneHD in snv-mode.
ell Reports 7, 1740–1752, June 12, 2014 ª2014 The Authors 1747



Figure 6. Mimicking a Near-Real-Time Monitoring Scenario by Performing Inference on Partial Data

(A) The time-development of subclonal evolution using only partial data recapitulates faithfully what could be inferred using all the data.

(B) Posterior probabilities for candidate driver SNVs are fully fixed for the red subclone after the first observation. For the other two subclones, more observations

are needed: using the time points (a)–(c) is enough to see the emerging blue subclone close to its complete data inference counterpart.

(C) Clustering genome-wide SNV posterior probabilities across all partial inferences quantifies the relationships between the subclones. The red subclone is

identified from the beginning as a separate one, whereas the blue subclone is clustered with the green subclone after two time points. From time point (c) onward,

the blue subclones form their own clade.
Having only the first time point identifies the red subclone

decisively with no further improvement with adding more data.

For the green subclone, some point mutations (e.g., SEMA3E

and ASXL1) are seen already at this early point, but most

mutations have substantial uncertainty associated with them

(Figure 6). Using data up to time point (c), it is apparent that

the red subclone has substantially declined whereas the propor-
1748 Cell Reports 7, 1740–1752, June 12, 2014 ª2014 The Authors
tion of healthy cells in the third sample is larger (white area in

the figure). In addition, there is a large fraction of the blue

subclone present, and at this time point many of its coding

mutations would already be correctly assigned. The last two

time points further consolidate the genotype of the blue subclone

and improve the green subclone, which is the smallest of all

three.



In summary, cloneHDwas applied to a time-resolved genome-

wide data set and recovered an evolutionary history as was in-

ferred using targeted deep sequencing (Schuh et al., 2012). In

this case, close agreement was found between the patterns of

evolution inferred independently using copy-number alterations

or somatic SNVs. However, this will not necessarily be the

case in general. Interestingly, the blue subclone is not seen at

time points (a) and (b) when using only SNV data but is clearly

manifest (albeit at small frequency) once CNA data are included.

This detection in an early time point seems to be driven by chro-

mosome 8 loss and gain events (see Figures 5B and 5D). These

loss/gain events are just about visible to the human eye from the

read-depth track at time point (b). Finally, analyzing partial data

sets to emulate a real-time monitoring scenario, cloneHD could

reveal information of potential clinical relevance.

DISCUSSION

The difficult path from collecting mutational events using DNA-

sequencing to elucidating subclonal cancer progression can

be traversed. In contrast to the problem of identifying driver

mutations, here the numerous passenger mutations are an

asset. They faithfully report the evolution of a cancer genome,

although they can sometimes be compatible with more than a

single history. We have shown here that such degeneracy is

greatly reduced when the tumor is observed at varying stages

of its evolution, when subclonal frequencies are different. We

have also shown the great benefit of performing a simultaneous

analysis using several available data types (i.e., read depths,

B-allele counts, and somatic SNV counts). Our reanalysis of

the breast cancer sample PD4120a demonstrated the value of

such an integrated analysis. Our analysis of a longitudinal data

set of CLL demonstrates that its clonal progression could be

deciphered using the whole-genome sequencing data without

needing extra targeted deep sequencing as done by Schuh

et al. (2012). For this patient, we also performed a mimic of

a real-time monitoring scenario that could reveal clinically

important information. Both of these results—whole-genome

sequencing data suffices and real-time monitoring is infor-

mative—are proofs of concept and should be used as an

encouragement to design prospective studies where patients’

responses to therapies are monitored in real time via WGS.

We developed cloneHD in a way that user-specified con-

straints can be easily included, such that competing explana-

tions can be ruled out using several distinct sources of

information. For instance, external estimates for a lower bound

on the sample purity could be used. In the case that histopatho-

logical image analysis has revealed cell fractions of different

molecular phenotypes, cloneHD can assign somatic SNVs and

copy-number variants to specific subclones according to these

given fractions. Comparing the population fractions derived

from image analysis, or any other phenotyping, to those obtained

from the genetic data alone presents an interesting avenue for

future research.

As a statistical inference program, cloneHD has some impor-

tant limitations. The role of model complexity is central to most

of them. While the real underlying complexity of a system

(here, a tumor cell population) can be very large, noise in the
C

observed data (due to finite sequencing depth) allows one to

reconstruct only some major features of that complexity. One

must find a balance between the need to explain all the structure

visible in the data and the danger of overfitting it with a model

that is too flexible. The BIC model selection criterion that we

use in cloneHD tries to find this compromise and is validated

with extensive simulations, where we know the true system

complexity. For real data sets, however, this criterion should

be regarded as an informed heuristic and should be supple-

mented with considerations of reconstruction quality and stabil-

ity as well as biological consistency. For example, the algorithm

might find a spurious solution with compensatory copy-number

state changes across subclones, which is very unlikely on bio-

logical grounds but might serve to opportunistically maximize

the total log likelihood.

To build intuition on the solution space, we have also included

a systematic scan mode to cloneHD in order to visualize the log-

likelihood landscape. This mode is practical for single samples

with only few global parameters to be scanned over. For multiple

samples and with increasing knowledge about the evolutionary

dynamics of cancers, one could further constrain the subclonal

fractions to follow trajectories that depend on much fewer

parameters.

Another limitation comes with the use of explicit emission

models, such as Poisson and Binomial distributions, to connect

noisy data to the underlying genomic states (see Supplemental

Experimental Procedures). Data for which these models are

not valid approximations should not be included in cloneHD.

The computational efficiency of cloneHD is achieved with a

fuzzy data segmentation scheme: HMMs are allowed to change

their state only at loci where the data itself support a certain min-

imum jump probability. If this threshold is set too high, some true

transitions might be missed, leading to incorrect reconstruc-

tions. If it is set too low, too many segments are introduced,

slowing the algorithm down. We found a jump probability of

1% or greater to be a good compromise. Once all the parame-

ters are learned, however, one can recalculate posterior distribu-

tions with cloneHD where every locus is allowed to be in every

state. This is the highest definition achievable.

Lastly, cloneHD does not explicitly enforce a consistent tree

structure for the subclones along the genome. Especially for

SNVs, such a constraint might be very useful. In the present

setup, this would, however, require integration over all possible

trees, a calculation outside the current scope of cloneHD.

In the future, studies with both temporally and spatially

resolved sequence data of tumor cell populations are likely to

become ubiquitous. Computational methods able to exploit the

information in such correlated samples are clearly needed. Until

single-cell sequencing methods mature or disruptive technolo-

gies for bulk sequencing with very long reads emerge, inferences

as performed here will be necessary. For this period, we hope

that cloneHD will help to generate useful insights into subclonal

cancer evolution.

Beyond cancer progression, subclonality is common to

asexual evolution, potentially giving cloneHD a much broader

scope for application. Many features in the evolution of cancer

are shared with bacterial, viral, or parasitic populations, includ-

ing asexual reproduction as well as clonal expansion and
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competition. Clonal heterogeneity has been observed both in

laboratory populations (e.g., Lang et al., 2013) and wild popula-

tions within the host (e.g., Bryant et al., 2013; Lieberman et al.,

2014). cloneHD can also be useful in deciphering genotypes in

fully clonal isolates with added complexity due to copy-number

variation (e.g., see Figure S2).

We here presented cloneHD, an algorithm for the probabilistic

inference of subclonal copy-number profiles, genotypes, and

population frequencies. cloneHD can be used to perform an inte-

grative analysis of somatic CNAs, B-allele variants, and somatic

SNVs across multiple correlated samples. Using simulations, a

single breast cancer, and time-resolved CLL data we have

demonstrated the ability of cloneHD to quantify and track sub-

clonal progression in cancers.
EXPERIMENTAL PROCEDURES

A full exposé of the mathematical details and the implementation of the algo-

rithm is given in the Supplemental Experimental Procedures, so we focus

here on some key conceptual points only. cloneHD is a probabilistic framework

to resolve the subclonal structure of a cell population fromNGS data. This data

usually comes at three levels: the read-depth data (number of readsmapping to

different loci in the genome) contain information about the (aberrant) copy-

number profiles that are present in the cancer cell population, theB-allele count

data (number of reads reporting a minor allele at an originally heterozygous

locus) contain additional information about thecopy-number states bydifferen-

tiating between balanced and unbalanced copy-number changes, and the

somatic mutation data (number of reads reporting a somatic nucleotide variant

not seen in normal cells) contain further information about the size of subclonal

fractions in the sequenced sample and their somatic mutation genotypes.

The cloneHD setup is capable of performing a joint inference on several

samples of the same tumor, e.g., from longitudinal (Schuh et al., 2012) or multi-

focal (Gerlinger et al., 2012) sequencing studies. It assumes that the same n

subclones are present in all of these Ns samples but at possibly different pop-

ulation fractions fsj (s = 1.Ns, j = 1.n). Having the same set of subclonal copy-

number profiles and genotypes realized at different relative proportions can

greatly help in resolving tumor structure.

Because most haplotype information is lost in the sequencing process,

cloneHD tries to leverage the correlations along the genome that remain in

the read depth and minor allele count data by modeling these with hidden

Markov models, where their emission properties couple the hidden, locus-

and subclone-specific copy-number profiles cij, minor allele genotypes bij,

and somatic SNV genotypes gij to all the observed data (i = 1.L, where L is

the number of observations in a data set). Global parameters that are jointly

learned across all data types are the subclonal fractions fsj and, for CNA

data, the sequencing yield Ms per haploid DNA (which we call mass). These

cellular fractions and masses are sample specific. The global parameters are

determined by maximizing the total log-likelihood of all the observed data. A

given estimate of f and M determines a posterior distribution for the hidden

states c, b, and g for every single observation. This high-resolution information

can then be used to perform further subclone-specific mutation data analysis.

The greatest improvement of cloneHD over existing methods is that it

couples the different data layers and enforces a consistent explanation of all

the data in a hierarchical fashion. Proposed estimates of f and M lead to a

posterior distribution over total copy-number states per subclone along the

genome, e.g., showing strong evidence for a deletion of one particular chro-

mosome copy in subclone 1: ci1 = 1. At originally heterozygous loci in that re-

gion, the minor allele genotypes must be consistent with this fact, e.g., bi1% 1.

In general, these consistency constraints are probabilistic, with the copy-num-

ber profile posterior distribution gi(ci) informing the BAF and SNV genotype

prior distributions at each locus (see Supplemental Experimental Procedures).

Increasing the proposed number of subclones n and the maximum copy

number cmax that their respective copy-number profiles can visit greatly in-

creases the model complexity of cloneHD, with the hidden state space dimen-
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sionality growing exponentially. We use the Bayesian information criterion

(BIC) as a heuristic model selection scheme. The BIC penalty term below

aims to capture model complexity not only by the number of free parameters

but also by the number of states that are available to explain the data.

BIC= 2ðLCNA +LBAF +LSNVÞ � k logðLCNA + LBAF + LSNVÞ

khðcmax + 1Þn +Nsðn+ 1Þ
Additionally, the goodness of fit (the average geometrical distance of data

points to the model prediction) can also be used as a model comparison crite-

rion and is included in the output.

The sizeable model complexity of cloneHD requires the data to be efficiently

organized to avoid wasting computational effort. Previous algorithms have

chosen to segment the read-depth data in some meaningful form on usually

large length scales (Oesper et al., 2013; Van Loo et al., 2010). With the aim

to retain as much of the correlation information as possible, we have imple-

mented a fuzzy data segmentation scheme that is scale-free. This is done

by a stand-alone program, filterHD (described in Supplemental Experimental

Procedures), which is a continuous state-space HMM in the spirit of the

well-known Kalman filter (Kalman, 1960) but adapted for integer observations

and employing a jump-diffusion propagator. filterHD not only is a powerful

probabilistic smoothing algorithm but also produces a posterior jump

probability track, highlighting regions of the data where real jumps in the emis-

sion rate could have occurred. Allowing the HMM in cloneHD to make state

transitions only at sites with nonnegligible posterior jump probability effectively

segments the read-depth data into blocks that are still probabilistically

connected.

The diffusive part of the filterHD dynamical model is used to learn a potential

read-depth bias. This technological bias results in modulations of the read-

depth profile, which are not caused by real discrete copy-number changes

in some parts of the cell population. If sequencing data of a matched normal

sample are available and if the read-depth bias in both normal and tumor

samples is the same, then filterHD can produce a high-quality estimate of

this bias field that can then be included into the cloneHD inference. Since

filterHD is a probabilistic framework, one can assert this assumption quantita-

tively in terms of likelihoods.

Code Availability

The latest version of the cloneHD software, including filterHD, as well

as extensive documentation, can be found at: https://github.com/

andrej-fischer/cloneHD.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and two figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2014.04.055.
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