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Abstract

Identification of bacterial virulence factors is critical for understanding disease pathogene-

sis, drug discovery and vaccine development. In this study we used two approaches to pre-

dict virulence factors of Burkholderia pseudomallei, the Gram-negative bacterium that

causes melioidosis. B. pseudomallei is naturally antibiotic resistant and there are no clini-

cally available melioidosis vaccines. To identify B. pseudomallei protein targets for drug dis-

covery and vaccine development, we chose to search for substrates of the B. pseudomallei

periplasmic disulfide bond forming protein A (DsbA). DsbA introduces disulfide bonds into

extra-cytoplasmic proteins and is essential for virulence in many Gram-negative organism,

including B. pseudomallei. The first approach to identify B. pseudomallei DsbA virulence

factor substrates was a large-scale genomic analysis of 511 unique B. pseudomallei dis-

ease-associated strains. This yielded 4,496 core gene products, of which we hypothesise

263 are DsbA substrates. Manual curation and database screening of the 263 mature pro-

teins yielded 81 associated with disease pathogenesis or virulence. These were screened

for structural homologues to predict potential B-cell epitopes. In the second approach, we

searched the B. pseudomallei genome for homologues of the more than 90 known DsbA

substrates in other bacteria. Using this approach, we identified 15 putative B. pseudomallei

DsbA virulence factor substrates, with two of these previously identified in the genomic

approach, bringing the total number of putative DsbA virulence factor substrates to 94. The

two putative B. pseudomallei virulence factors identified by both methods are homologues

of PenI family β-lactamase and a molecular chaperone. These two proteins could serve as

high priority targets for future B. pseudomallei virulence factor characterization.

Introduction

Burkholderia pseudomallei is a Gram-negative soil dwelling saprophyte, and an opportunistic

pathogen responsible for the severe tropical disease melioidosis [1]. B. pseudomallei infections

are difficult to treat [2–4] and are intrinsically resistant to almost all available antibiotics [5–8].

Predominant resistance factors utilised by B. pseudomallei include a thick, impermeable cell
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wall combined with efficient efflux pumps that interfere with drug activity [9]. Furthermore,

B. pseudomallei infections are difficult to diagnose as melioidosis symptoms vary significantly,

ranging from fever, pneumonia, urinary tract infections, and on rare occasions encephalomy-

elitis [3]. Standard treatment consists of a combination of intravenous antibiotic for two weeks

to stop septicaemia, followed by a second eradication phase that can last for up to six months,

with no guarantee of success [10].

More generally, antibiotic resistance is increasing at an accelerating rate among pathogenic

bacteria [11]. New approaches and treatment strategies are needed including vaccination [12]

novel antimicrobial compounds [13], and anti-virulence strategies [14]. There is currently no

successful, persistent vaccine against B. pseudomallei [15]. However several vaccine candidates

have shown promising results in mice, for example the BatA autotransporter protein expressed

in virus was efficient at preventing infection by inhaled B. pseudomallei [16]. Moreover vac-

cines which use a combination of different antigens have also yielded promising candidates

(thoroughly reviewed in [17]). For example Burtnick et. al. [18] combined capsular polysac-

charides, diphtheria toxin mutant and Type VI secretion system component Hcp1 from B.

pseudomallei to protect mice from inhaled bacteria. Other combinations of capsular polysac-

charides and/or B. pseudomallei antigenic proteins (such as flagellar proteins, Type 3 secretion

system (T3SS) and outer membrane proteins) have also shown encouraging results [19–22].

Using attenuated or inactivated B. pseudomallei strains lacking essential virulence genes to

vaccinate mice has also produced excellent results. B. pseudomallei strains with deletion of a

gene such as purM [20, 23], hcp1, tonB [20, 24], aroC [20, 25] and others (see [17, 20] for a

recent review) have successfully protected mice against melioidosis.

For both these vaccination strategies (combined antigenic components, or attenuated live

strain), identification of new B. pseudomallei virulence factors would increase options for vac-

cination. Identification of virulence factors would also contribute to a better understanding of

B. pseudomallei pathogenesis [26].

Targeting virulence rather than viability is an approach that is hypothesized to have a num-

ber of benefits including an increased range of possible anti-virulence mechanisms compared

to antimicrobial compounds, as well as the possibility of reducing selection pressure [27, 28].

Both vaccine development and novel anti-virulence approaches could reduce selection pres-

sure and potentially reduce resistance development [14, 27, 28].

The formation of correct disulfide bonds is critical for the proper folding and function of

proteins [29]. In bacteria, the introduction of disulfide bonds is mediated by the DiSufide

Bond-forming proteins (DSB). The DSB proteins are of particular interest as an anti-virulence

strategy, because many virulence factors contain disulfide bonds [28, 30–32]. The Disulfide

bond forming protein A (DsbA) is a periplasmic protein found in most Gram-negative bacte-

ria and incorporates a thioredoxin fold with two cysteines which introduce disulfide bonds

into substrate proteins via a redox transfer reaction [33].

Mice infected with B. pseudomallei DsbA knockouts (or of its redox partner DsbB) have an

increased rate of survival compared with mice infected with wild type B. pseudomallei [34, 35].

These findings suggest that many B. pseudomallei virulence factors are substrates of DsbA, as

is also observed in Escherichia coli [36, 37], Klebsiella pneumoniae [38], Salmonella enterica
[39], Francisella tularensis [40] and many more [30, 31, 41]. However, the full extent of B. pseu-
domallei DsbA substrates has not been investigated. Identification of B. pseudomallei DsbA

substrates would help identification of infection mechanisms, and could lead to the discovery

of key virulence factors and potential drug and vaccine targets. Finding potential DsbA sub-

strates is assisted by the observation that: (i) DsbA is located in the periplasm, and thus its sub-

strates are likely to have a secretion signal sequence; and (ii) proteins containing disulfide

bonds may have an even rather than an odd number of cysteines in their sequence. This last
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point is thought to have evolved to limit formation of mis-matched disulfide bonds and there-

fore misfolded proteins [42, 43].

In the present study, we used two approaches to identify potential B. pseudomallei DsbA

substrates for further study as virulence factors. In one approach, we used computational

methods to generate a curated list of 263 putatively extra-cytoplasmic proteins from the core

genome of 511 disease-associated isolates of B. pseudomallei, 81 of which were predicted to be

virulence-associated. In the second approach, 15 candidate DsbA virulence factor substrates

were identified by sequence homology to known DsbA virulence factor substrates in other

bacteria.

Results

Genomic analysis to predict B. pseudomallei DsbA virulence factor

substrates

In this approach, our strategy was to cast a wide net initially, by determining the pangenome

of disease-associated isolates of B. pseudomallei, and then filtering from that the core genome

(i.e. the highly conserved genes). The disease-associated B. pseudomallei core genome should

then be enriched in conserved virulence factors. At the time of this analysis the NCBI database

[44] contained 1577 B. pseudomallei isolates. Metadata notation allowed selection of 512 iso-

lates associated with disease (i.e. isolates from swabs/clinical isolates: accession numbers of

these are given in S1 Data); other genomes were discarded. We note that only 355 of the 512

isolates were tagged ‘pathogen’ in the NCBI database indicating a discrepancy between NCBI

assignment and user-uploaded metadata. Analysis of the pangenome, that is the core, acces-

sory and unique genes of these 512 B. pseudomallei isolates (see Table 1), revealed two identical

strains. Therefore for the remainder of this analysis, only the 511 unique strains were used.

We found that the core genome consisted of 4,496 genes (see S2 Data) or 22.49% of the

total 19,991 pangenome. This analysis largely agrees with a previous pangenomic analysis

which extrapolated a modelled core genome of 4,568±16 genes from a much smaller set of 37

isolate genomes [45]. In that approach, modelling was used to predict the core genome if the

number of isolates was expanded. Our approach gives an exact number because all 4,496 genes

were found in all 511 genomes. Notably, the dithiol oxidase redox enzyme pair DsbA and

DsbB and the disulfide isomerase redox relay enzymes DsbC and DsbD were all identified as

core genes.

We then used the B. pseudomallei core genome for further analysis, because it encodes

highly conserved proteins—a key criteria for selecting vaccine or anti-virulence targets.

From these 4,496 core genes, 726 were predicted to encode proteins with a signal sequence

and which are therefore likely to be exported out of the cytoplasm and into the periplasm

Table 1. Pangenome results of 511 disease-associated B. pseudomallei strains.

Pangenome breakdown Classification Number of genes Percent of pangenome (%)

Core genes (99% < = strains < = 100%) 4,496 22.49

Soft core genes (95% < = strains < 99%) 517 2.59

Shell genes (15% < = strains < 95%) 965 4.83

Cloud genes (0% < = strains < 15%) 14,013 70.10

Total pangenome (0% < = strains < = 100%) 19,991 100

The pangenome is subdivided into the core (found in every strain), soft shell core (found in 95–99% of strains), shell (found in 15–95% of strains), and cloud (found in

0–15% of strains) genes. The total number of genes is shown, along with the percentage of total pangenome.

https://doi.org/10.1371/journal.pone.0241306.t001
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where DsbA is localised. Of these 726 proteins, 263 have an even number of cysteines, indicat-

ing the likelihood that the proteins form intramolecular disulfide bonds (see S3 Data). We pre-

dict that these 263 proteins are substrates of B. pseudomallei DsbA. The workflow for this

analysis is shown in Fig 1.

Distribution of cysteines in the core genome of disease-related B.

pseudomallei
Many bacterial extra-cytoplasmic (periplasmic and extracellular) proteins have a strong prefer-

ence for an even number of cysteines, which is thought to minimise non-native disulfide bond

Fig 1. Bioinformatic workflow. From the 1,577 B. pseudomallei genomes found on NCBI, 511 were unique and associated with disease and these were used for further

analysis. The pangenome of these 511 genomes comprised 19,991 unique genes. 4,496 of these were classified as core genes. Predicted translation of these genes gave 726

predicted extra-cytoplasmic proteins. Of these extra-cytoplasmic proteins, 263 were predicted to contain an even number of cysteines. We predict that these 263 proteins

are substrates of B. pseudomallei DsbA.

https://doi.org/10.1371/journal.pone.0241306.g001
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formation [42]. This point could be of interest as a means to reduce false positive DsbA sub-

strates by filtering out proteins with an odd number of cysteines. We examined the cysteine

distribution of encoded proteins in the B. pseudomallei pangenome to investigate whether the

previously demonstrated enrichment of an even number of cysteines in extra-cytoplasmic pro-

teins in other Gram-negative bacteria [42] was also true for B. pseudomallei.
The distribution of cysteines in B. pseudomallei cytoplasmic and extra-cytoplasmic proteins

was calculated for the pangenome (total of 19,991 genes) and the core genome (4,496 genes)

(refer to Table 1). In cytoplasmic B. pseudomallei proteins, cysteine distribution followed a

Poisson law peaking at zero for the pangenome and at one for the core genome (denoted by

the orange lines in the histograms on Fig 2A and 2B). This distribution changed for extra-

Fig 2. Cysteine distribution in the translated genome of B. pseudomallei. Panel A shows the distribution of cysteines in the pangenome (19,991 proteins). Panel B

represents the same analysis for the core genome, comprising 4,496 translated genes. Predicted number of extra-cytoplasmic proteins for each number of cysteines

are represented as blue bars. Similarly, predicted cytoplasmic proteins are represented as orange lines. Panels C and D represent the normalised frequency of

cysteine-containing extra-cytoplasmic proteins. The blue line in panel D peaks for proteins with 2, 4, 6 and 8 cysteines suggesting a preference for an even number of

cysteines. This trend is not observed as strongly in panel C, where a clear peak can only be seen for two and eight cysteines. The normalised frequency was calculated

by dividing the number of extra-cytoplasmic proteins (havingN number of cysteines) by the total number of proteins withN cysteines (N being a number between

0–20 as per the data points in C and D above).

https://doi.org/10.1371/journal.pone.0241306.g002
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cytoplasmic B. pseudomallei proteins. For the core genome (blue bars Fig 2B), B. pseudomallei
proteins with an even number of cysteines were over-represented compared to a typical Pois-

son distribution. As extra-cytoplasmic proteins represent a small fraction of the total number

of the translated core genome and pangenome (16% and 11.5% of all proteins, respectively),

we also analysed the normalised frequency (Fig 2C and 2D). The core genome normalised cys-

teine distribution reveals a sawtooth pattern with a preference for even number of cysteines

with peaks for two, four, six and eight cysteines (Fig 2D). In contrast, the pangenomic normal-

ised cysteine distribution for extra-cytoplasmic B. pseudomallei proteins does not indicate a

strong preference for even number of cysteines (Fig 2C). Overall, the saw-tooth pattern

observed in Fig 2B and 2D is similar to that described for E. coli exported proteins [42]

although not as pronounced.

Functional assignment of core, extra-cytoplasmic, putative DsbA

substrates

The next step in the genomic analysis was to predict which of the 263 putative DsbA substrates

are associated with virulence. Of the 263 selected proteins, 44 were annotated as hypothetical/

uncharacterised. The remaining 219 proteins include ABC transporter-related proteins, house-

keeping proteins like cytochrome C, proteins required for motility such as flagellar and fim-

brial proteins, enzymes such as collagenase, peptidases and proteases, as well as antibiotic

resistance enzymes, β-lactamases. Many oxidoreductases were also present including DsbA,

DsbD and others such as Gfo/Idh/MocA family, glycerol-3-phosphate dehydrogenase GpsA

and thioredoxin-like TlpA oxidoreductases. Redox enzymes such as DsbB and DsbC are core

genes with signal sequences, and they have catalytic rather than structural disulfides. These

two enzymes are not identified as DsbA substrates in our filter as they have an odd number of

cysteines.

The list of 263 proteins with an even number of cysteines was initially screened against the

Virulence Factor DataBase (VFDB) [46], the Burkholderia Genome Database (BGD) [47] and

against a list of B. pseudomallei virulence genes identified by previous studies [48, 49]. Of the

263 putative DsbA substrates two are closely related to virulence factors from the VFDB (fla-

gellar proteins FlgA and FlhG), six are close homologues to proteins identified previously by

Moule et al. [48] five reported by Holden et. al. [49] and one identified from the BGD, giving a

total of 14 virulence factors identified through cross-analysis (see S1 File for a full list). It was

also noted that two of the 14 identified putative virulence factors, were homologous to the

same collagenase (BPSS0666).

Gene Ontology (GO) classification of the gene and gene-product function of the 263 pro-

teins revealed a variety of functions, totalling 223 GO descriptions (Fig 3) (see S1 File). The

highest frequency are integral components of the membrane (66 proteins), followed by pro-

teins involved in redox processes (25 proteins). Of particular interest due to their putative

involvement in virulence, are proteins associated with: proteolysis (20), heme binding (15),

hydrolase activity (9), carbohydrate metabolism (8), serine-type endopeptidase activity (7), cell

adhesion (6), metallo-endopeptidase activity (6), pilus formation and organisation (6), copper

binding (5), lipid catabolism (4), choline binding (3), triglyceride lipase activity (3), aminopep-

tidase activity (2), porin activity (OmpA family proteins) (2), chitin catabolism (1), N-carba-

moylputrescine amidase activity (1) and toxin activity (Tat pathway signal protein) (1).

By further inspection of the 263 core, putatively extra-cytoplasmic DsbA substrates, and by

using the GO descriptions to aid in predicting protein functions, 73 sequences were identified

which were virulence-associated (Table 2). These include serine-type endopeptidases [50]

associated with adherence, choline binding proteins [51], N-carbamoylputrescine amidase,
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essential for production of putrescine, a component of Gram-negative cell walls of pathogens

and key virulence [52–55], and many proteases and peptidases.

Our GO description analysis identified many more potential virulence associated genes (73

in total) as compared to the 14 found on the VFDB, BGD and through literature [46–49]. Six

of the putative virulence factors were common to both our GO analysis and to previous analy-

ses (See S1 and S2 Files for full lists), to give a total of 81 identified putative virulence factors.

The 73 putative virulence factors sequences identified by our GO analysis, along with the 8

additional sequences found in the literature and databases, are grouped in Table 2 (the six

common sequences found on both lists are displayed with the GO analysis results and under-

lined). Interestingly, one protein is annotated as a DNA transcriptional regulator from the

AraC family (WP_004524330.1) a suspected cytoplasmic protein, although no experimental

subcellular localisation information can be found [47]. As a cytoplasmic protein cannot be a

substrate of the periplasmic DsbA protein, further experimental studies are needed to confirm

the localisation.

Sequence homology prediction of B. pseudomallei DsbA virulence factor

substrates

To complement the genomic analysis described above we used a second approach to identify

DsbA substrates, by screening all B. pseudomallei genomes uploaded on NCBI [56] (taxid

28450) for homologues of known DsbA substrates. We implemented this approach because

some DsbA substrates might be filtered out using the genomic approach described above if the

substrates are not encoded by core genes, or if the gene product has an odd number of

cysteines.

Fig 3. Gene Ontology (GO) descriptions of predicted extra-cytoplasmic proteins with an even number of cysteines. The highest frequency of proteins with an even

number of cysteines are integral components of membranes (66 proteins), followed by proteins involved in redox (oxidation-reduction) processes (25 proteins) and

proteolysis (20 proteins). For ease of representation and clarity, GO descriptors with less than three counts were excluded from this graph. A complete graph, along with

raw values can be found in S1 File.

https://doi.org/10.1371/journal.pone.0241306.g003
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Table 2. Predicted virulence-associated core, extra-cytoplasmic proteins.

Virulence-associated GO description Accession numbers

Aminopeptidase activity ABA50277.1; WP_053292838.1

Bacterial-type flagellum assembly WP_004525898.1

β-lactamase activity KGV04506.1

Carbohydrate metabolic processes ABA52198.1; EDO83218.1; EEH25224.1; WP_004526045.1;

WP_004526830.1; WP_004553625.1; WP_053293009.1

Cell adhesion/lipid metabolic/catabolic

process/chitinase

WP_004193933.1

Cell adhesion/pillus EDU07436.1; WP_004193385.1; WP_038760383.1;

WP_038765499.1; WP_063597677.1

Chitin catabolic process WP_076802983.1

Choline binding and transport ABA51731.1; ABN86005.1; ABN92885.1

Copper ion binding WP_004529973.1; WP_004546221.1

Heme binding WP_004194773.1; WP_004535805.1; WP_004536717.1;

WP_004538457.1; WP_004538458.1; WP_038730764.1;

WP_041189005.1; WP_043304483.1; WP_076903047.1;

WP_139900217.1; WP_151277731.1

Heme binding/copper ion binding WP_029671417.1; WP_122827599.1

Heme binding/proteolysis WP_009981622.1

Heme bindingcopper ion binding WP_080248664.1

Hydrolase activity CFL10512.1; EEC34719.1; WP_004525656.1; WP_024428578.1;

WP_024429096.1; WP_080300428.1

Lipid metabolic/catabolic process WP_009956690.1; WP_080248725.1

Metallopeptidase/metalloendopeptidase

activity

AFR18870.1; WP_004548157.1; WP_011204325.1; WP_038708181.1;

WP_038730428.1; WP_076887541.1

N-carbamoylputrescine amidase activity WP_045597613.1

Penicillin binding/β-lactamase activity EDO89205.1

Pillus and pillus organisation WP_151269450.1

Porin activity WP_004189892.1; WP_011205039.1

Proteolysis/hydrolase activity WP_011204795.1; WP_076852667.1

Serine-type endopeptidase/carboxypeptidase

activity

ABA50268.1; ACQ98979.1; AFR20596.1; WP_004528537.1;

WP_004529035.1; WP_004553586.1; WP_011852052.1;

WP_024428782.1; WP_038778478.1

Toxin activity WP_038707916.1

Triglyceride lipase activity EEH28759.1; WP_038741497.1; WP_038775093.1

Xenobiotic transmembrane transporter

activity

WP_004534049.1

Putative virulence factors identified from

literature and VFDB

Accession numbers

Acid phosphatase activity WP_122651768.1

Endoribonuclease activity WP_004194152.1

Catalytic activity WP_065793661.1

DNA-binding transcription factor activity WP_004524330.1

Methylation AHE31311.1

NAD Binding WP_004527508.1

N/A OMW33686.1

Bacterial-type flagellum assembly WP_004198637.1

Analysis of the 263 putative DsbA substrates revealed 73 proteins associated with virulence, based on GO

descriptions. In addition, 8 proteins were identified as potential virulence factors from literature or from database

screening. Accession numbers from B. pseudomallei are shown, separated by a semicolon.

https://doi.org/10.1371/journal.pone.0241306.t002
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Over 90 DsbA substrates have been reported in the literature. We searched for B. pseudo-
mallei homologues of these DsbA substrates using the following criteria: (i) presence of secre-

tion signal, (ii) at least two cysteines in the mature sequence, (iii) at least 20% identity and (iv)

50% coverage to a known DsbA substrate sequence. After removing duplicates, our analysis

found that B. pseudomallei encodes homologues of 15 DsbA substrates (Table 3). Two of these

15 are DsbA substrates in other Burkholderia species B. cepacia and B. cenocepacia [57–60]: a

metalloproteases, ZmpA and a sulfatase-like hydrolase transferase. In B. cenocepacia, ZmpA is

a wide spectrum metalloprotease, thought to cause tissue damage during infection [61].

Over 50 DsbA substrates in Francisella tularensis were identified by trapping and co-purify-

ing substrates bound to a DsbA variant [43]. Of these 50, we found nine homologues encoded

in B. pseudomallei (see Table 3). These include homologues of the lytic transglycosylase

domain containing protein (implicated in peptidoglycan rearrangement) and homologues of

two pilin proteins involved in the formation of pilus and flagella. Also present is an MoeB

homologue; MoeB is a molybdopterin synthase adenyl transferase (cytoplasmic in E. coli but

likely periplasmic in B. pseudomallei due to the twin-arginine translocation (TAT) signal

sequence). A PenI family β-lactamase homologue is also found in B. pseudomallei; this is a

class A β-lactamase that confers resistance to β-lactams including, in rare cases, ceftazidime

(commonly used to treat melioidosis) [62]. A succinate dehydrogenase flavoprotein subunit

homologue, found in the bacterial inner membrane and part of the electron transport chain, is

also encoded in B. pseudomallei. This protein is cytoplasmically oriented in E. coli, though

again the B. pseudomallei version has a TAT signal sequence suggesting a possible periplasmic

localisation.

Table 3. List of B. pseudomallei proteins homologous to previously reported DsbA substrates.

Accession Number (DsbA

substrate)

Organism Reference B. pseudomallei
homologue

Identity / coverage

(%)

Protein function Cys #

WP_059237834 B. cepacia [57] WP_076835606.1 89 /100 Sulfatase like hydrolase /transferase 3

WP_006481898 B. cenocepacia [58, 59] WP_139900467 87/100 M4 family metallopeptidase 4

gi|89255876 F. tularensis [43] WP_050859308 24/92 lytic transglycosylase 3

gi|89255615 F. tularensis [43] WP_080367462 40/51 Pilin 2

gi|89255615 F. tularensis [43] WP_076953316 27/92 Pilin 2

gi|89256194 F. tularensis [43] WP_041862011 30/83 Molybdopterin synthase adenyl transferase

(MoeB)

13

gi|89256236 F. tularensis [43] WP_064459078 34/53 DNA/RNA endonuclease 2

gi|89256237 F. tularensis [43] WP_050772403 31/90 PenI family β-lactamase 4

gi|89256856 F. tularensis [43] WP_044360358 21/80 hypothetical protein 4

gi|89256859 F. tularensis [43] WP_058035453 39/80 Polyamine ABC transporter substrate

binding protein

3

gi|89257049 F. tularensis [43] WP_009915682 54/99 Succinate dehydrogenase 6

WP_001363619 E. coli [31] WP_102811167 38/88 Molecular chaperone 3

AAC38377 E. coli [31] WP_082252625 44/93 T3SS outer membrane ring protein 4

AAA24962 Heamophilus
Influenza

[31] WP_053293022 47/92 ABC transporter substrate binding protein 4

CAA43967 Yersinia pestis [31] WP_085538626 32/83 Pilus assembly protein PapD 2

The accession number of the known DsbA substrate (in an organism other than B. pseudomallei), the organism and the publication reference are given in the first three

columns. The corresponding B. pseudomallei homologue is given in the fourth column. The identity and coverage (number of residues in the result sequence that

overlap with the search sequence) is given in percent in the column “identity/coverage”. The final two columns provide the protein function and the number of cysteines

in the predicted mature sequence. All proteins in this table are known or predicted to be secreted or periplasmic.

https://doi.org/10.1371/journal.pone.0241306.t003
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A number of DsbA substrates identified in E. coli (reviewed in [31]) have B. pseudomallei
homologues including a molecular chaperone homologous to PapD and EscC, involved in the

formation of the Type III secretion system (T3SS). The T3SS assembly requires DsbA activity

in many Gram-negative bacteria, including E. coli and S. typhimurium [63, 64]. Finally, a B.

pseudomallei protein homologous to the Y. pestis pilus assembly protein Caf1M (a molecular

chaperone involved with assembly of the surface capsule of the bacterium) was also identified.

Of the 15 putative B. pseudomallei DsbA substrates identified using this substrate homology

method, two were also identified in the genomic pipeline method. These are the PenI

(WP_050772403) and a molecular chaperon (WP_102811167).

We then aligned the sequences of the Table 3 B. pseudomallei proteins to identify any possi-

ble sequence conservation around the cysteine residues, but no pattern was identified. This

lack of peptide sequence motif in DsbA substrates has also been observed in E.coli, demon-

strating the difficulty of DsbA substrate prediction [65].

Epitope prediction of virulence-associated proteins

To determine whether the DsbA substrates identified in the two methods above could contrib-

ute to vaccination efforts against B. pseudomallei, we also predicted B-cell epitopes, using a

structure-informed approach. The sequences of the 81 putative, extra-cytoplasmic DsbA sub-

strates (predicted virulence factors, Table 2) along with the 13 unique, homologous DsbA sub-

strates (Table 3) were screened against the Protein Data Bank (PDB) [66], to identify

structurally characterised homologues. Seven of the 94 proteins were found to have at least

80% similarity to a structurally characterised protein. Three of these seven protein structures

were from Pseudomonas species, while the other four were from Burkholderia species. Similar-

ity was used rather than identity to account for mutations of functionally similar residues. The

seven protein structures were then used as models to predict structurally-informed B-cell epi-

topes of length 10–32 residues (Table 4 and Fig 4) using the SEPPA 3.0 server. While SEPPA

3.0 is considered the foremost B-cell epitope predictor, the software also accounts for potential

glycosylation of the peptide [67], a feature that is mostly absent from bacterial proteins. To

ensure that the epitopes identified by SEPPA 3.0 were not the result of erroneous glycosylation

interpretation, the epitopes were cross-validated using ElliPro software that does not rely on

glycosylation patterns [68]. All hits obtained with SEPPA 3.0 were also identified with ElliPro,

with 1–3 residue differences in the starting and ending residues, suggesting that they were not

based on wrongly attributed glycosylation patterns. However, we recommend using the more

Table 4. B-cell epitope prediction.

Gene name Predicted epitopes Homologue PDB

code

Accession

number

β-lactamase Toho-1 RREPELNTALPGDER; TTMRNPNAQARDDVIA 3W4O KGV04506.1

type 1 fimbrial protein SSKAYTIAEGDNTF 5N2B WP_063597677.1

triacylglycerol lipase SSTNNTNQDALA; AYVQQVLAATGASK 1HQD WP_038741497.1

class D β-lactamase VSGDPGQNNGLDR 6NI0 EDO89205.1

triacylglycerol lipase QQVLAVTGAQK; SHTHNTNQDAIA 1HQD WP_038775093.1

S8 family serine

peptidase

SGDEGVYECNNRGYPDGSNYTV; SNETVWNEGLDGNGKLW; YECNNRGYPDGSNYTV;

MADLDASGNTGLTQ; QTNGSGGNYSDDQEG; GYSGYGYKASTGWDY

1GA1/1NLU WP_004553586.1

UPD-glucose

dehydrogenase

DVDQAKIDIlNNGGVPIHEPGlKEVIARNRSA 2Y0E WP_004527508.1

The virulence-associated putative DsbA substrates (Table 2) were screened for�80% similarity to proteins within the PDB to account for substitution of functionally

similar residues. The structures were then screened for epitopes using SEPPA 3.0. Fourteen B-cell epitopes of 10 to 32 residues were predicted.

https://doi.org/10.1371/journal.pone.0241306.t004
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Fig 4. Predicted B-cell epitopes. Graphical representation of B-cell epitopes found in Table 4. Proteins are shown as white surfaces and their

respective PDB ID is given in the bottom left corner of each box. The epitope region is highlighted in red and the corresponding homologous
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stringent list of epitopes identified with SEPPA 3.0 over the much longer list of potential epi-

topes and antigenic determinants identified with ElliPro.

These epitopes provide an interesting list for further evaluation. For example, epitopes

from β-lactamase Toho-1 and class D β-lactamase could provide a useful vaccination approach

for B. pseudomallei because these directly target antibiotic resistance proteins. Similar

approaches have conferred protection against other bacteria in animal models [69–72].

Vaccination targeting adhesion proteins and essential virulence factors such as FimA [73]

and type 1 fimbrial protein [74] is a commonly used approach due to the external localisation

of these proteins and their exposure to host immune systems. Anti-fimbrial antibodies have

been shown to interfere with function and reduce disease [75, 76] and a FimA vaccine pro-

vided protection against Streptococcus parasanguis, Streptococcus mitis, Streptococcus mutans
and Streptococcus salivarius in rats [77–79].

Vaccination against conserved, secreted enzymes such as the triacylglycerol lipase (EstA) and S8

family serine peptidase enzymes may also be a useful strategy. Secreted peptidases are known viru-

lence factors in many pathogenic bacteria [50, 80] and vaccines targeting them have attenuated dis-

ease in animal models [81, 82]. Two triacylglycerol lipases (WP_038741497.1 and

WP_038775093.1) were identified as having a structural homologue in the PDB. These two lipases

are both core genes and share 78% similarity (72% identity, 87% query cover) and their sequences

were both aligned to the same PDB code, resulting in epitope variants of similar sequences.

Finally the UDP-glucose dehydrogenase appears to be a key player in the synthesis of exo-

polysaccharide in the B. cepacia complex [83], and is suspected to contribute to virulence and

cystic fibrosis.

Discussion

In the present study, we analysed genomes from 512 B. pseudomallei isolates specifically associ-

ated with disease to identify core putative DsbA substrates and virulence factors. Pangenomic

analysis of B. pseudomallei has previously been performed utilising 37 isolates from a variety of

isolation sources [45] and concluded the pangenome to be ‘open’, indicating that new isolates

will continually increase the number of total genes, which we found to be the case, based on a

pangenome of 19,991 genes from 512 isolates. Previous studies comparing the B. pseudomallei
genome with the obligate pathogen Burkholderia mallei (responsible for glanders) and the gen-

erally non-pathogenic Burkholderia thailandensis [84–87], identified several loci likely to be

involved in B. pseudomallei virulence. These include the capsular polysaccharide gene cluster

and Type III secretion needle complex [87], which were not considered core genes, demon-

strating the importance of large-scale analysis.

In the present study, we used two orthogonal approaches to identify a total of 278 putative

DsbA substrates, with 94 predicted to be virulence factors (S2 File). Of these, 73 were identified

by the genome analysis approach, 8 more via comparison to previous studies and 15 were

identified by the DsbA substrate homology approach, with two of the putative 94 DsbA viru-

lence factor substrates identified in both genomic and homology analysis. These two are the

experimentally validated bacterial virulence factors and DsbA substrates—a molecular chap-

eron (reported to be an E. coli DsbA substrate [31]), and a PenI family β-lactamase (reported

to be a F. tularensis DsbA substrates) [43].

Delving deeper into the results presents some curious outcomes. For example, the well-charac-

terised E.coliDsbA substrate and virulence factor FlgI [36, 88] was not picked up as a potential B.

sequences found in B. pseudomallei are given in one letter code under each respective structure and separated by semicolon when more than one

sequence pointed to the same epitope.

https://doi.org/10.1371/journal.pone.0241306.g004
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pseudomalleiDsbA substrate by either method, though B. pseudomallei encodes FlgI. The B. pseu-
domallei FlgI sequence has 4 cysteines in the translated gene product but the predicted mature

sequence after cleavage of the signal sequence has just one cysteine. Generally, DsbA does not

interact with proteins having just one cysteine. If B. pseudomallei FlgI is a DsbA substrate (that is

yet to be tested), then the most likely reasons that it was not identified as a substrate by either of

the two methods we used are that (i) the predicted signal peptide is incorrect and/or (ii) the single

cysteine of B. pseudomallei FlgI forms an inter-molecular disulfide bond.

The finding that the two orthogonal approaches identified the same two target proteins suggests

that there is merit in using different theoretical approaches to select high priority targets for further

evaluation (in this case, the PenI family β-lactamase and the molecular chaperon). On the other

hand, the fact that there were so few overlaps in the predicted substrates from the two methods

raises questions about the filters we applied. Specifically, we found that of the 15 potential sub-

strates identified by the substrate homology method, 5 had an odd numbers of cysteines, whereas

the genomic analysis filtered these proteins out of consideration to reduce the number of false neg-

atives. We applied the even cysteine filter because previous reports showed that E. coli exported

proteins have a strong preference for an even number of cysteines [42]. This even number of cyste-

ine preference is present in B. pseudomallei exported proteins (Fig 2) though is not as pronounced

as in E. coli. By restricting our genomic analysis to core, extra-cytoplasmic B. pseudomallei proteins

with an even number of cysteines, some DsbA substrates may therefore have been missed. There is

considerable evidence that many virulence factors such as adhesion and motility proteins, toxins

and enzymes are extra-cytoplasmic proteins in both Gram-positive and Gram-negative bacteria

[31, 32, 89]. Given that extra-cytoplasmic proteins in the translated core genome of B. pseudomallei
have a slight preference for even number of cysteines (Fig 2) and the identification of many viru-

lence-associated proteins within the 263 proteins in the list, the approach taken in this analysis (Fig

1) to identify DsbA substrates was justified. Further, the genomic analysis focused on highly con-

served proteins from the core genome; accessory proteins associated with virulence would not be

identified using this approach. Nevertheless, the genomic analysis identified homologues of known

DsbA substrates in other bacteria, such as the OmpA porin, supporting the use of this approach.

However, attempting to identify epitopes from proteins which are not found in every disease-caus-

ing isolate may present challenges for anti-virulence and vaccination attempts.

In addition, the genomic analysis identified several proteins of unknown function which

could represent novel virulence factors for future studies. Importantly, our theoretical

approach was extended to predict structurally-informed surface epitopes for several core gene

DsbA substrates for potential vaccine or antibody development (Table 4).

In summary, our in silico analysis combined a substrate homology approach and a genomic

analysis approach to identify more than 90 potential B. pseudomallei DsbA virulence factor

substrates, two of which we mark as high priority for experimental validation. Future charac-

terization of these proteins will aid our understanding of B. pseudomallei virulence and could

provide new targets for anti-virulence drug discovery and vaccine development. The

approaches we report here could also be applied to identify potential DsbA virulence factor

substrates in other pathogenic bacteria.

Methods

Data acquisition and filtering of core, extra-cytoplasmic, putative DsbA

substrates

1577 B. pseudomallei genomes were obtained from the genome information table from NCBI

(https://www.ncbi.nlm.nih.gov/genome/genomes/476) (date accessed: 1/2/20). The biosample

accession numbers were batch downloaded using Entrez. A list of assembly accession numbers
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can be found in S1 Data. Metadata was then scraped for disease association using grep with the

following command:

grep -A 1 "disease"

The assemblies were then downloaded using Entrez and annotated using a prokka (version

1.14.5) [90] for loop with the following command:

for file in �.fna; do tag = ${file%.fna}; prokka—prefix "$tag"—locustag "$tag"—genus Burkhol-

deria—species pseudomallei—strain "$tag"—outdir "$tag"_prokka—force—addgenes

"$file"; done

The.gff files were used as input for roary (version 3.11.2) [91] without splitting paralogues

via the following command:

roary -e—mafft -i 90 -v -p 72 -z -s -o output -f �.gff

The roary output file was altered from interleaved fasta to one line per sequence

awk ’{if(NR = = 1) {print $0} else {if($0 ~ /^>/) {print "\n"$0} else {printf $0}}}’ input.

fa > output.fa

The core genome was then used in the remaining analysis and core DNA sequences were

translated into protein sequences using transeq [92] with the following command:

transeq -sequence input.fasta -outseq output.fasta -table 11 -frame 1

The core genome was then filtered based on signal sequence and then the sequence of the

mature exported protein, as predicted utilising SignalP 5.0 [93, 94].

signalp -fasta prot_core_genome_complete.fasta -format short -mature -org gram- -verbose

These sequences were then filtered for genes containing even numbers of cysteines

awk -F \C ’NF % 2’ < input.fasta | awk "/C.�C/" | sed ’/>/{$!N;/\n.�>/!P;D}’ > output.fasta

This list was then annotated via screening sequences against NCBI and Gene Ontology [95]

using the PANNZER2 server [96].

Identification of DsbA substrate homologues in B. pseudomallei
DsbA substrates were also predicted using a substrate homology search. This approach may

identify proteins not encoded in the core genome. The B. pseudomallei genome was screened

for homologues of known DsbA substrates using BLASTP. A starting list of confirmed DsbA

substrates was extracted from the literature [31, 43, 57–61], and their amino acid sequences

used in BLAST searches [97] against the NCBI protein database [56] for homologues in B.

pseudomallei using default search parameters. In some cases two search proteins identified the

same homologue in B. pseudomallei. In these cases only the search protein most similar to the

B. pseudomallei homologue is given in Table 3. The results were filtered to select proteins with

at least 20% sequence identity and a sequence coverage of at least 50%. Protein sequences with

fewer than two cysteines were removed. Exported proteins were selected on the basis of pre-

dicted signal sequence (SignalP 5.0 [93]) or experimental evidence of extra-cytoplasmic locali-

sation for the reported DsbA substrate in another Burkholderia species.

Identification of putative virulence factors. ABRicate version 1.0.1 (https://github.com/

tseemann/abricate) [98] was used, along with the virulence factor database (VFDB) [46] to

identify the presence of putative virulence factors of the putative paired cysteine gene list. 244

genes identified as virulence-related, on the basis of mutagenesis studies [49, 99, 100] were also
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screened against the paired cysteine gene list using blastp version 2.9.0+ [97, 101] and results

were filtered for�90% coverage and�80% similarity/positives to be considered a putative vir-

ulence factor. Additionally, the burkholderia.com virulence database [47] was downloaded

and screened against gene lists using blastp version 2.9.0+ with the same filtering conditions.

Cysteine distribution analysis

Fasta files containing either the 19,991 pan genes or the 4,496 core gene of B. pseudomallei
with their corresponding amino acid sequences and descriptors were utilised to calculate the

distribution of cysteines with a custom Python 3.0 script (available on Github: (https://github.

com/gpetit99/cysteineCount_bPseudomallei/blob/master/CysCountFrequency.py”). Briefly,

lists of the extra-cytoplasmic protein sequences with signal peptides removed were compared

to lists of the protein sequences from the whole genome to create dataframes with either cyto-

plasmic or extra-cytoplasmic proteins. Proteins were grouped based on the presence or

absence of SP, and based on the number of cysteines in the mature protein. To calculate the

normalised frequency of cysteines for extra-cytoplasmic proteins, we divided the number of

extra-cytoplasmic proteins having N cysteines by the total number of proteins having N cyste-

ines (N being an integer from 0 to 73 –No protein has more than 73 cysteines in the B. pseudo-
mallei translated genome). This analysis was run for the core genome and pangenome

independently. Other statistics (e.g. number of proteins in each group) were extracted from

the dataframes.

Epitope prediction

The metadata for each of the 263 proteins in the annotated list was manually inspected to select

for further analysis a total of 81 proteins likely related to virulence. The sequences of these 81

selected proteins were combined with the 13 unique proteins from the homology analysis (to

give 94 unique protein sequences). These were screened against the protein data bank using

BLAST (criteria:�80% positive substitutions/similarity used as a threshold) to find structur-

ally characterised homologues. These structural homologues were then used to predict B-cell

epitopes using SEPPA 3.0 (http://www.badd-cao.net/seppa3/index.html) with a threshold of

0.1 [67]. Similarity was used rather than identity to account for mutations of functionally simi-

lar residues. Predicted B-cell epitopes were accepted if they were 10–32 residues in length, as

described in [102]. The same structural homologues were also tested with the ElliPro server

[68] and the resulting epitope sequences compared with the results from SEPPA 3.0 to ensure

that the results were redundant and method independent.
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