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ABSTRACT
Glioblastoma is associated with poor prognosis with a median survival of one 

year. High doses of ionizing radiation is the only established exogenous risk factor. 
To explore new potential biological risk factors for glioblastoma, we investigated 
alterations in metabolite concentrations in pre-diagnosed serum samples from 
glioblastoma patients diagnosed up to 22 years after sample collection, and 
undiseased controls. The study points out a latent biomarker for future glioblastoma 
consisting of nine metabolites (γ-tocopherol, α-tocopherol, erythritol, erythronic acid, 
myo-inositol, cystine, 2-keto-L-gluconic acid, hypoxanthine and xanthine) involved 
in antioxidant metabolism. We detected significantly higher serum concentrations of 
α-tocopherol (p=0.0018) and γ-tocopherol (p=0.0009) in future glioblastoma cases. 
Compared to their matched controls, the cases showed a significant average fold 
increase of α- and γ-tocopherol levels: 1.2 for α-T (p=0.018) and 1.6 for γ-T (p=0.003). 
These tocopherol levels were associated with a glioblastoma odds ratio of 1.7 (α-T, 
95% CI:1.0-3.0) and 2.1 (γ-T, 95% CI:1.2-3.8). Our exploratory metabolomics study 
detected elevated serum levels of a panel of molecules with antioxidant properties 
as well as oxidative stress generated compounds. Additional studies are necessary to 
confirm the association between the observed serum metabolite pattern and future 
glioblastoma development.

INTRODUCTION

The etiology of malignant brain tumors is unclear. 
Commonly known carcinogenic exposures, such as 
smoking and alcohol consumption, have not been 
identified as risk factors for glioma [1]. Rare exposures 
of moderate to high doses of ionizing radiation have 
been associated with brain tumors and meningioma [2]. 
On the contrary, asthma and allergies are consistently 
associated with a reduced risk of glioma, even if the 
mechanism for this association is poorly understood 
[3-5]. A familial aggregation of glioma is evident and 
genomic variations have been characterized and linked to 
glioma development. Germline genetic mutations, somatic 
mutations, deletions, and amplifications are known risk 
factors for glioma development [6-9]. In most cases, the 

functional mechanisms of how genomic variations initiate 
tumor development are not known. Nevertheless, brain 
tumors containing mutated isocitrate dehydrogenase give 
rise to specific metabolic signatures[10]. Metabolomics, 
the global study of small molecular compounds 
and endogenously produced low molecular weight 
metabolites, can be used to detect and quantify changes 
in the metabolome. The metabolome reflects all cellular 
processes and is a direct outcome of gene expression, 
enzymatic and protein activity. Changes in the metabolome 
may reflect genomic variations or cellular changes as a 
result of exogenous exposures, making metabolomics an 
expanding field in disease biomarker discovery.

We performed an agnostic search, without a prior 
hypothesis in order to generate novel hypothesis regarding 
molecular events resulting in glioblastoma development. 
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In this population-based, nested case-control study, 
we analyzed changes in the metabolic profile of future 
glioblastoma cases and matched controls. We performed 
an unbiased global metabolomics screen of pre-diagnostic 
serum samples from a large set of glioblastoma cases and 
controls collected up to 22 years before glioblastoma 
diagnosis. Our metabolomics screen identifies a latent 
biomarker, indicating an imbalanced redox homeostasis in 
future glioblastoma cases. Especially elevated tocopherol 
levels were evident in cases compared to matched controls. 
This information may be used to generate novel hypothesis 
regarding molecular events that occur upstream of the 
metabolome and results in glioblastoma development.

RESULTS

To discover compounds associated with future 
development of glioblastoma, we profiled metabolites 
in serum samples collected 0.5-22 years before tumor 
diagnosis. The average time between blood collection 
and glioblastoma diagnosis was 12.6 years and the 
average age of the cohort participants was 44.2 years 
(Table 1). In total, 220 serum samples were metabolically 
profiled using an unbiased comprehensive GCxGC-
TOFMS screening approach. From this, 432 small 
molecular compounds were detected; 180 confidently 
identified and annotated with known molecular structures 
by spectral database comparison (Supplementary 
Table S1). We applied multivariate analysis in order 
to extract patterns of metabolites or latent biomarkers, 
associated with future glioma diagnosis. The data 

generated OPLS-EP model had a goodness of fit R2Y 
value of 0.54, and a predictive Q2 value of 0.21 (Figure 
1A). The cross-validated model was highly significant 
for the difference between matched case and control 
sample (p = 2.1*10-7). The model loadings (weights) 
revealed that the cases, compared to the controls, 
had increased levels of γ-tocopherol, α-tocopherol, 
erythritol, myo-inositol, cystine and 2-keto-L-gluconic 
acid (Figure 1B). The model also revealed that the 
cases, compared to the controls, had decreased serum 
levels of xanthine, 1-myristoyl glycerol and several 
unidentified metabolites (Figure 1B). Univariate 
statistical analysis of the identified metabolites for 
the paired case-control samples showed a statistical 
significant increase in γ-tocopherol (p = 0.0009), 
α-tocopherol (p = 0.0018), 2-keto-L-gluconic acid (p 
= 0.007), erythritol (p = 0.022), N-acetyl-L-alanine 
(p = 0.031), xylose (p = 0.039) and erythronic acid 
(p = 0.039) in cases compared to control (Table 2). 
Interestingly, many of the contributing metabolites were 
associated with altered antioxidant metabolism, which 
led us to calculate a separate OPLS-EP model (Figure 
1C) including metabolites linked to these mechanisms 
(i.e. γ-tocopherol, α-tocopherol, erythritol, erythronic 
acid, myo-inositol, cystine, 2-keto-L-gluconic acid, 
hypoxanthine and xanthine). The extracted metabolites 
(i.e. the latent biomarker) in the cross-validated model 
were highly significant in association with glioblastoma 
development (p = 5.2*10-4) and notably more significant 
than the individual metabolites included in the model, 
a finding that suggest a covariation effect (Figure 1D).

Table 1: Characteristics of glioblastoma tumor cases and matched controls

Variable Cases (n=110) Controls (n=110)

Average age at blood collection, years (SD) 44.2 (7.3) 44.2 (7.2)

Average age at cancer diagnosis, years (SD) 55.9 (8.6) n/a

Average time from blood collection to diagnosis, years (SD) 12.6 (5.1) n/a

Date of blood collection, median, calendar years (range) 1990 (1986-1991) 1990 (1986-1991)

Date of birth, median, calendar years (range) 1948 (1923-1955) 1948 (1923-1955)

Male sex, number (%) 82 (74.5%) 82 (74.5%)

Average sample storage time in freezer, years (SD) 24.7 (1.5) 24.7 (1.5)

Blood collection to glioblastoma diagnosis, number/time period

0–5 years 8 n/a

5–10 years 26 n/a

10–15 years 35 n/a

15–20 years 37 n/a

>20 years 4 n/a

SD, standard deviation, n/a, not applicable
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The most prominent metabolite differences were 
high concentration of vitamin E variants α-tocopherol 
and γ-tocopherol in cases. Both α- and γ-tocopherol 
were considered significant when corrected for multiple 
comparisons using the Benjamini-Hochberg procedure 
[11] with an accepted false discovery rate below 0.2. The 
glioblastoma cases had an overall higher quantified peak 
area of both α-tocopherol and γ-tocopherol compared 
to controls (Figure 2A and 2B). In future glioblastoma 
cases, the relative levels of α- and γ-tocopherol showed 
a significant (p < 0.01) average increase of 39% and 
46%, respectively (Figure 2C). Evaluating the tocopherol 

levels between the matched case-control pairs showed an 
average 1.6-fold increase (p = 0.002, Wilcoxon test) of 
γ-tocopherol and 1.2-fold increase (p = 0.015, Wilcoxon 
test) of α-tocopherol, in glioblastoma cases (Figure 2D). 
Subdividing the matched case-control pairs according to the 
time passed between serum sample collection and diagnosis 
showed a non-significant fold change of tocopherols in the 
0-10-year subgroup, whereas the fold changes for both 
tocopherols in the 10-22-year subgroup were significantly 
elevated (Figure 2D). High tocopherol serum levels 
were associated with glioblastoma occurrence with an 
average odds ratio of 1.7 (95% CI: 1.0-3.0, p = 0.059) 

Figure 1: Multivariate statistical analysis of processed GCxGC-TOFMS data by means of OPLS-EP. A. Bar graph of the 
estimated effect (Yhat) on the metabolite profile of detected metabolites, reflecting the difference between future glioblastoma case and 
control over all matched sample pairs (bars in plot). Yhat = 1, corresponds to the target value for the OPLS-EP model. The size of each bar 
correspond to the dissimilarity of each case-control pair. Small values indicate small differences between the case and control. Large values 
indicate large differences, and negative values correspond to a difference in the opposite direction between matched case and control. B. 
Bar graph of the predictive loading (p1) for the metabolite pattern associated with future glioblastoma diagnosis. Metabolites with positive 
loading values in p1 (red) are higher in concentration in future cases, while metabolites with negative loading values in p1 (blue) are lower 
in concentration. Inset bar graphs highlights the models most important variables, with p1 > 0.1 (red) and p1 < -0.1 (blue). ND = non-
determined metabolite. Error bars indicate a 95% confidence interval. C. Similar bar graph as in “A”, showing Yhat for the OPLS-EP model 
containing the metabolite profile of only nine metabolites, latent biomarker, linked to altered antioxidant metabolism. D. Bar graph and 95% 
confidence intervals of the predictive loading (p1) for the latent biomarker, associated with future glioblastoma diagnosis.
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Table 2: Summary of significantly altered metabolites

Primary 
ID

Identification Matcha CAS
number

ΔRIb p-value
(t-test)

p-value
(paired t-test)

mean peak area
change (%)c

620 γ-tocopherol 911 7616-22-0 3 0.0008 0.0009 46

657 α-tocopherol 848 7695-91-2 1.8 0.0041 0.0018 39

329 2-keto-L-gluconic acid 871 29123-55-5 13.3 0.0109 0.0070 10

211 erythritol 936 149-32-6 1.8 0.0506 0.0221 8

125 N-acetyl-L-alanine 723 1115-69-1 1.1 0.1414 0.0314 5

285 xylose 915 58-86-6 8 0.0566 0.0386 9

227 erythronic acid 879 13752-84-6 6.9 0.1039 0.0391 5

aNIST match score value to reference database (scale: 0-999).
bDeviation between measured retention index (RI) and RI in reference database.
cPercent of change in means relative to control, positive value indicate higher in case.

Figure 2: Elevated serum levels of both α- and γ-tocopherol in future glioblastoma cases. A–B. Bar graph of GCxGC-TOFMS peak 
areas for α-tocopherol (A) and γ-tocopherol (B) in all measured sample, plotted in the order of peak area size. The plotted Log2 transformed raw data 
shows elevated levels of both α-tocopherol and γ-tocopherol in future glioblastoma cases. The graphs shows the obtained raw data, peak area of α- and 
γ tocopherol normalized to internal standards, without statistical interpretation. C. Average GCxGC-TOFMS peak area comparing α- and γ-tocopherol 
signal in cases to controls. A significant average increase of 39% for α-tocopherol and 46% for γ-tocopherol were measured in samples from cases. 
Error bars represent standard error of the mean. AU = arbitrary unit. **, p < 0.01. D. Fold change of α- and γ-tocopherol between case-control pairs in 
the whole study group (“All”) or subdivided according to years passed between sample collection and diagnosis (“0-10 years”, “10-22 years”). Error 
bars represent standard error of the mean. E. Odds ratios and 95% confidence intervals, calculated on log2 transformed and dichotomized metabolite 
levels by means of conditional logistic regression. Dichotomization was based on the median level among controls. A significant increase in fold 
change (D) and odds ratio (E) for the tocopherols were observed in future cases compared to controls. *, p < 0.05, **, p < 0.01.
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for α-tocopherol and 2.1 (95% CI: 1.2-3.8, p = 0.011) for 
γ-tocopherol (Figure 2E). Subdividing the glioblastoma 
cases stratified by time between blood collection and tumor 
diagnosis showed an increased odds ratio of 2.4 (95% 
CI: 1.2-4.8, p = 0.017) for α-tocopherol and 2.9 (95% CI: 
1.4-6.2, p = 0.006) for γ-tocopherol, during the period 10-
22 years before diagnosis. For all analyzed case-control 
pairs the calculated odds ratio per unit change in standard 
deviation was 1.49 and 1.56 for α- and γ-tocopherol, 
respectively. This calculation estimates that an increase 
in serum levels of tocopherols by one standard deviation 
increases the odds associated with future glioblastoma 
development with approximately 50%.

DISCUSSION

In this study, we performed a large unbiased screen 
of the serum metabolome to identify small molecular 
compounds associated with future glioblastoma 
development. We found a novel association between 
high serum levels of vitamin E - i.e., α-tocopherol and 
γ-tocopherol - in future glioblastoma cases compared 
to their matched controls samples. In addition to the 
tocopherols, our screen identified elevated levels of 
erythritol, myo-inositol, erythronic acid, 2-keto-L-
gluconic acid, cystine and hypoxantine, as well as reduced 
levels of xanthine in cases. This observation should be 
seen as exploratory and will need further validation in 
other prospective serum biobanks. Nevertheless, our 
screen points out several metabolites involved in the 
antioxidant metabolism and with potential involvement in 
the initiation of glioblastoma.

Our finding that high serum levels of vitamin E 
correlates with future glioblastoma development does 
not completely agree with findings from earlier dietary 
questionnaire studies [12-14]. However, dietary intake 
of vitamin E does not reflect the actual level of various 
tocopherol isoforms in serum and tissue due to post-
adsorptive vitamin selective processes [15]. Vitamin E has 
been hypothesized to have an etiological role in several 
different tumor types. Initial studies indicated that dietary 
supplementation of a moderate dose of vitamin E could 
be associated with a reduced risk of prostate cancer [16]. 
However, large intervention trials with supplementation 
of vitamin E have been halted due to unfavorable results. 
In the SELECT trial, the investigators saw, after seven 
years of follow-up, a 17% increased risk of developing 
high-risk prostate cancer in men with dietary vitamin E 
supplementation [17]. The increased risk appeared three 
years after randomization, indicating a delayed-onset 
mechanism.

A recent metabolomics study investigating 
metabolic markers of adenocarcinoma, a type of non-small 
cell lung cancer, also found significantly elevated levels 
of both α- and γ-tocopherol in tumor tissue compared to 
nonmalignant tissue [18]. The underlying mechanisms 

resulting in high concentrations of circulating α- and 
γ-tocopherol and increased risk of glioblastoma needs 
further evaluation. Asthma and allergies are consistently 
associated with a reduced risk of glioma, indicating 
a role for inflammation in gliomagenesis [3-5]. Low 
levels of IgE have also been observed long before 
diagnosis and associated with glioma risk [19, 20]. 
Interestingly, tocopherols have anti-inflammatory effects 
through inhibition of cyclooxygenases (COX) and pro-
inflammatory signaling such as NF-κB and STAT3/6 [21]. 
The long-chain intermediate metabolite of tocopherol, 
13’-carboxychromanols, has an especially strong anti-
inflammatory effects through direct COX1/2 inhibition 
[22]. The bioactivity among vitamin E forms may be 
entrenched in their distinct catabolism. It is likely that 
the majority of the long-chain carboxychromanols are 
generated through ω-hydroxylation of δ- and γ-tocopherol, 
since α-tocopherol is predominantly protected from 
degradation through αTTP binding.

A plausible mechanism for the observed association 
between high levels of tocopherols and glioma risk is that 
tocopherols suppress inflammation and thereby enhance the 
risk of developing brain tumors. As shown in animal studies, 
tocopherols reduce neuro-inflammatory effects in relation to 
epilepsy [23]. The anti-inflammatory effects of tocopherols, 
especially γ-tocopherol, have also been documented in 
animal studies investigating asthma and allergy [24, 25] 
and in several clinical studies [26]. Administration of 
tocopherols may also accelerate the progression of tumors. 
Interestingly, a recent study showed that supplementing 
the diet with antioxidants N-acetylcysteine or α-tocopherol 
increases tumor progression and reduces survival of RAS-
induced mouse models of lung cancer [27]. In addition, this 
study shows that α-tocopherol supplementation reduces p53 
expression in tumors and increases the proliferation rate of 
cancer cells [27]. Moreover, and further in line with our 
findings, the water soluble α-tocopherol analogue Trolox 
was recently shown to markedly increased the migration 
and invasive properties of human malignant melanoma 
cells [28]. Tocopherol intake may also affect DNA repair 
mechanisms [29].

Tocopherols are essential micronutrients 
involved in various oxidative stress-related processes. 
Because of their hydrophobic nature, tocopherols are 
transported in plasma lipoproteins, and the pathways 
involved in its cellular uptake are correlated to the 
lipoprotein metabolism. Transport in the circulation 
and cellular uptake depends on tocopherol binding 
proteins αTTP and SEC14L2. Cytoplasmic SEC14L2 
is highly expressed in normal brain, breast, prostate, 
and liver tissues. Reduced expression of SEC14L2 
has been reported in human breast cancer, indicating 
that SEC14L2 may serve as a tumor suppressor [30, 
31]. In addition to its tocopherol binding mechanism, 
SEC14L2 binds phosphatidylinositol and is implicated 
in the regulation of the phosphatidylinositol 3-kinase/
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AKT signaling pathway, a pathway frequently disturbed 
in glioblastoma [32, 33]. For these reasons, binding of 
SEC14L2 to tocopherol and other interaction partners 
might be impaired in glioblastoma cases. However, this 
speculation warrants further investigation.

Susceptibility of brain tissues to oxidative damage 
has been studied intensively. Compared to other tissues, 
brain tissue has higher ROS production rates and lower 
ROS removal capacity [34]. ROS-related oxidation of DNA 
is one of the main causes of mutations, which can produce 
DNA damage that result in genomic instability and future 
development of carcinogenesis. In addition to vitamin E, 
our screen points out a latent biomarker including several 
molecules with antioxidant properties as well as oxidative 
stress generated end-products. Erythritol is a simple polyol 
with a chemical structure resembling that of mannitol, a 
well-known hydroxyl radical scavenger. Erythritol has 
excellent hydroxyl radical scavenger properties, but it is 
inert with respect to superoxide radicals [35]. The reaction 
of erythritol with hydroxyl radicals result in the formation 
of erythrose and erythrulose [35]. Erythrose can further 
be oxidized to form erythronic acid. Both erythrose and 
erythronic acid have been identified as products when 
glucose derived N-acetylglucosamine (GlcNAc) is oxidized 
by NaOCl, although only erythronic acid is formed by 
H2O2 oxidation [36]. Elevated levels of erythronic acid 
is a major hallmark of transaldolase deficiency. Elevated 
concentrations of ribitol, D-arabitol, and erythritol have 
also been identified in urine and plasma of transaldolase-
deficient patients [37, 38]. Transaldolase is a key enzyme 
of the nonoxidative pentose phosphate pathway, providing 
ribos-5-phosphate for nucleic acid synthesis and NADPH 
for lipid biosynthesis. The transaldolase pathway also 
maintains glutathione in a reduced state to protect sulfhydyl 
groups and cellular integrity from oxygen radicals. In 
addition to elevated levels of erythronic acid and erythritol, 
our study also identified elevated levels of xylose, which 
is normally metabolized through the pentose phosphate 
pathway.

In future glioblastoma cases, our latent biomarker 
pointed out elevated levels of myo-inositol and cystine 
(Figure 1D). Both myo-inositol and cystine, the oxidized 
form of cysteine, have antioxidant properties and are 
involved in cellular redox homeostasis. Myo-inositol 
is one of the stereoisomers of inositol. Inositol occurs 
ubiquitously in cell membranes in conjugation with 
phospholipids. Inositol derivatives (e.g., variants of 
phosphatidylinositol) can act as pan protein kinase C 
(PKC) activators. A study in primary cultured enterocytes 
show doze-dependent activation of the antioxidant 
enzymes SOD, CAT, GPx and GST in inositol treated 
cells, which may be a result of PKC activation [39]. 
Elevated levels of myo-inositol have been detected in 
extracellular fluids from human brain tumors, compared 
to subcutaneous tissue fluids [40], and correlated to brain 
tumor grade (WHO II-IV) [41].

Reduced levels of xanthine was detected in serum 
from cases compared to matched control. Interestingly, 
the levels of hypoxantine was increased in cases whereas 
uric acid levels were unchanged. The observation indicates 
deregulated activity of the purine metabolism and the 
catalyzing enzyme xanthine oxidoreductase (XOR). XOR 
catalyzes the conversion of hypoxanthine to xanthine and 
xanthine to uric acid with concomitant reduction of either 
NAD+ or O2. XOR is a cytosolic protein with two forms 
- xanthine dehydrogenase and xanthine oxidase - and the 
potential to generate oxygen radical species (H2O2 and 
O2

−) upon conversion [42]. Hypoxanthine oxidation is not 
per se a two-step reaction, as the xanthine intermediate is 
detached from the enzyme during hypoxanthine oxidation. 
Mutation of XOR could potentially shift the binding 
affinity for hypoxanthine towards xanthine, which would 
generate the observed metabolite pattern. Both loss-of-
function, partial loss of activity, and gain-of-function point 
mutations of human XOR have been described [42, 43]. In 
addition, significantly higher xanthine oxidase levels have 
been reported in tumoral brain tissues [44].

Our study investigated pre-diagnosed serum 
samples, collected up to 22 years before glioblastoma 
diagnosis. We observed a time trend association between 
high α- and γ-tocopherol levels and glioblastoma risk 
throughout the investigated period. Unexpectedly, we 
found that the subgroup closest to diagnosis had a reduced 
fold change and odds ratio for the tocopherols, but this 
observation may be related to a delayed-onset mechanism. 
Due to the explorative nature of the study, our findings 
need to be scrutinized by future follow-up studies. Our 
multivariate analysis identified α- and γ-tocopherol as part 
of a significant metabolite pattern (a latent biomarker) 
which gives additional strength to the finding. The analysis 
highlights a correlation structure between mechanistically 
linked metabolites that together constitutes a biomarker 
more significant than any of the individual metabolites 
involved. To confirm a possible delayed onset mechanism 
would require analysis of pre-diagnostic samples from a 
longitudinal study with multiple serum samples collected 
over a long time. Our study, however, found a novel 
association of α- and γ-tocopherol with glioblastoma with 
a long latency time. This finding support recent findings 
in studies of other tumor sites and findings in prevention 
trials that concluded that high vitamin E levels may have 
negative health effects. In our case, the observed latent 
biomarker was detected several years before diagnosis.

MATERIALS AND METHODS

Study subjects and sample acquisition

Serum samples were obtained from the Janus Serum 
Bank a population-based serum biobank integrated into 
the Cancer Registry of Norway. The Janus serum samples 
were collected during the period from 1972-2004, and 
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originate from approximately 318 000 persons in Norway 
who have participated in nationwide health studies, and 
from Red Cross blood donors in and around Oslo. As 
of December 31st 2013, more than 69 000 donors have 
subsequently been diagnosed with cancer [45]. We 
included serum samples collected in 1986-1991 from 
incident cases diagnosed with glioblastoma between 0.5 
and 22 years after sampling (Table 1). The Janus cohort 
was linked to the Cancer Registry of Norway to identify 
the study subjects. The Cancer Registry of Norway was 
founded in 1951 and is considered to capture close to 
100% of new cancer cases yearly, and its completeness 
and quality has been evaluated [46]. The information 
comes from pathology laboratories, clinicians, the 
National Patients Discharge Registry and the Cause of 
Death Registry. All cases were primary glioblastomas 
(WHO grade IV). With the exception of one case of 
non-melanoma skin cancer, none of the cases had prior 
history of cancer. For each case, we randomly selected an 
undiseased control, matching on sex, age, blood collection 
year (+/- three months), sampling site and county. The 
majority of the samples came from people participating 
in health surveys with an average age of 44.2 years. All 
controls were free from cancer at the time of the cases 
diagnosis. The Janus Serum Bank sampling routine and 
long-term stability of serum components have been 
described previously [47]. The sampling routine was 
constant throughout the selected sample collection period. 
Samples were collected between 8 am and 6 pm from non-
fasting donors, and blood was drawn with the donor in a 
supine position. Blood was collected in serum separator 
gel vials and allowed to clot at room temperature prior to 
transport and storage at the biobank at -25°C. The study 
group was homogeneous with respect to ethnicity resulting 
in a predominantly Caucasian cohort. All donors in the 
Janus Serum Bank have given informed broad consent for 
the use of their samples in cancer research. The study was 
approved by the Regional Committees for Medical and 
Health Research Ethics at the University of Oslo, Norway.

Metabolite extraction from serum

The serum samples were divided into analytical 
batches, preserving case-control interrelation, and 
randomized prior to metabolite extraction. Frozen 
50 μl aliquots of serum were thawed on ice at room 
temperature. Metabolite extraction was performed by 
addition of 450 μl methanol:water extraction mix (90:10 
v/v), including internal standards (6.75 ng/μl), followed 
by rigorous agitation at 30 Hz for 2 minutes in a bead 
mill (Retsch, MM 400). The samples were incubated on 
ice for 2 hours and centrifuged at 18 600 × g (Eppendorf, 
5417R) for 10 minutes at 4 °C. After pre-clearing, 200 µl 
supernatant were transferred to GC vials and evaporated 
until dry in a speedvac (miVac, Quattro concentrator) 
and stored at -80 °C. Sample derivatization was carried 

out prior to mass spectrometric analysis. Completely 
dried samples were methoxyaminated by the addition of 
15 μl methoxyamine in pyridine (15 μg/μl), shaked for 
10 minutes at room temperature and heated to 70 °C for 
60 minutes. The reaction was allowed to continue for 
16 hours at room temperature. Trimethylsilylation was 
performed by addition of 15 μl MSTFA + 1% TMCS, and 
incubated for 1 hour at room temperature. Finally, 15 μl 
heptane, including methyl stearate (15 ng/μl), was added 
as an injection standard.

Metabolite analysis by mass spectrometry

We analyzed the serum metabolites in randomized 
pairs within the analytical batches. The case and the 
corresponding control were consequently run in the 
same batch and directly adjacent to each other in the 
analytical run, thereby minimizing variability in platform 
performance across matched case-control pairs [48]. The 
samples were diluted 5-fold in heptane and analyzed 
with a Leco Pegasus 4D time-of-flight mass spectrometer 
(TOFMS) equipped with an Agilent 6890 comprehensive 
two-dimensional gas chromatograph (GCxGC) with quad-
jet liquid nitrogen thermal modulator. Leco ChromaTOF 
software was used for instrument control and raw 
data acquisition. The column set used for the GCxGC 
separation was a primary low-polarity 30 m, 0.25 mm 
i.d. Rtx-5Sil MS column with 0.25 µm 5% diphenyl/95% 
dimethyl polysiloxane stationary phase (Restek, 
Bellefonte PA, USA), and a secondary mid-polar 2 m, 0.15 
i.d. BPX-50 column with 0.15 µm 50% diphenyl/50% 
dimethylpolysiloxane film (SGE, Ringwood, Australia). 
Splitless injection of 1 μl sample was performed with an 
Agilent 7683B automated liquid sampler at an injection 
temperature of 270 °C. The purge time was 60 seconds 
with a rate of 20 ml/min. Helium was used as carrier 
gas with a flow rate of 1 ml/min. The primary GC oven 
temperature was held constant at 60°C for 2 minutes 
and then ramped at 4°C/minute to 300°C, where it was 
held constant for 5 minutes. The secondary GC oven 
maintained the same temperature program with an offset 
of +40°C compared to the primary oven. The modulation 
period was set to 5 seconds with a 1.0 second hot pulse 
and a 1.5 second cooling time between the stages. The 
transfer line temperature between the gas chromatograph 
and mass spectrometer was set to 325°C. Electron impact 
ionization at 70 eV was employed with an ion source 
temperature of 250°C. Mass spectra were collected in 
the mass range of m/z 50 to 600 at 100 Hz and 1900V 
detector voltage. A series of n-alkanes (C8-C40) were used 
as external retention index (RI) standards. As an additional 
quality control measure of analytical performance across 
and within samples batches, we analyzed a pooled serum 
quality control reference sample at the beginning and end 
of each analytical batch, as well as following every 20th 
study sample.
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Metabolite identification and quantification

Acquired raw data was exported to MATLAB 
(Mathworks, Natick, MA) in NetCDF format and 
processed using the hierarchical multivariate curve 
resolution (H-MCR) script, developed in house [49] 
and further adapted for two dimensional GC data. The 
H-MCR procedure generates chromatographic profiles 
for each compound in each sample with a corresponding 
common spectral profile. We used the integrated 
area under the resolved chromatographic profile for 
quantification. The identity of the resolved peaks were 
determined by comparing mass spectra and retention 
indices with data in mass spectral libraries, including the 
Swedish Metabolomics Centre in-house library, the Golm 
metabolome database (http://gmd.mpimp-golm.mpg.de/) 
and the NIST Standard Reference Database, using NIST 
MS search 2.0. Compounds with a “spectral match score” 
above 700 and RI deviation no larger than 20 units from 
the reference value, were selected and manually evaluated 
for identification. For identification with high confidence, 
all major fragment ions in the library hit should be present 
in the resolved spectra with correct spectral intensity 
profile. Both identified peaks and unidentified peaks were 
included in the multivariate analysis.

Statistical modeling and analysis

Multivariate analysis was applied to the data in 
order to extract patterns of metabolites, latent biomarkers, 
associated with future glioblastoma diagnosis. Effect 
projections by means of orthogonal partial least squares 
(OPLS-EP), a multivariate projection approach developed 
for dependent or matched samples, was used to focus on the 
changes in metabolite composition associated by common 
difference between glioblastoma case and control over 
all matched sample pairs [48]. Variables with a variable 
influence on projection >1 [50], were used for modelling. 
The model estimate Yhat (Yhat=1, model target) were used 
to visualize the magnitude of the effect for each matched 
pair, while the model variable weights (loadings, p1) was 
used to highlight the metabolites contributing most to the 
projected effect. The predictive ability of the model (Q2) was 
decided by full (seven-fold) cross validation yielding a value 
between -∞ and 1, where 1 refers to a perfect prediction. The 
model significance was calculated using the cross-validated 
effect score yielding a p-value for the common case-control 
effect on the metabolite profile [51]. The p-value for the 
extracted latent variables were calculated using paired 
two-tailed Student’s t-test for the difference between case 
and control, described by the predictive component of the 
OPLS-EP models. All multivariate statistical analyses were 
performed in the SIMCA 13.0.3 software (Umetrics AB, 
Sweden). Univariate statistical analysis of the identified 
compounds was done on the log2 transformed peak area 
data, as a second step in the process of sequestering 

important findings from the metabolic profiles. Case-control 
pairing prior to analysis enabled the use of paired two-tailed 
Student’s t-test for further verification of the findings in the 
multivariate modeling and to provide significance testing of 
the identified metabolites on an individual basis. Average 
fold change was calculated on the log2 transformed case-
control fold change values. The geometric average was 
back-transformed [2x] to enable visualization on a normal 
fold change scale, where 1 indicates no change. Two pairs 
with a >50-fold increase in cases compared to controls 
were excluded from the average fold change calculations. 
A non-parametric Wilcoxon signed-rank test was used for 
statistical testing of the not normally distributed fold-change 
calculations. We used conditional logistic regression on 
the log-transformed concentration data to assess the effect 
size of differences in metabolite levels between cases and 
controls. Odds ratios (ORs) and 95% confidence intervals 
(CIs) were calculated both for comparing samples with high 
metabolite levels to samples with low metabolite levels, 
where the dichotomization was based on the median level 
among controls, and per standard deviation increase in log-
transformed metabolite levels.

Special reagents

All chemicals were of analytical grade. The 
isotopically labeled internal standards (IS) [1,2,3-13C3]-
myristic acid and [2H6]-salicylic acid were purchased 
from Cambridge Isotope Laboratories (Andover, MA, 
USA) and Icon (Summit, NJ, USA) respectively. The stock 
solutions for IS were prepared in 0.5 μg/μl concentrations 
in methanol prior to metabolite extraction. Silylation grade 
pyridine and N-Methyl-N-trimethylsilyltrifluoroacetamide 
(MSTFA) with 1% trimethylchlorosilane (TMCS) were 
purchased from Pierce Chemical Co (Rockford, IL, USA).

ACKNOWLEDGMENTS

The authors thank Dr. Peter Haglund, Department of 
Chemistry, Umeå University, for technical expertise.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest

FINANCIAL SUPPORT

This work was supported by grants from Acta 
Oncologica foundation through the Royal Swedish 
Academy of Science (B.M.), the Swedish Research 
Council (H.A., B.M.), Swedish Cancer Foundation (H.A., 
B.M.), Northern Sweden Cancer Foundation (H.A., B.M.), 
Umeå University Young investigator reward (B.M.), 
Umeå Hospital Cutting Edge Grant (B.M.) and the Erling-
Persson Family Foundation (H.A.).



Oncotarget37051www.impactjournals.com/oncotarget

REFERENCES

1. Mandelzweig L, Novikov I and Sadetzki S. Smoking and 
risk of glioma: a meta-analysis. Cancer causes & control. 
2009; 20:1927-1938.

2. Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan 
JS, Davis FG, Il’yasova D, Kruchko C, McCarthy BJ, 
Rajaraman P, Schwartzbaum JA, Sadetzki S, Schlehofer B, 
Tihan T, Wiemels JL, Wrensch M, Buffler PA, et al. Brain 
tumor epidemiology: consensus from the Brain Tumor 
Epidemiology Consortium. Cancer. 2008; 113:1953-1968.

3. Schlehofer B, Blettner M, Preston-Martin S, Niehoff D, 
Wahrendorf J, Arslan A, Ahlbom A, Choi WN, Giles GG, 
Howe GR, Little J, Menegoz F and Ryan P. Role of medical 
history in brain tumour development. Results from the 
international adult brain tumour study. International journal 
of cancer. 1999; 82:155-160.

4. Wigertz A, Lonn S, Schwartzbaum J, Hall P, Auvinen 
A, Christensen HC, Johansen C, Klaeboe L, Salminen T, 
Schoemaker MJ, Swerdlow AJ, Tynes T and Feychting M. 
Allergic conditions and brain tumor risk. American journal 
of epidemiology. 2007; 166:941-950.

5. Lachance DH, Yang P, Johnson DR, Decker PA, Kollmeyer 
TM, McCoy LS, Rice T, Xiao Y, Ali-Osman F, Wang F, 
Stoddard SM, Sprau DJ, Kosel ML, Wiencke JK, Wiemels 
JL, Patoka JS, et al. Associations of high-grade glioma with 
glioma risk alleles and histories of allergy and smoking. 
American journal of epidemiology. 2011; 174:574-581.

6. Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson 
M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre 
JY, Hoang-Xuan K, El Hallani S, Idbaih A, Zelenika D, 
Andersson U, Henriksson R, et al. Genome-wide association 
study identifies five susceptibility loci for glioma. Nature 
genetics. 2009; 41:899-904.

7. Brennan CW, Verhaak RG, McKenna A, Campos B, 
Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn 
JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese 
G, Shmulevich I, Barnholtz-Sloan J, et al. The somatic 
genomic landscape of glioblastoma. Cell. 2013; 155:462-477.

8. Melin B and Jenkins R. Genetics in glioma: lessons learned 
from genome-wide association studies. Current opinion in 
neurology. 2013; 26:688-692.

9. Jenkins RB, Xiao Y, Sicotte H, Decker PA, Kollmeyer 
TM, Hansen HM, Kosel ML, Zheng S, Walsh KM, Rice 
T, Bracci P, McCoy LS, Smirnov I, Patoka JS, Hsuang G, 
Wiemels JL, et al. A low-frequency variant at 8q24.21 is 
strongly associated with risk of oligodendroglial tumors 
and astrocytomas with IDH1 or IDH2 mutation. Nature 
genetics. 2012; 44:1122-1125.

10. Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, 
Kinzler KW, He Y, Bigner DD, Vogelstein B and Yan 
H. Profiling the effects of isocitrate dehydrogenase 1 and 
2 mutations on the cellular metabolome. Proceedings of 
the National Academy of Sciences of the United States of 
America. 2011; 108:3270-3275.

11. Benjamini Y and Hochberg Y. Controlling the False 
Discovery Rate - a Practical and Powerful Approach 
to Multiple Testing. J Roy Stat Soc B Met. 1995; 
57:289-300.

12. Qin S, Wang M, Zhang T and Zhang S. Vitamin E intake 
is not associated with glioma risk: evidence from a meta-
analysis. Neuroepidemiology. 2014; 43:253-258.

13. Dubrow R, Darefsky AS, Park Y, Mayne ST, Moore SC, 
Kilfoy B, Cross AJ, Sinha R, Hollenbeck AR, Schatzkin 
A and Ward MH. Dietary components related to N-nitroso 
compound formation: a prospective study of adult glioma. 
Cancer epidemiology, biomarkers & prevention. 2010; 
19:1709-1722.

14. Michaud DS, Holick CN, Batchelor TT, Giovannucci 
E and Hunter DJ. Prospective study of meat intake and 
dietary nitrates, nitrites, and nitrosamines and risk of adult 
glioma. The American journal of clinical nutrition. 2009; 
90:570-577.

15. Parker RS, Sontag TJ, Swanson JE and McCormick 
CC. Discovery, characterization, and significance of the 
cytochrome P450 omega-hydroxylase pathway of vitamin E 
catabolism. Annals of the New York Academy of Sciences. 
2004; 1031:13-21.

16. ATBC-study-group. The effect of vitamin E and beta 
carotene on the incidence of lung cancer and other cancers 
in male smokers. The Alpha-Tocopherol, Beta Carotene 
Cancer Prevention Study Group. The New England journal 
of medicine. 1994; 330:1029-1035.

17. Klein EA, Thompson IM, Jr., Tangen CM, Crowley JJ, 
Lucia MS, Goodman PJ, Minasian LM, Ford LG, Parnes 
HL, Gaziano JM, Karp DD, Lieber MM, Walther PJ, Klotz 
L, Parsons JK, Chin JL, et al. Vitamin E and the risk of 
prostate cancer: the Selenium and Vitamin E Cancer 
Prevention Trial (SELECT). Jama. 2011; 306:1549-1556.

18. Wikoff WR, Grapov D, Fahrmann JF, DeFelice B, Rom 
WN, Pass HI, Kim K, Nguyen U, Taylor SL, Gandara 
DR, Kelly K, Fiehn O and Miyamoto S. Metabolomic 
markers of altered nucleotide metabolism in early stage 
adenocarcinoma. Cancer prevention research. 2015; 
8:410-418.

19. Schlehofer B, Siegmund B, Linseisen J, Schuz J, Rohrmann 
S, Becker S, Michaud D, Melin B, Bas Bueno-de-Mesquita 
H, Peeters PH, Vineis P, Tjonneland A, Olsen A, Overvad 
K, Romieu I, Boeing H, et al. Primary brain tumours and 
specific serum immunoglobulin E: a case-control study 
nested in the European Prospective Investigation into 
Cancer and Nutrition cohort. Allergy. 2011; 66:1434-1441.

20. Schwartzbaum J, Ding B, Johannesen TB, Osnes LT, Karavodin 
L, Ahlbom A, Feychting M and Grimsrud TK. Association 
between prediagnostic IgE levels and risk of glioma. Journal of 
the National Cancer Institute. 2012; 104:1251-1259.

21. Jiang Q. Natural forms of vitamin E: metabolism, 
antioxidant, and anti-inflammatory activities and their role 
in disease prevention and therapy. Free radical biology & 
medicine. 2014; 72:76-90.



Oncotarget37052www.impactjournals.com/oncotarget

22. Jiang Q, Yin X, Lill MA, Danielson ML, Freiser H and 
Huang J. Long-chain carboxychromanols, metabolites 
of vitamin E, are potent inhibitors of cyclooxygenases. 
Proceedings of the National Academy of Sciences of the 
United States of America. 2008; 105:20464-20469.

23. Betti M, Minelli A, Ambrogini P, Ciuffoli S, Viola V, 
Galli F, Canonico B, Lattanzi D, Colombo E, Sestili P and 
Cuppini R. Dietary supplementation with alpha-tocopherol 
reduces neuroinflammation and neuronal degeneration in 
the rat brain after kainic acid-induced status epilepticus. 
Free radical research. 2011; 45:1136-1142.

24. Wagner JG, Harkema JR, Jiang Q, Illek B, Ames BN and 
Peden DB. Gamma-tocopherol attenuates ozone-induced 
exacerbation of allergic rhinosinusitis in rats. Toxicologic 
pathology. 2009; 37:481-491.

25. Jiang Q and Ames BN. Gamma-tocopherol, but not 
alpha-tocopherol, decreases proinflammatory eicosanoids 
and inflammation damage in rats. FASEB journal. 2003; 
17:816-822.

26. Abdala-Valencia H, Berdnikovs S and Cook-Mills JM. 
Vitamin E isoforms as modulators of lung inflammation. 
Nutrients. 2013; 5:4347-4363.

27. Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl 
P and Bergo MO. Antioxidants accelerate lung cancer 
progression in mice. Science translational medicine. 2014; 
6:221ra215.

28. Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK, 
Karlsson C, Dalin MG, Akyurek LM, Lindahl P, Nilsson 
J and Bergo MO. Antioxidants can increase melanoma 
metastasis in mice. Science translational medicine. 2015; 
7:308re308.

29. Slyskova J, Lorenzo Y, Karlsen A, Carlsen MH, 
Novosadova V, Blomhoff R, Vodicka P and Collins 
AR. Both genetic and dietary factors underlie individual 
differences in DNA damage levels and DNA repair 
capacity. DNA repair. 2014; 16:66-73.

30. Wang X, Ni J, Hsu CL, Johnykutty S, Tang P, Ho YS, 
Lee CH and Yeh S. Reduced expression of tocopherol-
associated protein (TAP/Sec14L2) in human breast cancer. 
Cancer investigation. 2009; 27:971-977.

31. Tam KW, Ho CT, Lee WJ, Tu SH, Huang CS, Chen 
CS, Lee CH, Wu CH and Ho YS. Alteration of alpha-
tocopherol-associated protein (TAP) expression in human 
breast epithelial cells during breast cancer development. 
Food chemistry. 2013; 138:1015-1021.

32. Kempna P, Zingg JM, Ricciarelli R, Hierl M, Saxena S and 
Azzi A. Cloning of novel human SEC14p-like proteins: 
ligand binding and functional properties. Free radical 
biology & medicine. 2003; 34:1458-1472.

33. Bleeker FE, Lamba S, Zanon C, Molenaar RJ, Hulsebos TJ, 
Troost D, van Tilborg AA, Vandertop WP, Leenstra S, van 
Noorden CJ and Bardelli A. Mutational profiling of kinases 
in glioblastoma. BMC cancer. 2014; 14:718.

34. Gadoth N and Goebel HH. (2011). Oxidative stress and free 
radical damage in neurology. (New York: Humana Press).

35. den Hartog GJ, Boots AW, Adam-Perrot A, Brouns 
F, Verkooijen IW, Weseler AR, Haenen GR and Bast 
A. Erythritol is a sweet antioxidant. Nutrition. 2010; 
26:449-458.

36. Jahn M, Baynes JW and Spiteller G. The reaction of 
hyaluronic acid and its monomers, glucuronic acid and 
N-acetylglucosamine, with reactive oxygen species. 
Carbohydrate research. 1999; 321:228-234.

37. Verhoeven NM, Huck JH, Roos B, Struys EA, Salomons 
GS, Douwes AC, van der Knaap MS and Jakobs C. 
Transaldolase deficiency: liver cirrhosis associated 
with a new inborn error in the pentose phosphate 
pathway. American journal of human genetics. 2001; 
68:1086-1092.

38. Eyaid W, Al Harbi T, Anazi S, Wamelink MM, Jakobs C, 
Al Salammah M, Al Balwi M, Alfadhel M and Alkuraya 
FS. Transaldolase deficiency: report of 12 new cases and 
further delineation of the phenotype. Journal of inherited 
metabolic disease. 2013; 36:997-1004.

39. Jiang WD, Kuang SY, Liu Y, Jiang J, Hu K, Li SH, 
Tang L, Feng L and Zhou XQ. Effects of myo-inositol 
on proliferation, differentiation, oxidative status and 
antioxidant capacity of carp enterocytes in primary culture. 
Aquacult Nutr. 2013; 19:45-53.

40. Wibom C, Surowiec I, Moren L, Bergstrom P, Johansson 
M, Antti H and Bergenheim AT. Metabolomic patterns in 
glioblastoma and changes during radiotherapy: a clinical 
microdialysis study. Journal of proteome research. 2010; 
9:2909-2919.

41. Moren L, Bergenheim AT, Ghasimi S, Brannstrom T, 
Johansson M and Antti H. Metabolomic Screening of 
Tumor Tissue and Serum in Glioma Patients Reveals 
Diagnostic and Prognostic Information. Metabolites. 2015; 
5:502-520.

42. Ichida K, Amaya Y, Okamoto K and Nishino T. Mutations 
associated with functional disorder of xanthine oxidoreductase 
and hereditary xanthinuria in humans. International journal of 
molecular sciences. 2012; 13:15475-15495.

43. Kudo M, Moteki T, Sasaki T, Konno Y, Ujiie S, Onose 
A, Mizugaki M, Ishikawa M and Hiratsuka M. Functional 
characterization of human xanthine oxidase allelic variants. 
Pharmacogenetics and genomics. 2008; 18:243-251.

44. Kokoglu E, Belce A, Ozyurt E and Tepeler Z. Xanthine 
oxidase levels in human brain tumors. Cancer letters. 1990; 
50:179-181.

45. Langseth H, Gislefoss RE, Martinsen JI, Dillner J and 
Ursin G. Cohort Profile: The Janus Serum Bank Cohort in 
Norway. International journal of epidemiology. 2016. Apr 
10. pii: dyw027. [Epub ahead of print]. doi: 10.1093/ije/
dyw027.

46. Larsen IK, Smastuen M, Johannesen TB, Langmark 
F, Parkin DM, Bray F and Moller B. Data quality at the 



Oncotarget37053www.impactjournals.com/oncotarget

Cancer Registry of Norway: an overview of comparability, 
completeness, validity and timeliness. European journal of 
cancer. 2009; 45:1218-1231.

47. Gislefoss RE, Grimsrud TK and Morkrid L. Long-
term stability of serum components in the Janus Serum 
Bank. Scandinavian journal of clinical and laboratory 
investigation. 2008; 68:402-409.

48. Jonsson P, Wuolikainen A, Thysell E, Chorell E, Stattin 
P, Wikstrom P and Antti H. Constrained randomization 
and multivariate effect projections improve information 
extraction and biomarker pattern discovery in metabolomics 
studies involving dependent samples. Metabolomics. 2015; 
11:1667-1678.

49. Jonsson P, Johansson ES, Wuolikainen A, Lindberg J, 
Schuppe-Koistinen I, Kusano M, Sjostrom M, Trygg J, 
Moritz T and Antti H. Predictive metabolite profiling 
applying hierarchical multivariate curve resolution to GC-MS 
data--a potential tool for multi-parametric diagnosis. Journal 
of proteome research. 2006; 5:1407-1414.

50. Wold S, Johansson E and Cocchi M. (1993). PLS-partial least-
squares projections to latent structures. In: Kubinyi H, ed. 3D 
QSAR in Drug Design, Theory Methods and Applications. 
(Leiden: ESCOM Science Publishers), pp. 523-550.

51. Eriksson L, Trygg J and Wold S. CV-ANOVA for 
significance testing of PLS and OPLS (R) models. J 
Chemometr. 2008; 22:594-600.


