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The 2016 WHO classification of central nervous system tumors has included four
molecular subgroups under medulloblastoma (MB) as sonic hedgehog (SHH), wingless
(WNT), Grade 3, and Group 4. We aimed to develop machine learning models for
predicting MB molecular subgroups based on multi-parameter magnetic resonance
imaging (MRI) radiomics, tumor locations, and clinical factors. A total of 122 MB
patients were enrolled retrospectively. After selecting robust, non-redundant, and
relevant features from 5,529 extracted radiomics features, a random forest model
was constructed based on a training cohort (n = 92) and evaluated on a testing
cohort (n = 30). By combining radiographic features and clinical parameters, two
combined prediction models were also built. The subgroup can be classified using
an 11-feature radiomics model with a high area under the curve (AUC) of 0.8264
for WNT and modest AUCs of 0.6683, 0.6004, and 0.6979 for SHH, Group 3, and
Group 4 in the testing cohort, respectively. Incorporating location and hydrocephalus
into the radiomics model resulted in improved AUCs of 0.8403 and 0.8317 for WNT
and SHH, respectively. After adding gender and age, the AUCs for WNT and SHH were
further improved to 0.9097 and 0.8654, while the accuracies were 70 and 86.67%
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for Group 3 and Group 4, respectively. Prediction performance was excellent for WNT
and SHH, while that for Group 3 and Group 4 needs further improvements. Machine
learning algorithms offer potentials to non-invasively predict the molecular subgroups
of MB.

Keywords: medulloblastoma, radiomics, molecular subgroups, machine learning, prediction

INTRODUCTION

Medulloblastoma (MB) is one of the most common pediatric
brain tumors with high malignancy (1). In 2012, an international
consensus on the molecular subgroups of MB was reached
among pediatric neuro-oncology researchers (2, 3). The four
putative molecular subgroups of MB were named as sonic
hedgehog (SHH), wingless (WNT), Grade, 3, and Group 4, with
the subgroups carrying genetic, transcriptionomic, demographic,
and prognostic differences (2–6). The 2016 WHO classification
of central nervous system tumors has also included the
four molecular subgroups under medulloblastoma (7). The
molecular subgroups now form an important factor for MB risk
stratification and will be the basis for future clinical trials aimed
at developing subgroup-specific treatments (3). However, the
availability of molecular subgrouping of MB has been hampered
by the relatively high cost of and lack of access to molecular
techniques in many health settings (8).

It has been revealed that the four molecular subgroups of
MB have different cellular origins (9, 10). In mice models, the
WNT subgroup of MB arises from dorsal brainstem precursors,
while the SHH subgroup originates from cerebellar granule
neuron precursors at the upper rhombic lip (9). Therefore, tumor
localization patterns may provide some clues for the molecular
subgrouping of MB, and several research teams have reported
promising results (11–13). Nevertheless, much more information
lies in the radiographic patterns of tumor parenchyma which
are not yet explored. A few studies (11, 14) have attempted
to delineate different molecular subgroups of MB in terms
of contrast enhancement, T2-weighted intensity, hemorrhage,
necrosis, etc. However, these imaging features were human-
recognized qualitative characteristics that cannot embrace all the
multi-dimensional and subtle patterns presented by magnetic
resonance imaging (MRI). Recently, machine learning-based
radiomics analysis has been successfully applied to quantify
radiographic features for identifying image biomarkers with the
capability to predict genotypes and the clinical outcomes of
various tumors (15, 16).

Abbreviations: ADC, apparent diffusion coefficient; AUC, area under ROC curve;
CH, cerebellar hemisphere; CNS, central nervous system; CP, cerebellar peduncle;
CPA, cerebellopontine angle cistern; DWI, diffusion-weighted imaging; EI,
Evans’ index; FFPE, formalin-fixed paraffin-embedded; FLAIR, fluid-attenuated
inversion recovery; GLCM, gray-level co-occurrence matrix; GLDM, gray level
dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray level
size zone matrix; ICC, intraclass correlation coefficient; LoG, Laplacian of
Gaussian; MB, medulloblastoma; MRI, magnetic resonance imaging; NGTDM,
neighborhood gray-tone difference matrix; RLH, radiomics, location, and
hydrocephalus; RLHC, radiomics, location, hydrocephalus, and clinical factors;
ROC, receiver operating characteristic; SHH, sonic hedgehog subgroup; T1,
precontrast T1-weighted imaging; T1c, contrast-enhanced T1-weighted imaging;
T2, T2-weighted imaging; VOI, volume of interest; WNT, wingless subgroup.

In the current study, we used a machine learning-based
radiomics approach to develop a predictive model for molecular
subgroups of MB (pediatric and adult) based on multi-parameter
MRI, tumor location and clinical factors in a relatively large
cohort (n = 122).

MATERIALS AND METHODS

Patients and Molecular Subgroup
Assignment
The Human Scientific Ethics Committee of The First Affiliated
Hospital of Zhengzhou University has approved the protocol
of this study (No. 2019-KY-176). A total of 183 patients
received craniotomy for tumor resection and were pathologically
diagnosed as primary MB in the Department of Neurosurgery,
The First Affiliated Hospital of Zhengzhou University from
January 2009 to January 2018. The 183 cases were further
assessed for molecular subgroups and selected by the following
criteria: (1) availability of pre-operative MRI, (2) availability of
multi-parameter MRI, including axial pre-contrast T1-weighted
imaging (T1), axial contrast-enhanced T1-weighted imaging
(T1c), axial T2-weighted imaging (T2), axial fluid-attenuated
inversion recovery (FLAIR) imaging, and apparent diffusion
coefficient (ADC) maps generated from acquired diffusion-
weighted imaging (DWI), and (3) availability of sufficient
image quality without significant artifacts, determined by
neuroradiologists (J. Yan and J. Cheng) and neurosurgeons (Z.
Zhang and X. Liu). The selection procedure is depicted in
Supplementary Figure 1. Clinical parameters (gender and age)
were acquired from the medical record system. For molecular
subgroup assessment, we used the NanoString assay for formalin-
fixed paraffin-embedded tissues that were available in all the
MB cases for identification of molecular subgroups (WNT, SHH,
Group 3, and Group 4) as described by Northcott et al., and we
used the R-script for the assay kindly provided by Dr. Michael
Taylor of Sickkids, Toronto (17, 18).

MRI Acquisition
All MR images of the enrolled patients were acquired
on 3.0 T MR units (Discovery MR750, GE Healthcare,
Milwaukee, WI, United States; Magnetom Trio TIM/Skyra,
Siemens Healthcare, Erlangen, Germany) with 8-, 12-, or 20-
channel head coil. Briefly, the brain MRI protocol included
the following: (a) pre-contrast axial and sagittal T1, (b)
axial T2, (c) axial FLAIR, (d) DWI, and (e) axial, sagittal,
and coronal T1c acquired immediately after an intravenous
administration of a 0.1-mmol/kg dose of a gadolinium-based
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contrast agent (gadolinium-diethylenetriamine pentaacetic acid,
Bayer Healthcare, Leverkusen, Germany, or gadoteric acid
meglumine salt injection, Hengrui Healthcare, Jiangsu, China)
with the same parameters as the matched pre-contrast sequence.
All DWI acquisitions were obtained before injection of the
contrast agent and were used as a monopolar spin-echo echo-
planar sequence, with diffusion sensitizing gradients encoded
in the x, y, and z directions. ADC maps were calculated from
acquired DWI with b = 0 and b = 1,000 s/mm2 images using the
dedicated software (version 4.6, GE Healthcare, Milwaukee, WI,
United States; Syngo, Siemens Healthcare, Erlangen, Germany).
Details of the parameters for all the sequence acquisitions are
available in Supplementary Table 1.

Location and Hydrocephalus Status
Location features were defined as the location of the tumor
geometric center and determined by a neuroradiologist (J. Yan,
with 10 years of experience) according to pre-operative MRI.
A second neurosurgeon (Z. Zhang, with 10 years of experience)
reviewed all the location features. Any disagreement between
the two raters was resolved by discussion and consensus.
In this study, three locations were defined, including the
midline vermian/fourth ventricle, cerebellar hemisphere, and
cerebellar peduncle/cerebellopontine angle cistern (CP/CPA)
(11). Moreover, hydrocephalus was defined as Evans’ index
(EI) > 0.3 based on EI calculated as the ratio of the maximum
width between the frontal horns of the lateral ventricles (frontal
horn width) and the maximum transverse inner diameter of the
skull at the same axial level (19). The EIs for all patients were
determined by J. Yan and Z. Zhang.

Image Preprocessing and Tumor
Delineation
An overview of the radiomics analysis pipeline is shown in
Figure 1. Image pre-processing was performed to normalize
the intensity and the geometry. First, N4ITK algorithm was
applied to correct the bias field distortion. After isotropic
voxel resampling into 1 mm × 1 mm × 1 mm with
linear interpolation, multi-parameter MRI rigid registration
was performed with mutual information similarity metric
using T1c as a template. Histogram matching was used for
intensity normalization. A neuroradiologist with 10 years of
experience (J. Yan), blinded to clinical, pathological, and
molecular data, manually delineated the three-dimensional
volume of interest (VOI) of tumor contours slice by slice
using the ITK-SNAP software1 in the axial plane primary
from FLAIR, T2, and T1c images. The VOI was defined
as the region including the contrast-enhancing area, the
non-enhancing area, and the necrosis area of the tumor.
Specifically, the VOI contours were delineated based on
FLAIR images; meanwhile, T2 and T1c were used to cross-
check the tumor extension and fine-tune the tumor contour.
Considering feature repeatability against intra-rater and inter-
rater delineation variations, the VOI delineation process was
repeated by the same neuroradiologist (J. Yan) and by another

1http://www.itksnap.org

neurosurgeon (Z. Zhang) on 30 randomly selected patients,
generating a test–retest data set for intra-rater repeatability
analysis and a multiple delineation data set for inter-rater
repeatability analysis, respectively. The segmented VOI was
then overlaid with co-registered resampled T1, T1c, T2,
FLAIR, and ADC images.

Radiomics Feature Extraction
An open-source Python tool Pyradiomics was used to extract
all radiomics features. Feature descriptions and mathematical
definitions can be found in (20). From each VOI, high-
throughput features were extracted, including (1) location
features, (2) shape features, (3) intensity features, and (4)
texture features. Fourteen shape features were extracted from
the delineated VOI masks to describe the 3D characteristics of
tumor shape. First-order intensity features were extracted to
describe the intensity distributions of the voxel intensities.
The texture features were extracted using five different
methods, including the gray-level co-occurrence matrix,
gray-level run length matrix, gray-level size zone matrix,
gray-level dependence matrix, and neighborhood gray-tone
difference matrix (NGTDM). The intensity features and the
texture features were extracted not only from the original
images but also from the transform-domain images using
both wavelet transform and Laplacian of Gaussian (LoG)
filter with four sigma levels (2.0, 3.0, 4.0, and 5.0). A total
of 234 intensity features were extracted, where 18 were from
original images, 72 were from LoG images, and 144 were
from wavelet images. A total of 949 texture features were
obtained, including 73 original texture features, 292 LoG texture
features, and 584 wavelet features. In total, 5,929 quantitative
features were extracted from five MRI sequences for each
patient. The radiomics features extracted are summarized in
Supplementary Table 2.

The features included three texture features and eight intensity
features extracted from T1, T1c, FLAIR, or ADC images. All
features were calculated from wavelet-transformed images, where
H and L were high-pass and low-pass filters in wavelet transform,
respectively. pFDR is short for false discovery rate-adjusted
P value.

Feature Selection
The features were standardized with z-score normalization
to zero mean and unit variance. First, features with low
repeatability against intra-rater and inter-rater delineation
variations were excluded from subsequent analysis. Here the
intra-rater and inter-rater repeatability for each feature was
quantified by intraclass correlation coefficient (ICC) calculated
between feature pairs on the intra-rater test–retest data set
and inter-rater multi-delineation data set, respectively. Any
feature with ICC smaller than 0.85 was discarded. To minimize
feature redundancy, correlation coefficients between each pair
of the remaining features were calculated. For feature pair
with correlation coefficients greater than 0.90, the feature with
better univariate predictive power (smaller Mann–Whitney U
test P value) was retained, while the other was removed. Based
on the remaining robust and non-redundant feature subset,
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a random forest-based wrapper feature selection algorithm
Boruta (21) was used to further select the optimal all-
relevant features. Boruta searched for relevant features iteratively
by comparing the importance of original features with the
importance of artificially added random ones and progressively

removing irrelevant features. Within each iteration, a random
forest algorithm was used to measure the feature importance
and evaluate the model. After evaluating all possible feature
combinations, the most important features for an optimal
model were selected.

FIGURE 1 | Overview of the radiomics pipeline in this study. The pipeline consisted of tumor delineation, image preprocessing, radiomics feature extraction, feature
selection, model building, and model evaluation.

TABLE 1 | Characteristics of patients with medulloblastoma in the training cohort and testing cohort.

Characteristic Overall (n = 122) Training cohort (n = 82) Testing cohort (n = 30) P-value

Sex 0.6983

Male 86 (70.5%) 64 (69.6%) 22 (73.3%)

Female 36 (29.5%) 28 (30.4%) 8 (26.7%)

Age (year)* 11.57 ± 10.61 11.60 ± 11.05 11.46 ± 9.12 0.9028

Location 0.6365

1 17 (13.9%) 13 (14.1%) 4 (13.3%)

2 7 (5.8%) 4 (4.4%) 3 (10.0%)

3 98 (80.3%) 75 (81.5%) 23 (76.7%)

Hydrocephalus 0.8482

Absent 51 (41.8%) 38 (41.3%) 13 (43.3%)

Present 71 (58.2%) 54 (58.7%) 17 (56.7%)

Molecular subgroups 0.8037

Wingless 21 (17.2%) 15 (16.3%) 6 (20.0%)

Sonic hedgehog 20 (16.4%) 16 (17.4%) 4 (13.3%)

Group 3 54 (44.3%) 40 (43.5%) 14 (46.7%)

Group 4 27 (22.1%) 21 (22.8%) 6 (20.0%)

Data are numbers of patients, with percentages in parentheses. *Data are means ± SD. 1, cerebellar hemisphere; 2, cerebellar peduncle/cerebellopontine angle cistern;
3, midline vermian/fourth ventricle.
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Machine Learning Classification
Based on the selected feature subset, a radiomics model was
built using random forest algorithm (22) for classifying the
four molecular subgroups. Then, a radiomics, location, and
hydrocephalus (RLH) model was built using random forest
by radiomics features, tumor location, and hydrocephalus
information. For comparison, a clinical model based only
on clinical factors (gender and age) was also built using
random forest algorithm. Furthermore, a combined radiomics,
location, hydrocephalus, and clinical factors (RLHC) model was
built by combining the 11 radiomics features, tumor location,
hydrocephalus information, and clinical factors (gender and age),
using random forest algorithm. The number of trees in a random
forest algorithm was set to 500, where the Gini index was used
as importance measure (22). We also evaluated three univariate
parameters alone for molecular subgroup classification, including
lack of contrast, location, and hemorrhage. Three prediction
models using univariate logistic regression were built using each
single parameter. The R packages utiml and randomForest were
used for model building.

Statistical Analysis
All statistical analyses were done with R software, version 3.6.1.
A two-side P value of less than 0.05 was considered significant.
The study population was randomly divided into a training
cohort and a testing cohort at a ratio of 3:1, where the distribution
of the clinical characteristics was balanced. Differences in gender,
age, and molecular subgroups between the training and the
testing cohorts were assessed by using Wilcoxon test or χ2 test.
Differences in patient characteristics across the four molecular
subgroups were assessed by using Kruskal–Wallis test. All four
classification models (radiomics model, clinical model, RLH
model, RLHC model, and three univariate logistic regression
models) were trained on the training cohort and tested on
the testing cohort. Molecular subgroup-specific classification
performance (one specific class versus all other classes) was
assessed by using receiver operating characteristic (ROC)
analysis in terms of AUC, accuracy, sensitivity, and specificity.
For each subgroup-specific dichotomous classification, the
optimal cutoff was chosen as the maximum value of the
Youden index (sensitivity + specificity − 1). All indices were

calculated for both training and testing cohorts. The AUCs were
statistically compared between different classifiers using DeLong
analysis (23).

RESULTS

Patient Characteristics
According to the selection criteria, a total of 122 patients were
included in the current study. The patients were divided into a
training cohort (n = 92) and a testing cohort (n = 30). Between
the training and the testing cohorts, there were no significant
differences in clinical characteristics [molecular subgroup
(P = 0.8037), tumor location (P = 0.6365), hydrocephalus
(P = 0.8482), gender (P = 0.6983), and age (P = 0.9028)],
as shown in Table 1. Among the four molecular subgroups,
significant differences in sex (P = 0.0004), age (P = 0.0001),
location (P < 0.0001), and hydrocephalus (P = 0.0004) have been
found, as shown in Supplementary Table 3.

Feature Selection
After the intra-rater and inter-rater robustness tests, 2,978 out
of 5,929 features remained. After the redundancy reduction, 486
features were selected for subsequent analysis. The heat maps
of the correlation coefficients of both the 2,978 features and the
selected 486 features are shown in Supplementary Figure 2. After
the Boruta feature selection, 11 most important features for an
optimal model fit were finally selected, including three texture
features and eight intensity features, as shown in Table 2. The
result of the Boruta feature selection is shown in Supplementary
Figure 3, where the boxplots of importance of all features fed
to Boruta are shown. All the selected features were extracted
from wavelet-transformed images. The univariate association of
each selected feature with the molecular subgroup was significant
(false discovery rate-adjusted P < 0.001).

Classification Performance
The subgroup-specific ROC curves for both training and testing
cohorts of the radiomics model and the RLHC model are shown
in Figure 2. The ROC curves of the clinical model and the RLH
model are shown in Supplementary Figure 4. The AUCs of the

TABLE 2 | Eleven selected radiomics features for predicting the molecular subgroups of medulloblastoma patients.

No. Selected features Type Sequence Transform pFDR

f1 Median Intensity Fluid-attenuated inversion recovery (FLAIR) Wavelet. HHH <0.001

f2 Gray-level co-occurrence matrix (GLCM) cluster shade Texture FLAIR Wavelet. HHL <0.001

f3 Mean Intensity FLAIR Wavelet. HLL <0.001

f4 Root mean squared Intensity FLAIR Wavelet. LHL <0.001

f5 Gray-level size zone matrix small area low gray level emphasis Texture T1 Wavelet. HHH <0.001

f6 Median Intensity T1c Wavelet. LHL <0.001

f7 Skewness Intensity T1c Wavelet. HLL <0.001

f8 Maximum Intensity Apparent diffusion coefficient Wavelet. LLH <0.001

f9 GLCM inverse variance Texture T1 Wavelet. HLH <0.001

f10 Skewness Intensity FLAIR Wavelet. LHH <0.001

f11 Skewness Intensity FLAIR Wavelet. LHL <0.001
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FIGURE 2 | Receiver operating characteristic (ROC) curves of the radiomics model and the radiomics, location, hydrocephalus, and clinical factors (RLHC) model.
(A,B) ROC curves of the radiomics model on the training cohort and testing cohort, respectively. (C,D) ROC curves of the RLHC model on the training cohort and
testing cohort, respectively.

11-feature radiomics model were 0.8264 for WNT, 0.6683 for
SHH, 0.6004 for Group 3, and 0.6979 for Group 4 in the testing
cohort. When combining the 11 imaging features with tumor
location and hydrocephalus information, the AUCs of the RLH
model were 0.8403 for WNT, 0.8317 for SHH, 0.6451 for Group
3, and 0.6111 for Group 4 in the testing cohort. In the training
cohort, significant differences of AUCs between the radiomics
model and the RHL model were found for both WNT and SHH
subgroups (DeLong P < 0.01). However, in the testing cohort, no
significant AUC difference between the radiomics model and the
RLH model was found for any subgroup.

The AUCs of the clinical model in the testing cohort were
0.8681 for WNT, 0.7163 for SHH, 0.5469 for Group 3, and
0.5035 for Group 4. After incorporating the clinical information
into the RLH model, the AUCs of the RLHC model in the
testing cohort further improved to 0.9097 for WNT, 0.8654
for SHH, 0.6652 for Group 3, and 0.6736 for Group 4. In

addition, among the three univariate models, the location-
based model achieved AUCs of 0.5352 for WNT, 0.8410 for
SHH, 0.6610 for Group 3, and 0.5311 for Group 4. The
contrast- and hemorrhage-based models failed in subgroup
prediction (AUCs: 0.5000 to 0.5127). The subgroup-specific ROC
curves of the location model are shown in Supplementary
Figure 5. In the training cohort, significant differences of
AUCs between the radiomics and the RLHC models were
found for both WNT and SHH subgroups (DeLong P < 0.01).
In the testing cohort, a significant AUC difference between
the RLHC model and the radiomics model was found only
for the SHH subgroup (DeLong P = 0.04). The classification
performance of the radiomics model and that of the RLHC
model in both training and testing cohorts are summarized
in Tables 3, 4, respectively. The performance of the clinical
model and that of the RLH model are shown in Supplementary
Tables 4, 5, respectively.
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TABLE 3 | Summary of the subgroup-specific classification performance of the radiomics model.

Molecular subgroups Cohorts Area under the curve ACC (%) SEN (%) SPE (%)

Wingless Training 0.7576 (0.6113–0.9039) 79.35 (52.15–90.22) 66.67 (46.67–100.00) 81.82 (44.16–97.40)

Testing 0.8264 (0.5597–1) 86.67 (76.67–100.00) 50.00 (50.00–100.00) 95.83 (75.00–100.00)

Sonic hedgehog Training 0.8014 (0.6598–0.943) 91.30 (65.22–95.65) 62.50 (43.75–93.75) 97.37 (59.21–100.00)

Testing 0.6683 (0.361–0.9755) 83.33 (33.33–93.33) 75.00 (50.00–100.00) 80.77 (23.08–100.00)

Group 3 Training 0.8995 (0.8325–0.9665) 83.70 (78.26–91.30) 82.50 (62.50–95.06) 84.62 (69.23–100.00)

Testing 0.6004 (0.3887–0.8122) 60.00 (56.67–80.00) 78.57 (72.86–100.00) 43.75 (18.75–93.75)

Group 4 Training 0.9188 (0.8368–1) 93.48 (79.35–97.83) 76.19 (66.67–100.00) 98.59 (77.46–100.00)

Testing 0.6979 (0.4042–0.9916) 76.67 (60.00–90.00) 83.33 (50.00–100.00) 75.00 (54.17–95.83)

ACC, SEN, and SPE are short for accuracy, sensitivity, and specificity, respectively. The 95% confidence interval for each index is shown.

TABLE 4 | Summary of the subgroup-specific classification performance of the RLHC model.

Molecular subgroups Cohorts Area under the curve ACC (%) SEN (%) SPE (%)

Wingless Training 0.8277 (0.7133–0.9421) 85.87 (53.26–93.48) 66.67 (53.33–100.00) 89.61 (44.16–97.40)

Testing 0.9097 (0.7987–1.0000) 80.00 (70.00–96.67) 83.33 (83.33–100.00) 79.17 (62.50–100.00)

Sonic hedgehog Training 0.8997 (0.8236–0.9758) 90.22 (65.22–95.65) 75.00 (68.75–100.00) 93.42 (57.89–98.68)

Testing 0.8654 (0.6609–1) 86.67 (56.67–100.00) 75.00 (75.00–100.00) 88.46 (50.00–100.00)

Group 3 Training 0.8803 (0.8059–0.9547) 81.52 (76.09–90.22) 87.50 (65.00–97.50) 76.92 (67.31–98.08)

Testing 0.6652 (0.4667–0.8636) 70.00 (60.00–83.33) 100.00 (35.71–100.00) 50.00 (25.00–100.00)

Group 4 Training 0.9202 (0.8372–1.00) 92.39 (82.61–96.74) 76.19 (71.43–100.00) 97.18 (80.28–100.00)

Testing 0.6736 (0.3714–0.9759) 86.67 (50.00–93.33) 33.33 (16.67–100.00) 100.00 (41.67–100.00)

RLHC model means the model combining the 11 selected radiomics features, the tumor location, the hydrocephalus information, and the clinical factors. ACC, SEN, and
SPE are short for accuracy, sensitivity and specificity, respectively. The 95% confidence interval for each index is shown.

To further illustrate the relevance of the selected 11 radiomics
features with the four molecular subgroups, typical MR images
and corresponding feature maps are presented in Figure 3 for a
WNT patient, a SHH patient, a Group 3 patient, and a Group
4 patient, respectively. To describe the univariate contribution
of each parameter used (the selected 11 radiomics features,
tumor location, hydrocephalus information, age, and gender)
to subgroup classification, a heat map of the subgroup-specific
parameter importance in classification is shown in Figure 4.
The meanings of the 11 radiomics features are detailed in
Supplementary Table 6.

The importance values are calculated as the Gini index in
building the RLHC model, indicating the univariate contribution
to the classification. A larger value means more importance
in classifying a specific subgroup. For example, the feature f 6
was the most important in Group 4 classification, while tumor
location contributed most in SHH classification.

DISCUSSION

In this study, data from clinical factors (age and gender) and
radiographic information (tumor location, hydrocephalus, and
radiomic features from tumor parenchyma) were utilized to
develop predictive models for the molecular subgroups of MB.
Compared to other reports focusing on the relationship of MRI
features and the molecular subgroups of MB (8, 11–14, 24),
the current study has several strengths. First, this study used
a machine learning method to analyze nearly all the suitable

information extracted from routine pre-operative examinations
for MB patients. Third, T1, T1c, T2, FLAIR, and ADC MR
sequences were used to provide radiomic signatures, which were
also the most integrated MR sequences to date.

The consensus of the four molecular subgroups is now the
basis for MB patient stratification and design of many clinical
trials (25). Nonetheless, the assignment of molecular subgroups
of MB in routine clinical situation is still a challenge for many
institutions with limited resources (8, 17). The NanoString assay
demonstrated by Northcott et al. is an accurate, reproducible,
and rapid method for the molecular subgrouping of MB (17),
but this method is only recently available for research use
in a few medical centers in China, India, and Brazil (26–
28). Therefore, it is of great clinical and social significance to
be able to predict the molecular subgroups of MB with the
information provided in routine examinations conducted in daily
medical practice. Another merit of the non-invasive assignment
of molecular subgroup before surgical intervention is its guidance
for neurosurgical strategies. EM Thompson et al. revealed that no
significant survival benefit existed for greater extent of resection
for patients with WNT, SHH, and Group 3 tumors and suggested
that the surgical removal of small residual of MB tumors should
not be pursued if there is clinical risk of neurological sequelae,
especially in these three molecular subgroups (6).

It is conceivable that the optimal prediction model for
the molecular subgroups of MB in clinical situation should
include data from pre-operative routine examinations as much as
possible. There are two aspects of data suitable for developing the
prediction model, namely, clinical and radiographic parameters.
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FIGURE 3 | MR images and corresponding feature maps of the selected 11 features for a wingless patient, a sonic hedgehog patient, a group 3 patient, and a
group 4 patient. The delineated tumor contour was overlapped on the MR images. The radiomics features f1–f11 are defined in Table 2. The feature maps visualized
the intratumoral variations of the image patterns, revealing the association of the radiomics features with the molecular subgroups.

Clinical parameters (age and gender) have been demonstrated
to be associated with the molecular subgroups of MB (2, 4,
5). The bulk of information lies in the radiographic features

presented in MRI, and recent progress in radiomic algorithms
has enabled researchers to extract high-dimensional radiographic
patterns indiscernible to the human eye and analyze them
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FIGURE 4 | Heat map of the subgroup-specific importance of all parameters used in subgroup classification.

quantitatively instead of qualitatively (15, 16, 29). Radiomics has
been extensively investigated in several major cancers, such as
lung cancer, breast cancer, hepatocellular carcinoma, and gliomas
(16, 30). To date, a limited number of studies have explored the
relationship between MRI features and the molecular subgroups
of MB (8, 11–14, 24), most of which characterized the qualitative
imaging features, such as location, hydrocephalus, enhancement
patterns, T2-weighted characteristics, hemorrhage, necrosis, and
calcification. Prior studies have shown that location is a key
feature predictive of molecular subgroups. SHH tumors occur
most frequently in the cerebellar hemisphere, while Group 3
and Group 4 tumors often arise in the midline vermian/fourth
ventricle, and most WNT tumors involve both the midline and
the CP/CPA regions (11–14, 24, 31). Moreover, the enhancement
patterns differ across MB subgroups. For instance, WNT tumors
lie at one end of the spectrum, with homogeneous enhancement
involving almost the entire tumor, while Group 4 tumors lie at
the other end, with a large proportion of non-enhancing or very
faintly enhancing tumor (11, 13, 14). In addition, Dasgupta et al.
have reported that hydrocephalus may have an important role in
discriminating between subgroups (14).

Recently, M Iv et al. extracted T2 and T1c radiomic features
from pediatric MB to develop a predictive model for molecular
subgrouping (8). Their models reached acceptable performance
for predicting SHH and Group 4 subgroups with AUCs of

0.70–0.73 and 0.76–0.80, respectively, while the AUCs for
predicting WNT and Group 3 reduced to 0.45–0.72 and 0.39–
0.57, respectively. The reasons for the latter may be related to the
limited MR sequences, the relatively small sample size, the lack of
information of tumor location, and clinical parameters. Previous
imaging–genomics studies in patients with gliomas have shown
that extracting radiomics features from multiple MR sequences
significantly benefited the prediction performance (32–34). In
this study, we extracted radiomics features from five conventional
MRI sequences (T1, T1c, T2, FLAIR, and ADC) and finally
constructed an 11-feature-based model to predict the molecular
subgroups of MB. The visualized feature maps of four patients
in Figure 3 give an illustrative example of how the selected 11
radiomics features were associated with the subgroups.

Furthermore, since tumor location and hydrocephalus status
were revealed to be significantly related to the molecular
subgroups of MB (11–14, 24, 31), these two aspects were
evaluated and added to the predictive model. The resulting
RLH model achieved improved AUCs of 0.8403 and 0.8317
for predicting WNT and SHH, respectively, as shown in
Supplementary Table 5. The heat map of parameter importance
in Figure 4 shows the location which contributed the most in
predicting the SHH subgroup. Moreover, by combining the 11
radiomics features, location, hydrocephalus, gender, and age, the
resulting RLHC model predicted WNT and SHH with further
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improved AUCs of 0.9097 and 0.8654, respectively, while the
overall accuracy for predicting Group 3 and Group 4 was
improved to 70 and 86.67%, respectively, as shown in Table 4.
Our predictive model outperformed current qualitative criteria in
predicting a WNT medulloblastoma but had poorer performance
in predicting Group 3 and Group 4 medulloblastoma (14).
This may be due to the specific radiomics features used in our
study which better reflect the underlying biological processes
or cellular functions associated with the WNT subtype. This
warrants further investigation on a relatively larger study cohort
with paired MRI and RNA sequencing data. Recently, one study
revealed that Group 3 and Group 4 MBs both exhibited a
developmental trajectory from primitive progenitor-like to more
mature neuronal-like cells (10). The heat map in Figure 4 also
shows that age was of great importance in the prediction of SHH
and Group 3 subgroups.

There are several limitations concerning the current study.
First, this study utilized NanoString assay for molecular
subgrouping, which is not a calibrated assay. Second, the sample
size of the current cohort is still insufficient to utilize the full
potential of radiomics features especially when machine learning
approach was applied. A prospective, multicenter collaborative
study with much greater number of participants will further
improve the performance and the generalization of the predictive
model. Third, there are several advanced MRI sequences,
such as magnetic resonance spectroscopy (MRS) and dynamic
susceptibility contrast perfusion MR, that were not included
since these were unavailable in most of the cohorts. It has
been reported that a subgroup classifier based on MRS was
able to discriminate between SHH subgroup and Group 3 and
Group 4 subgroups with satisfying accuracy (35). These clinically
used MRI sequences are recommended to be included in the
design of a future study. Finally, the underlying mechanisms
why radiomics features could reflect the molecular subgroups of
MB remain elusive and need extensive investigations. Analyzing
data of high-throughput sequencing of tumor specimens and
paired radiographic features by advanced artificial intelligence
algorithms may be the way to gain insight to these mechanisms.

CONCLUSION

In summary, by using a machine learning algorithm, clinical
and radiographic information from pre-operative routine
examinations were demonstrated to be capable of predicting the
molecular subgroups of MB with high accuracy. The prediction
performance of the model for WNT (AUC 0.9097 and accuracy
80%) and SHH (AUC 0.8654 and accuracy 86.67%) subgroups
was excellent in the testing cohort, while that for Group
3 and Group 4 MB needs further improvements. Machine
learning algorithms using data from routine examinations hold
great promises for non-invasive pre-operative prediction of the
molecular subgroups of MB.
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