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A B S T R A C T   

The coronavirus disease (COVID)-19 pandemic is a major challenge for the health systems worldwide. Acute 
respiratory distress syndrome (ARDS), is one of the most common complications of the COVID-19 infection. The 
activation of the coagulation system plays an important role in the pathogenesis of ARDS. The development of 
lung coagulopathy involves thrombin generation and fibrinolysis inhibition. 

Unfractionated heparin and its recently introduced counterpart low molecular weight heparin (LMWH), are 
widely used anticoagulants with a variety of clinical indications allowing for limited and manageable physio- 
toxicologic side effects while the use of protamine sulfate, heparin’s effective antidote, has made their use 
even safer. Tissue-type plasminogen activator (tPA) is approved as intravenous thrombolytic treatment. The 
present narrative review discusses the use of heparin and tPA in the treatment of COVID-19-induced ARDS and 
their related potential physio-toxicologic side effects. The article is a quick review of articles on anticoagulation 
in COVID infection and the potential toxicologic reactions associated with these drugs.   

1. Introduction 

The recently emerged coronavirus disease (COVID-19) pandemic is a 
major challenge for health systems around the world, with almost all 
geographical areas affected by April 2020 (Goumenou et al., 2020), 

except for Antarctica and Polynesia. SARS-CoV-2 (Severe Acute Respi-
ratory Syndrome Coronavirus 2) infection is difficult to prevent since 
there is no vaccine available to date (Calina et al., 2020a). The majority 
of the infected patients will develop only mild/moderate symptoms 
(Connors and Levy, 2020; Tsatsakis et al., 2020). However, some 
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patients have aberrant inflammatory responses that lead to lung injury 
and hypoxemic respiratory failure, which is the most common cause of 
death in such patients (Goumenou et al., 2020). 

Acute respiratory distress syndrome (ARDS) is one of the most 
frequent complications of the COVID-19; activation of the coagulation 
system plays a pivotal role in the pathogenesis of ARDS (Thachil et al., 
2020). 

ARDS is characterized by inflammation and the presence of antico-
agulant factors in the lung, non-hydrostatic pulmonary edema, and 
disrupture of the alveolar-capillary barrier with increased permeability 
(Gonzales et al., 2015; Ware and Matthay, 2000), leading to activation 
of pulmonary macrophages, an increased influx of intravascular and 
extravascular neutrophils, platelets and fibrin, and epithelial and 
endothelial injury (Camprubí-Rimblas et al., 2018). 

These result in the formation of fibrin-platelet microthrombi in the 
pulmonary vessels, with the rapid development of progressive respira-
tory dysfunction and right heart failure (Ware, 2006; Tian et al., 2020). 
Similar findings were observed in lung samples taken from COVID-19 
infected patients (Matthay et al., 2012). Despite the supportive mea-
sures, the mortality and morbidity associated with ARDS remain high 
(35–40%) (Artigas et al., 2017) and there is a clear need for new ther-
apeutic interventions that focus on the pathophysiology of ARDS (Force 
ARDSDTRanieri et al., 2012). 

The pathophysiology of ARDS involves several pathways of the 
coagulation cascade: protein C, tissue factor, the regulation of fibrino-
lysis by the plasminogen activator (PA), and inhibitor pathway (Cam-
prubí-Rimblas et al., 2018). As a result, therapies that target coagulation 
cascade and fibrinolysis may prove effective in the treatment and pre-
vention of ARDS (Camprubí-Rimblas et al., 2018). 

Although ARDS associated with COVID-19 infection can be defined 
according to the Berlin criteria (Gattinoni et al., 2020; Dolhnikoff et al., 
2020), it represents a specific condition having as main feature the 
dissociation between the severity of hypoxemia and the maintenance of 
a relatively good respiratory mechanics (Laterre et al., 2003). 

The discrepancy between gas exchange abnormalities, radiological 
changes, and respiratory mechanics indicates a vascular component of 
the disease, as demonstrated by autopsy studies showing the presence of 
thrombi in the microcirculation (Laterre et al., 2003; MacLaren and 
Stringer, 2007). 

Targeting coagulation and fibrinolysis in the treatment of ARDS has 
been proposed since 2003 (Schultz et al., 2006; Ware et al., 2006; Liu 
et al., 2018; Hardaway et al., 2001a). Furthermore, using plasminogen 
activators to limit the progression of ARDS and mortality is supported by 
data from animal studies and the results of a phase I trial (Farsalinos 
et al., 2020a). Data published in 2001 showed that the administration of 
urokinase or streptokinase in patients with ARDS reduces the expected 
mortality from 100% to 70%, without increasing the risk of bleeding 
(Aime et al., 2015). Of note, the cause of mortality for patients who 
eventually died was kidney or hepatic failure, and not lung failure (Aime 
et al., 2015). 

Based on the link between thrombosis and inflammation, there is an 
intuitive relationship between COVID-19 and coagulation abnormal-
ities, characterized by increased levels of procoagulants (fibrinogen) and 
D-dimers (Zhou et al., 2020); these changes have also been associated 
with increased mortality in the presence of the COVID-19 (Wang et al., 
2020; Levi and van der Poll, 2017; Schmitt et al., 2019). 

In this context, endothelial dysfunction, induced by COVID-19, re-
sults in excess thrombin generation and inhibition of fibrinolysis, lead-
ing to a hypercoagulant (Fig. 1) status in COVID-19 patients (Idell, 
2003). Furthermore, hypoxia occurring in severe forms of COVID-19 
stimulates thrombosis, not only by increasing blood viscosity but also 
by occlusion and formation of microthrombi in the small lung vessels 
(Ware, 2006; Tian et al., 2020). Acute pulmonary injury leads to a 
pro-inflammatory status, secondary to cytokine storm and macrophage 
and endothelial activation, with increased levels of interleukin (IL)-1, 
IL-6, IL-8, tumor necrosis factor (TNF)-alpha, ferritin, C-reactive protein 
(CRP), D-dimers, and fibrinogen (Farsalinos et al., 2020b). Data show 
that this is not a primary thrombotic process, but thrombosis occurs 

Fig. 1. Coagulability induced by COVID-19 with consequences on lung.  
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secondary to inflammation and hypoxia. 
Indeed, the increase in D-dimer levels appears to be due to intense 

inflammation that stimulates intrinsic fibrinolysis in the lungs, with 
subsequent release into the circulation (Farsalinos et al., 2020b). Of 
note, pre-existing pro-inflammatory diseases, such as atherosclerotic 
disease, diabetes, and obesity, increase the risk of COVID-19 pneumonia 
(Farsalinos et al., 2020b; Mycroft-West et al., 2020). 

Heparin is a well-known anticoagulant and tissue-type plasminogen 
activator (tPA) is approved as intravenous thrombolytic treatment. 
Since COVID-19 infected patients are prone to thrombotic complica-
tions, the present narrative review discusses the use of heparin and tPA 
in the setting of the COVID-19 infection. 

2. Heparin use in COVID-19 

Heparin, a polydispersed, heterogeneous, natural product, is a well- 
tolerated anticoagulant drug that has been used successfully for over 80 
years, with limited and manageable side effects. (Gaertner and Mass-
berg, 2016). Besides, heparin belongs to a unique class of pharmaceu-
ticals, which has effective antidotes, thus making its use safe in daily 
practice. 

Based on the bidirectional relationship between the immune system 
and thrombin generation, the blockade of thrombin by heparin should 
decrease the inflammatory response (Young, 2009). Indeed, several 
studies have demonstrated the anti-inflammatory properties of heparin 
(Esmon, 2014; Mousavi et al., 2015; Xu et al., 2009). The underlying 
mechanisms involve binding of inflammatory cytokines, inhibition of 
neutrophil chemotaxis and leukocyte migration, neutralization of the 
C5a fraction of the complement, and sequestration of acute-phase pro-
teins (Esmon, 2014; Mousavi et al., 2015; Xu et al., 2009). 

Endothelial dysfunction plays a key role in these processes, leading 
to organ failure. Histones, released as a result of cell injury, aggravate 
endothelial injury (Iba et al., 2015), whereas heparin antagonizes his-
tones and therefore protects the endothelium (Zhu et al., 2019; Liu et al., 
2019). This protective function can be extended to the endothelial 
junctions, as demonstrated by experimental models, in which unfrac-
tionated heparin decreases pulmonary edema and vascular permeability 
(Ma and Bai, 2015). Another protective mechanism involves the impact 

of heparin on histone methylation, as well as on the mitogen-activated 
protein kinase (MAPK) and nuclear factor kappa-light-chain enhancer 
of activated B cells (NF-κB) signaling pathways, leading to improve-
ments in the microcirculatory dysfunction and protection from organ 
injury (Shanghai Clinical Treatment Expert Group for COVID-19, 2020). 

Based on the above data, early administration of anticoagulant 
therapy (Fig. 2) has been proposed in severe forms of the COVID-19 
since it was associated with improved prognosis (https://www.clin-
icaltrial, 2020). 

To address the question of heparin use in COVID-19 infection, more 
than 20 clinical trials, most of which are still recruiting, have been 
registered with the National Institutes of Health as of November 15, 
2020). (Chen et al., 2020). 

2.1. Heparin’s physio-toxicologic side effects and safety margins 

One of the most interesting side effects of heparin administration is 
“heparin-induced thrombocytopenia”. This side effect is especially 
difficult to recognize it in septic patients where at first platelets are 
increased and then they may decrease. Moreover in cases of propagated 
DIC, platelets also sharply decrease so you may need to be careful in 
patients with already low platelet counts under low-molecular weight 
heparin (LMWH) who are likely to become septic. In most cases, death is 
related to disseminated intravascular coagulation since 71.4% of pa-
tients who die from COVID-19 have diffuse intravascular coagulation 
(DIC), whereas only 0.6% of the surviving patients meet the DIC criteria 
(Huang et al., 2020; Tang et al., 2020a). 

In addition, a pro-thrombotic DIC, leading to an increased incidence 
of venous thromboembolism, the elevation of D-dimers and fibrinogen 
levels, decreased anti-thrombin concentrations, as well as to pulmonary 
congestion with microvascular thrombosis and occlusion, increased 
incidence of central catheter thrombosis, and occlusive vascular events 
(e.g. myocardial ischemia, stroke) is associated with COVID-19 (Tang 
et al., 2020a; Han et al., 2020a). 

Coagulopathy secondary to COVID-19 is characterized by features of 
coagulation that mimic DIC (but differs from DIC related with sepsis by 
less prominent thrombocytopenia, lower consumption of coagulation 
factors); clinical and pathological signs of thrombotic microangiopathy; 

Fig. 2. Anticoagulant therapy benefits in Covid-19 infection.  
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and elevated D-dimer levels which are predictive of unfavorable prog-
nosis (Levi and van der Poll, 2017; Schmitt et al., 2019). Severe 
COVID-19 results in a pro-hemostatic stage, leading to an increased 
incidence of venous thromboembolism (Schmitt et al., 2019). 

Several COVID-19 infected patients meet the criteria of the Third 
International Consensus Definitions for Sepsis (Sepsis-3) (Singer et al., 
2016). In addition, immobilization of the patient during severe 
COVID-19 increases the risk of venous thromboembolism, and thus the 
prophylactic use of LMWH in such patients is currently recommended to 
minimize the risk of coagulopathy (Tang et al., 2020a; Li et al., 2018). In 
this context, a meta-analysis (9 trials; n = 465 patients) reported that the 
initiation of LMWH therapy in the first 7 days of the onset of ARDS 
decreases the 7-day mortality risk by 48% and the 28-day mortality risk 
by 37%, related to significant improvements in the PaO2/FiO2 ratio, 
especially in the subgroup of patients receiving high doses of LMWH (i. 
e. ≥ 5000 units/day) (Hanify et al., 2017). The need for higher doses of 
heparin was also observed in critically ill septic patients who did not 
respond to thromboprophylaxis (Camprubí-Rimblas et al., 2020). 

Of note, since coagulopathy during ARDS is initiated in the lungs and 
in many cases is limited to the lungs, a reasonable strategy seems to be 
the administration of anticoagulation by nebulization (Shukla and 
Spear, 2001). 

An interesting concept studied in experimental models is related to 
the potential antiviral role of heparin. The polyanionic nature of heparin 
allows it to bind to several proteins and thus serve as an effective in-
hibitor of viral attachment (Pantea Stoian et al., 2020). For example, in 
the case of herpes simplex virus infection, heparin competes with the 
virus for the binding of cell surface glycoproteins, thus limiting the 
infection (Vicenzi et al., 2004). An Italian study showed that heparin 
administration at concentrations of 100 μg/mL inhibited the infection in 
culture cells injected with sputum from a patient with SARS-CoV strain 
HSR1 (Heat Shock Response 1) pneumonia (Ghezzi et al., 2017). A 
recent publication showed that the Spike S1 binding domain of 
SARS-CoV-2 interacts with heparin, but the clinical implications of this 
interaction in viral infections remain to be established (Gaertner and 
Massberg, 2016). 

Unfractionated heparin and LMWH are approved as anticoagulants 
with an excellent profile of safety, stability, bioavailability, and phar-
macokinetics. Still, heparin and its derivatives are not properly exploi-
ted as antiviral drugs, despite a wide range of activity against several 
viruses, including coronaviruses (SARS-CoV/HSR1) (Ghezzi et al., 
2017), flaviviruses (Vicenzi et al., 2018; Wu Dunn and Spear, 1989), 
herpesviruses (Skidmore et al., 2015), influenza [457], and HIV (human 
immunodeficiency virus) (Harrop and Rider, 1998; https://www.coro 
navirusto). 

On March 30, 2020, a new clinical trial protocol (COVID-19 HOPE 
Trial – A safety and efficacy clinical trial of nebulized Heparin-N- 
acetylcysteine in COVID-19 Patients by Evaluation of pulmonary func-
tion) was announced, evaluating the effects of the combination of 
nebulized heparin with N-acetylcysteine (NAC), called H-NAC, on lung 
function and mechanical ventilation in patients with COVID-19 infec-
tion (Geiler et al., 2010). These two drugs are already approved by the 
Food and Drug Administration (FDA) for other conditions. Experimental 
data have shown that both drugs (i.e. heparin and NAC) can interfere 
with infection from coronaviruses in general, and SARS-CoV-2 in 
particular (Calina et al., 2020b). In this context, 12 clinical trials 
including over 780 patients reported that nebulized heparin, alone or in 
combination with NAC, was effective in the treatment of burn-induced 
lung injury and patients with ARDS, improving lung function and 
reducing the necessity for mechanical ventilation, with an excellent 
safety profile and minor side effects (Geiler et al., 2010). However, since 
the pharmacologic profile of various drugs hasn’t been properly tested in 
the context of COVID-19 (Vivarelli et al., 2020; Kostoff et al., 2020) and 
the fact that in most cases of severe COVID-19 there is a constellation of 
contributing factors ranging from chronic environmental toxicity 
(Moore et al., 2020a)to chronic inflammatory diseases, clinicians ought 

to follow local guidelines maintaining experimental data only for last 
resort cases. 

3. tPA use in COVID-19 

An essential feature of ARDS is the deposition of fibrin in the alveoli 
and the lung parenchyma (Whyte et al., 2020). Fibrin deposits in the 
lung parenchyma are developed due to abnormalities of the coagulation 
and fibrinolytic systems (https://www.coronavirusto). Tissue factor 
(TF) is exposed to damaged alveolar endothelial cells and on the surface 
of leukocytes, while elevated levels of plasminogen inhibitor factor 1 
(PAI-1) in the lung epithelium and endothelial cells creates a hypofi-
brinolytic status (Hardaway, 2006). Prophylactic treatment with LMWH 
in COVID-19 infected patients is important in limiting coagulopathy, but 
for the degradation of fibrin deposits in the lungs, it is essential to 
promote local fibrinolysis by the use of fibrinolytic drugs (i.e. tPA). tPA 
is approved as an intravenous thrombolytic treatment, whereas its 
nebulized form is effective in plastic bronchitis and is currently being 
evaluated in phase II clinical trials (Hardaway, 2006). Overall, nebu-
lizing plasminogen activators may be used in patients with COVID-19 
infection to target fibrin degradation and improve oxygenation in crit-
ically ill patients (Hardaway, 2006). 

Anticoagulant therapy is essential in minimizing fibrin deposition 
and microthrombus formation in the ARDS and the treatment of pro- 
thrombotic complications (Hardaway et al., 2001b). However, LMWH 
is ineffective in removing fibrin deposits from the alveolar space. As a 
result, to restore the balance of fibrinolysis in the lungs, it is necessary 
either to stimulate the activation of plasminogen or to inhibit fibrino-
lysis inhibitors. In this context, a phase I clinical trial showed a signifi-
cant improvement in PaO2 at 24 h, in 19 of 20 patients with severe ARDS 
secondary to trauma or sepsis, after administration of urokinase or 
streptokinase, without increasing the risk of bleeding (Hardaway et al., 
2001b; Tang et al., 2020b). 

The use of tPA in the treatment of ARDS in COVID-19 infected pa-
tients has recently been proposed (Harrop and Rider, 1998). In addition 
to rebalancing the fibrinolytic balance, administration of tPA in ARDS 
patients could also provide anti-inflammatory effects, suppressing 
neutrophil activation, as shown in experimental mice models (Harrop 
and Rider, 1998). 

Evidence shows that lethal COVID-19 associated ARDS is a result of 
disseminated intravascular fibrin deposition (Han et al., 2020b; Moore 
et al., 2020b) and there is a growing interest in the role of tPA in 
reducing the mortality of COVID-19 associated ARDS. A USA multi-
center group has proposed that tPA could be a severity reducing for 
COVID-19 associated ARDS and may act as a salvage technique to rescue 
patients when mechanical ventilation is not available (Choudhury et al., 
2020). Since “Extraordinary times call for extraordinary measures”, it is 
unlikely to carry out a randomized clinical trial, because, under the 
pressure exerted by the pandemic, time is the enemy. Even with lack of 
high-quality evidence emerging from randomized clinical trials, pro-
tocols for salvage use of systemic tPA are in planning at several centers 
in the USA (Bodier-Montagutelli et al., 2018). 

3.1. Physio-toxicologic side effects of tPA 

A major side effect of anticoagulant or thrombolytic therapy is 
bleeding; the administration of drugs in the form of aerosols limits their 
diffusion from the lungs into the bloodstream (Abdelaal Ahmed Mah-
moud et al., 2020). It would be worthy to note that in cases of bleeding 
ROTEM (rotational thromboelastometry) may prove useful as a fast and 
trustful way to differentiate between insufficiency of the intrinsic or the 
extrinsic coagulation pathway. Experimental data show that anticoag-
ulant therapy given in the form of nebulization reduces lung injury 
without increasing the risk of bleeding (Practical guidance for th, 2020). 
Heparin prevents fibrin deposition, but cannot remove pre-existing 
fibrin. A recent publication comparing the efficacy of the nebulized 
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form of plasminogen activator (streptokinase) and heparin in the 
treatment of ARDS reported that the improvement in the PaO2/FIO2 
ratio was significantly greater and the ICU (Intensive Care Unit) mor-
tality was significantly lower in the streptokinase group (Llitjos et al., 
2020). A phase II clinical trial using tPA in nebulization (PLATyPuS; 
alteplase, NCT02315898) in the treatment of plastic bronchitis is 
currently on going (https://clinicaltrials.gov/ct2/show/NC 
T02315898). However, intravenous administration of tPA is required 
to remove large thrombi from the circulation. Furthermore, a potential 
problem with nebulization is that nebulized proteins are susceptible to 
degradation (Bikdeli et al., 2020). 

The doubling of doses used for prophylaxis in the ICU should be 
considered due to the high risk of thrombosis. However, these recom-
mendations are based on general thromboprophylaxis and are not spe-
cific to COVID-19 (Bikdeli et al., 2020; Suceveanu et al., 2020). A small 
study of 26 patients admitted to the ICU showed a higher incidence of 
venous thrombotic events (VTE) in patients receiving prophylactic 
anticoagulation comparing with therapeutic anticoagulation (100% 
versus 56%) (Firdous et al., 2020; Stoian et al., 2020). 

4. Conclusion 

Thromboprophylaxis is indicated in all patients with COVID-19 
infection. Heparin and tPA may be useful in these patients minimizing 
the risk for ARDS complications and/or reducing the pressure on the 
ventilator support in the ICU. Both anticoagulation and fibrinolysis are 
clinically important in COVID-19 infected patients. However, further 
research is needed to unveil the potential pharmacologic and toxicologic 
side-effects induced by the co-administration of classical and novel 
antiviral therapies aiming against SARS-CoV-2. 
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