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Abstract: Compared with standard-ply composites, thin-ply composites exhibit a superior mechan-
ical performance under various operating conditions due to their positive size effects. Thin-ply
laminate failure modes, including matrix initial damage (MID), matrix failure (MF), and fiber failure
(FF), have been distinguished through a systematic acoustic emission (AE) signals analysis combined
with scanning electron microscopy (SEM). First, the characteristic frequencies of various failure modes
are identified based on unidirectional laminates ([90] 68 and [0] 68). Then, according to the identified
frequencies corresponding to distinctive damage modes, four lay-up sequences (02[[90m/0m]ns]02,
m = 1, 2, 4, 8, n ×m = 16) with a constant total thickness are designed, and the effects of the number
of identical plies in the laminate thickness on the damage evolution characteristics and the damage
process under uniaxial tension loads are dynamically monitored. The obtained results indicate that
the characteristic frequency ranges for MID, MF, and FF are identified as 0–85 kHz, 165–260 kHz, and
261–304 kHz, respectively. The thickness of identical plies has a significant effect on onset damage.
With the decrease of the number of identical plies (i.e., m in the stacking sequences), the thin-ply
laminates exhibit the initiation of damage suppression effects and crack propagation resistance.

Keywords: thin-ply laminate; acoustic emission; failure modes; characteristic frequency

1. Introduction

Thin-ply composites (i.e., composites made of plies with thicknesses as low as 20 µm)
have recently received increasing attention. Not only do they broaden the laminate design
space significantly, but they also provide enhanced strength and damage resistance due to
positive size effects. The open research literature shows that the reduction in ply thickness
can significantly improve both the initial and ultimate strengths of multidirectional lami-
nates under tensile loads [1–9]. In open-hole tests of laminates, thin-ply composites can
obtain a higher initial damage strength under a quasi-static tension and a longer fatigue
life under tensile cyclic loads [2,6,7]. In bolted assemblies, the bearing strength is also
improved, especially in hot and humid environments [6]. In the case of CAI (compression
after impact), thin-ply composites provided an optimizing design method to achieve an in-
creased residual strength, although the thinnest part did not necessarily provide optimized
results [2,6].

The size strengthening mechanism is not an intrinsic property of a material and
depends on the geometric constraints between adjacent plies. The co-constraint effects
suppress damage accumulation and the growth of delamination in the thin-ply lami-
nates [10–14]. The identification of damage initiation and evolution characteristics in the
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thin-ply laminates is fundamentally important in order to fully exploit the potential of
thin-ply materials for structural applications.

The acoustic emission (AE) technique is a nondestructive testing method that is used
to detect stress waves that result from the release of elastic energy due to local rapid
unloading [15–18]. AE technology is also used to obtain dynamic information during the
process of damage initiation and evolution, providing a basis for the safety evaluation
of composite materials or construction [19–24]. In recent years, AE technology has been
widely used to identify and distinguish different damage modes in the field of composite
laminates. Some researchers have classified the damage of composite laminates during the
loading process into several modes, such as matrix fracture, fiber breakage, fiber–matrix
interface debonding, and delamination [25–27].

However, distinguishing the specific frequency ranges corresponding to various
fracture modes based on testing samples with different geometric sizes did not take into
consideration the fact that frequency is connected with size [19,25,28]. In addition, samples
of a same geometrical size composed of a single material, such as a fiber bundle, do not
account for friction between fibers, which changes the sample frequency [19,26–28].

Previous work on thin-ply composites focused primarily on onset strength determina-
tion and fracture mode discrimination. However, AE technology applications in thin-ply
composite laminates are unspecific, and the relationship between fracture mode discrimi-
nation and the characteristic damage frequency is limited by the sample geometry [25]. In
addition, in previous works, the characteristic damage frequencies were usually identified
by a pure resin matrix or a resin matrix within a fiber tow, which is not accurate enough.
In fact, the characteristic frequencies are dependent on the fiber volume fraction and the
interaction between fibers.

In this work, based on the AE technique, the characteristic frequencies of matrix initial
damage (MID), matrix failure (MF), and fiber failure (FF) are identified by unidirectional
laminates ([90] 68 and [0] 68), whose material and geometry sizes are the same as pending
test samples. Four lay-up sequence (02[[90m/0m]ns]02, m = 1, 2, 4, 8, n × m = 16) laminates
with a constant total thickness are designed. The effects of the number of identical plies in
the laminate thickness on the damage evolution characteristics and damage process under
uniaxial tension loads are dynamically studied. Optical and scanning electron microscopy
(SEM) are also employed to help certify the fracture model.

2. Materials and Methods
2.1. Test Specimen Preparation

Specimens were made from ultra-thin prepregs with a ply thickness of 0.03 mm by
hand layup and autoclave curing. Glass-reinforced plastic sheets were adhered to both
loading ends of a composite plate by rapidly curing epoxy adhesive. Twenty-four hours
later, the assembly was divided into individual test specimens of around 25 mm in width
and 250 mm in length with waterjet cutting. An ultrasonic C-scan was adopted to determine
the effectiveness of the molded plate and test specimens. Six different layups, specified in
Table 1, were designed. Groups E and F were used to calibrate the characteristic frequencies
of MID, MF, and FF. The remaining four groups (A, B, C, and D) were designed to study
the effects of the ply thickness on the initial damage and evolution mechanics. The material
grade of the prepregs was HRC2-45%-A3-U-30gsm-1000 and was provided by Jiangsu
Hengshen Co., Ltd., Danyang, China. The prepared specimens are exhibited in Figure 1.
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Table 1. Layer design and dimensions for tensile testing.

Groups Layups Thickness (mm) Length (mm) Width (mm)

A 02[[90/0]16s]02 2.6 250 25
B 02 [[902/02]8s]02 2.6 250 25
C 02 [[904/04]4s]02 2.6 250 25
D 02 [[908/08]2s]02 2.6 250 25
E [90] 68 2.6 250 25
F [0] 68 2.6 250 25
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Figure 1. Image of the samples to be tested.

2.2. Test Methods

According to ASTM3039, a series of tensile tests was conducted. The specimens were
loaded on an electro-hydraulic universal machine (MTS Landmark 370.10, Minneapolis, MN,
USA) with a displacement rate of 2 mm/min. Two AE sensors at a distance of 100 mm from
each other were placed on the specimen to collect signals, as shown in Figure 2b. GT800 digital
full waveform AE detection systems (Hunan Enti Technology Co., Ltd., Henan province,
China) were used to demodulate the signals. Three strain gauges (among them, two on the
front surface and one on the back surface, as shown in Figure 2b) were employed to monitor
the strains and possible asymmetrical deformations. Simplified waveforms of standard AE
signals (including duration, channel threshold, amplitude, counts, rise time, and released
energy) are shown in Figure 3. The AE signal processing and analysis method of this work
were based on characteristic parameter filtering, and the threshold value was dependent on
the testing environment (noise, vibration of the testing machine, and so on). According to our
testing environment and relevant literature [25,29,30], the channel threshold was defined as
shown in Table 2. Other AE characteristic parameters are also listed in Table 2. The 2B pencil
core was broken before each test to ensure the validity of the received signals.

Table 2. Parameter setting related to the acoustic emission (AE) equipment.

Channel Threshold [25] Acquisition Frequency Center Frequency Acquisition Point

52 dB 2 MHz 255 kHz 2048
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Figure 3 shows that the area below the envelope is an AE energy signal reflecting
the relative energy magnitude or strength of AE events. The energy calculation of the AE
signal is processed by the root mean square (Vrms) or mean square (Vms) of the voltage.
The Vms, Vrms, and relative energy (E) of a signal are defined as Equations (1) and (2), as
follows [23]. According to the fundamental principles of acoustic emission, the change of
Vms with time is the energy change rate of the AE signal, and the total energy E of the AE
signal in the period from t1 to t2 can be expressed in Equation (3).

Vms =
1

∆T

∫ ∆t

0
V2(t)dt (1)

Vrms =
√

Vms (2)

E ∝
∫ t2

t1
(Vrms)

2dt =
∫ t2

t1
Vmsdt (3)

In above equations, ∆T and V(t) are the average time and signal voltage varying with
time, respectively, while t1 and t2 refer to the time at which the start and end points of a
single waveform signal are above the threshold.

2.3. Microstructural Analysis

The size of the samples for the optical and SEM observation was approximately
4 mm × 4 mm × 2.6 mm. The sections of prepared specimens were polished with diamond
grinding paste, then cleaned ultrasonically for a structural characterization inspection at
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three scales (macroscopic, mesoscopic, and microscopic scales, respectively). Figure 4a
gives the macroscopic characteristics of group A observed with an optical microscope.
Figure 4b,c shows the mesoscopic and microscopic morphology of group A by SEM. The
results showed that the fiber distribution was relatively uniform, without obvious voids
or manufacturer defects, and that multiple layers were laid at the same angle without
obvious boundary phases. This type of multiscale, in-depth observation ensures proper
AE damage detection.
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Figure 4. Sample A morphology before testing ((a) Macroscopic section morphology, (b) Mesoscopic
section morphology, and (c) Microscopic section morphology).

3. Results
3.1. Damage Mode Identification

Unidirectional composite laminates (groups E and F) were designed to distinguish
the characteristic frequencies of MID, MF, and FF, respectively. Compared with specimens
such as the pure resin matrix and the resin matrix within a fiber tow [25], the unidirectional
composite laminate was designed to take the geometry effects on the AE frequency into
consideration. Pure resin matrices or fiber tow specimens with the same geometric size
show enhanced friction between fibers when compared with standard specimens during
the processing from the fiber relaxation state to tightening [27,28].

In this article, the specific damage models were classified as MID, MF, and FF. The clas-
sification shows that delamination damage was neglected and did not belong to the primary
damage mode in the process of thin-ply composite tensile testing. Moreover, delamination
is only a phenomenon related to the failure of the matrix and fiber/matrix interface.

Various damage modes were shown to correspond to characteristic frequencies of the
uniaxial tensile testing of unidirectional laminates. Figure 5a presents the AE signals, such
as the frequency and amplitude, from the unidirectional laminate designed as [90]68 during
the tensile process, and six specimens were tested to ensure reliable results. The AE signal
from group E showed two specific frequency ranges: 0–85 kHz and 240–260 kHz. The AE
signals in both frequency ranges had lower amplitudes, but the one in the frequency range
of 0–85 kHz appeared earlier. The dynamic recording of AE signals is shown in Figure 5a,
where the signals presented at a lower frequency range were detected earlier than at a
higher frequency range.

According to previous research [25] and a general understanding of the processing of
composite failures, there is a close correspondence between the characteristic frequency
and damage model. To verify the tensile damage model for group E, SEM images of the
failure section morphology with reference to 90◦ tensile damage are shown in Figure 6.
Figure 6a,b presents failure section morphologies with various magnifications and focused
regions. The detected AE signals were derived from matrix damage, or MID and MF, and
matrix exfoliation is rare in these types of systems. Therefore, it can be concluded from the
AE signals and SEM image analysis that the lower frequency range is related to MID and
that the higher frequency range is connected to MF, respectively.
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Fiber fracturing causes a decreased structural stiffness and bearing capacity directly
in composite structures, indicating oncoming structural failure. Therefore, AE signals
referring to fiber fracturing usually occur last with higher amplitudes, which is similar
to the conventional understanding. As shown in Figure 5b, the AE signals coming from
group F were relatively complicated, and higher signal amplitudes were obtained from
group F when compared to group E. Moreover, the AE experiment of group F has excellent
repeatability. Therefore, a conclusion can be drawn that the fiber aggregation fracture
frequency should be in the range of 261–304 kHz.

The complete failure mechanism of composite laminates includes MID, MF, FF, and
fiber/matrix interface failure. However, the analysis and summary of previous research
results show that the frequency range involved in fiber/matrix interfacial failure always
exists between MID and FF. To ensure an enhanced validity for this analysis, only the
matrix and fiber damage modes were considered in this article’s scope. A summary of our
AE specific frequency signals is listed in Table 3.

Table 3. Specific frequencies corresponding to various damage modes.

Damage Modes MID MF FF

Frequency range/kHz 0–85 240–260 261–304
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Figure 5. Amplitude–Frequency and Frequency–Time relationship graphs of AE ((a) Unidirec-
tional laminate [90]68, (b) Unidirectional laminate [0]68). 

Figure 5. Amplitude–Frequency and Frequency–Time relationship graphs of AE ((a) Unidirectional
laminate [90]68, (b) Unidirectional laminate [0]68).
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Figure 6. SEM images of the failure section of the 90◦ tensile damage morphology. (a) at the 20 µm
scale, (b) at the 10 µm scale.

3.2. Characteristics of Acoustic Emission Signals
3.2.1. Acoustic Amplitude and Accumulation Release Energy–Time Relationship

The AE accumulation energy signal is proportional to the area of the AE waveform, as
shown in Figure 3. The energy unit V2s (see Equation (3)) was adopted to avoid voltage
rectification and the effective value calculation.

Figure 7 shows the relationship of the AE amplitude and accumulation energy–time,
where the instantaneous energy release events accompany the generation of higher am-
plitude AE signals, and the energy–time curves feature a multistage staircase consistent
with Ref [23]. The fact that the literature presented a multistage staircase in the same
thickness layer composite but with various matrix and fiber types is particularly worth
mentioning [23]. This multistage staircase phenomenon reflects the essence of energy re-
lease events, such as fiber failure and unstable matrix crack propagation. As Figure 7A,B,D
shows, the initial jump of accumulation energy corresponds to an increase in time but
excludes Figure 7C. An explanation for group C’s layup blocked stacking designs with an
unlike response is that this specific thickness (0.12 mm) provides the best protective effect
on the fiber.

AE monitoring provides evidence related to laminate onset damages and damage
evolution. The effective AE signal corresponding to onset damage was confirmed by
analytical methods of AE signals based on characteristic parameters. The decreased
tendency towards the time of the first effective onset damages signal is shown in Figure 7.
Therefore, thin-ply laminates with an excellent matrix damage suppression and resistance
were validated using uniaxial tensile testing with the assistance of AE detection technology.

3.2.2. Acoustic Emission Accumulation Counts Analysis

An effective reflection method for the intensity and frequency of damage events is the
accumulation count of events. The accumulation counts of the three damage modes (FF,
MID, MF) that this paper is concerned with were distinguished based on the corresponding
characteristic frequencies of damages adopted to explain the dynamic evolution process of
various damages to the uniaxially tensile tested samples.

AE accumulation counts are the accumulation of burst event counts, and the sharp
increase of the accumulation curve belongs to the resulting damage accumulation over
a short time. This phenomenon of accumulation count can directly reflect the dynamic
evolution of various damage modes during the experiment.
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Figure 7. Acoustic amplitude and accumulation energy–time relationship graphs: (A) Group A,
(B) Group B, (C) Group C, and (D) Group D.

Figure 8 gives the accumulated counts of the dynamic development process of three
separate damage modes during the loading period. The whole perspective, the sum of
accumulated counts of three diverse damage modes, increases from Figure 8a to Figure 8d.
Figure 8 shows that the ratio of accumulation event counts of FF to total damage counts
is relatively low and that the accumulation count curves of MID and MF present an
intertwined state after damage occurred. This intertwined phenomenon is particularly
evident in Figure 8a,b. However, Figure 8c,d does not show this phenomenon, but there
was an obvious and increased gap between the curves of MID and MF. These phenomena
reflect that the thickness of the blocked stacking laminate composite increases and the
number of MF or matrix unstable propagation decreases, implying that the number of
intralaminate transverse penetration cracks decreases. The damage evolution behavior of
various thickness composites corresponds well to the research given in Ref. [31].

3.3. Strength Analysis

AE technology was used to monitor the initial damage strength of thin-ply composite
materials. In this paper, the initial damage strength is defined as the stress corresponding to
the first effective AE signal appearing in the tensile testing, and the ultimate failure strength
belongs to the maximum stress sustained by the structure during the loading period. In
addition, a special strength based on the stress corresponding to the first occurrence of the
fiber fracture AE signal is proposed in order to calibrate the initiation of obvious damage
to the structure.

No distinct local unloading phenomenon emergency in the stress–strain curve is
shown before the structural failure, and all curves present a brittle fracture mode to the
process of tensile testing, as shown in Figure 9a. The concerned strengths extracted in the
tensile experiment were plotted as shown in Figure 9b, and it was clearly observed that
the initial damage strength and ultimate failure strength were in good agreement, related
to the variation tendency, with the literature [3], namely, the enhanced strengths were
obtained by reducing the continuous block stacking thickness. Although the initial damage
strength is consistent with the results of other researchers [3,25], the overall initial damage
strength is lower, which is possibly attributable to the inconsistency of the material types.
This paper proposes a special damage strength, another strength calibration based on the
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fiber fracture of the AE signal. It aims to avoid the early failure signal of the local matrix
caused by a stress concentration on the pore position of the material with pore defects, thus
underestimating the residual strength of the structure. According to a previous conjecture,
the layup design of group C showed a better protective effect on the fibers. Therefore,
the trends of the special damage strength (except group C) with respect to the stacking
thickness correspond well to the initial damage strength, as shown in Figure 9b.
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Figure 8. Acoustic emission damage mode of the accumulation counts–time relationship graphs:
(a) Group A, (b) Group B, (c) Group C, and (d) Group D.
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 Figure 9. Ultimate failure strength, initial damage strength, and special damage strength ((a) stress
vs. strain, (b) three kinds of strengths vs. layup number).

3.4. Fracture Mode Analysis

Strength reflects the local characteristics of the material and is closely related to the
damage mechanism of materials. To explore the relationship between the tensile strengths
and fracture morphologies of the composite laminate, and to characterize the evolutionary
behavior of damage, fracture sections were randomly selected from the four groups of
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failure specimens. Optical microscopy and scanning electron microscopy were embraced
in order to depict the fracture morphologies, as shown in Figures 10 and 11, respectively.

The structural strength dominated by the fiber fracture depends on the utilization
degree of the fiber performance and on the various fracture modes corresponding to
different degrees. The accumulative damage of the failure modes can exert a maximum
fiber strength that is contrasted with other modes, such as a bundle of fiber failure [32].

The results show that the fracture morphologies transfer from neat (Figure 10a,b)
into a ladder (Figure 10c,d); namely, the fracture modes under tensile loading directly
demonstrate a transition from an accumulative damage failure (Figure 10a,b) to a bundle
of fiber failure (Figure 10c,d).
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Figure 6 reveals that the interface between the matrix and fiber belongs to a strong
interfacial action. Therefore, an inference can be proposed that the initial cracks begin in
the transverse matrix, then extend to the interfaces between the matrix and fiber or the
adjacent ply interfaces, and present a dramatic drop in the stress–strain curve dominated
by the fiber failure.

In groups A and B, the transverse propagation of the matrix cracks in the thin layer
were restricted by adjacent plies and were difficult to propagate to the plies’ interface.
The cracks at the matrix were primarily distributed in the form of multiple fine cracks,
resulting in a neat fracture. However, the accumulation layer thickness is enough to weaken
the boundary constraint from adjacent plies in groups C and D. Therefore, the fracture
morphology shows a ladder shape, which is caused by transverse penetration cracks with
a discrete distribution and propagation.
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4. Conclusions

Compared with previous research methods, such as a pure resin matrix or resin matrix
within a fiber tow, a more reliable method based on a unidirectional laminate was employed
to identify the characteristic frequencies of various failure modes. Based on the identified
characteristic frequencies, the mechanical properties and damage evolution of thin-ply
laminate with a four stacking sequence were studied.

The main results can be summarized as follows:

(1) The characteristic frequency ranges for MID, MF, and FF were identified as 0–85 kHz,
165–260 kHz, and 261–304 kHz, respectively. Based on the characteristic frequencies,
it was proposed that the initial damage signal of the fiber could be regarded as the
basis of an obvious damage initiation calibration, for the reason that there was a
certain correlation with the determination of the first effective damage signal.

(2) For (02[[90m/0m]ns]02) laminates, the thickness of identical plies has a significant
effect on the onset damage. When the number of identical plies (i.e., m in the stacking
sequence) was the minimum, the time of the first effective onset damages signal
came last. This indicated that thin-ply composites could exhibit initiation damage
suppression effects and crack propagation resistance.

This research work is mainly applied to the online damage monitoring of composite
laminates, providing a new approach to the damage mode identification of composite
laminates, and it puts forward another suggestion for the judgment of damage initiation.
However, it is limited to the material system, where the matrix strength is obviously weaker
than the interfacial strength, and out-of-plane damage monitoring such as delamination
needs to supplemented by other experiments.
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