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Type 2 diabetes causes substantial long-term damage in several organs including the brain.
Cognitive decline is receiving increased attention as diabetes has been established as an
independent risk factor along with the identification of several other pathophysiological
mechanisms. Early detection of detrimental changes in cerebral blood flow regulation may
represent a useful clinical marker for development of cognitive decline for at-risk persons.
Technically, reliable evaluation of neurovascular coupling is possible with several caveats
but needs further development before it is clinically convenient. Different modalities
including ultrasound, positron emission tomography and magnetic resonance are used
preclinically to shed light on the many influences on vascular supply to the brain. In this
narrative review, we focus on the complex link between type 2 diabetes, cognition, and
neurovascular coupling and discuss how the disease-related pathology changes
neurovascular coupling in the brain from the organ to the cellular level. Different
modalities and their respective pitfalls are covered, and future directions suggested.

Keywords: type 2 diabetes (T2D), cognitive decline, neurovascular coupling (NVC), neuroimaging, alzheimer’s disease
INTRODUCTION

Driven by changing demographics and lifestyle factors, diabetes mellitus will affect half a billion
people worldwide within a few decades, with severe economic and personal consequence (1). A
recent study estimated the projected number of adults with diagnosed diabetes to increase from 22
million to 61 million in 2060 in The United States (2). In the setting of strained health care provision
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with exigent, concurrent demands for efficiency and quality,
providing optimum care and preventing comorbidity in diabetes
is challenging.

Type 2 diabetes (T2DM) is by far is the most prevalent of the
two subtypes of diabetes, making up 90-95% of cases (3). It
develops as a result of impaired beta-cell function in
combination with insulin resistance in the tissues. The
resulting hyperglycemia, along with dyslipidaemia and
hypertension, has detrimental effects on many organ systems
(4). T2DM causes substantial long-term morbidity with late
diabetic complications from the eyes, kidney and nervous
system as well as increased risk of arteriosclerosis (5). One
clinical manifestation which is receiving increasing attention is
cognitive impairment or so-called diabetic “cogno-pathy” (6).
T2DM has been identified as an independent risk factor for
cognitive decline evolving into manifest Alzheimer’s disease
(AD) (7–9). T2DM patients with elevated HbA1c levels (10),
and intriguingly non-diabetics with acute elevated blood glucose
levels (11) as well as cognitively intact adults with pre-diabetes
(12), have decreased metabolism in brain regions characteristic
for AD. Furthermore, possible effects on AD of anti-diabetic
drugs such as pioglitazone, which reduce insulin resistance or the
Glucagon-Like Polypeptide-1 receptor agonist (GLP-1 RA), with
an effect on low-grade inflammation, are being investigated (13).
These findings motivate the search for biomarkers that are
sensitive to early functional brain changes on which prognosis
and intervention can be based.

Decades of intense research, including studies on patients
with stroke or headache, have advanced our understanding of the
physiological regulation of the brain’s blood supply and its
pathophysiological relevance (14). However, an obstacle in
understanding the physiology is that with decreasing vessel
diameter, it becomes increasingly difficult to probe regulatory
mechanisms and study the tight functional interactions between
vessels, neurons and glia (15).
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The concept of neurovascular coupling (NVC) describes a
cellular mechanism by which neuronal activation induces
concurrent local increases in cerebral blood flow (CBF). These
local increases of blood supply are critical to brain function, and
impaired NVC may play an early role in triggering cognitive
dysfunction in T2DM (16). In diabetes, cognitive ability is
influenced by multiple factors at the systemic level, such as the
degree of extra- and intra-cranial atherosclerosis, dysfunction of
glymphatic tissue clearance (17), and cellular dysfunction, such
as altered receptor expression. The identification of
neurovascular abnormalities that are attributable to diabetes
and precede structural and clinical changes, holds the potential
to guide personalized, preventive interventions (18).

In this narrative review, we focus on how NVC is impaired by
T2DM and how we can measure T2DM-related neurovascular
dysfunction in humans (Figure 1). We will first provide a brief
introduction to diabetes, cognitive decline, and the
neurovascular architecture. We will then discuss current
concepts of how diabetes affects NVC and in what way this
relates to cognitive decline. In the last section, we will review
commonly employed methodology that has contributed to our
understanding of NVC and its alteration in T2DM, with a focus
on magnetic resonance imaging (MRI). It bears mentioning that
while a detailed understanding of individual cellular mechanisms
is within reach in bench models, translating and relating this to
clinical or pre-clinical observations is not always possible.
COGNITIVE DECLINE IN THE SETTING
OF DIABETES

The relative general prevalence of dementia in individuals aged
over 60 years is 6-7% (19). Diabetes confers a 1.3 to 1.9-fold
increased risk of cognitive impairment, but even pre-diabetes
and diabetes-associated biochemical changes (fasting glucose,
FIGURE 1 | Overview of the complex and multifactorial mechanisms which lead to impaired cognition in type 2 diabetes. The focus of this review is the specific
diabetic influence on neurovascular coupling and how this leads to impaired cognition (bold in the figure).
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postload glucose, glycosylated hemoglobin, insulin) predict
cognitive decline (20). Also, diabetes is one of nine potentially
modifiable risk factors modelled by the 2017 Lancet Commission
on dementia prevention, intervention and care (21). Cognitive
decline encompasses subjective cognitive decline [reviewed in
(22)], mild cognitive impairment and manifest dementia with
AD being the most frequent underlying disease (Table 1). AD
can be divided into AD-pathophysiological process (AD-P),
which precedes the clinical phase (AD-C), and may include
patients with cognitive impairment due to AD-P before clinical
onset (25). The pathology behind AD is complex, involving
neuroinflammation and accumulation of b-amyloid and tau
protein leading to neuronal death and atrophy in specific
cortical areas (26). Thus, risk factors include T2DM and
genetics, among others, but the single most relevant is age (27).
DEFINITION OF COGNITIVE DECLINE

The mechanism by which diabetes induces cognopathy was
originally ascribed to vascular changes but this model is too
simple as multiple vascular and non-vascular processes act in
concert (28) (Figure 2). It has been demonstrated that
cognition can be affected by hyperglycemia, changes to
insulin secretion and sensitivity, T2DM complications,
comorbidity as well as certain medications. New findings
Frontiers in Endocrinology | www.frontiersin.org
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also show that the diabetes-induced metabolic milieu is
specifically conducive to AD-P processes with greater b-
amyloid plaque and tau deposition, advanced glycation end
products and activated microglia in diabetic AD compared to
non-diabetic AD (29, 30). At the pathophysiological level,
multiple mechanisms have been implicated, including
impai red NVC, a mal func t ion of cerebrovascu lar
au to r egu l a t i on (31 ) and g luco s e t r an spor t ( 32 ) ,
neuroinflammation (33) and insulin resistance (9). Of note,
insulin crosses the blood-brain barrier (BBB) and acts as a
neuropeptide in the central nervous system having distinct
neuromodulatory effects on key brain structures (34). Animal
studies have shown that insulin targets astrocytes (35) and has
trophic actions promoting synapse growth, neuron
maintenance and repair as well as improving hippocampal
synaptic plasticity (36). These findings indicate an intimate
relationship between diabetes and AD which led to the
proposal to consider AD as “type 3 diabetes” (37), and
prompted clinical trials testing the efficacy of anti-T2DM
drugs such as liraglutide (38), thiazolidinediones (39),
intranasal insulin (40) and metformin (41) in AD with
positive preliminary results (13).
AUTOREGULATION AND
NEUROVASCULAR COUPLING

Precise spatial and temporal titration of CBF supply is critical to
brain function. Cerebrovascular autoregulation stabilizes regional
cerebral blood flow by sheltering it from fluctuations in systemic
perfusion pressure. This mechanism is partly intrinsic to smooth
muscle cells at the pial arteriole/parenchymal section, which relax
and contract according to the transmural pressure, referred to as
the myogenic response (42). NVC refers to a separate mechanism
ensuring that perfusion is adjusted to the neuro-metabolic
demands at the cellular level. NVC can be thought of as a
variable resistor that works at the level of parenchymal arterioles
“in series” with, and at the level of pial vessels, “in parallel” with
cerebral autoregulation.

Innervation of Cerebral Vasculature
The density and nature of regional innervation of the cerebral
vasculature varies considerably depending on the lobe and
segment of the vascular tree. Based on fiber origin, the
innervation can be divided into intrinsic and extrinsic
projections. The perivascular nerves of the adventitia of pial
arteries and arterioles are external, while microvessels along
with interneurons and astrocytes receive intr ins ic
innervation (43).

The intrinsic neurovascular supply originates from the locus
coeruleus (noradrenaline), the raphe nuclei (serotonin), the
ventral tegmental area and the nucleus basalis (acetylcholine).
These projections from the basal nuclei innervate the vasculature
and the cells of the neurovascular unit, particularly astrocytes,
without leaving the brain (43). Although its role in NVC is
poorly understood, relevant receptors are present on the
TABLE 1 | Operational definitions of cognitive decline.

Diabetic
“cognopathy” (6)

Research term referring to cognitive impairment (e.g.,
memory impairment, reduced psychomotor speed, affected
executive function, verbal fluency and attention) that is
attributable to diabetes mellitus, typically associated with
functional and structural changes in the brain

Subjective
cognitive decline
(23)

1. Self-experienced persistent decline in cognitive capacity
in comparison with a previously normal status and
unrelated to an acute event.

2. Normal age-, gender-, and education-adjusted
performance on standardized cognitive tests, which are
used to classify

MCI or prodromal AD.
1 and 2 must be present
Exclusion criteria:
• Mild cognitive impairment, prodromal AD, or dementia
• Can be explained by a psychiatric or neurologic disease

medical disorder, medication, or substance use
Mild cognitive
impairment (MCI)
(24)

Measurable cognitive impairment without effect on activities
of daily living.
This diagnostic label is applied if there is no disease to which
MCI can be attributed. Term of exclusion.

Alzheimer’s
disease (AD) (24)

Progressive cognitive decline (i.e., impaired memory)
Preserved consciousness
Disrupted emotional control
Duration of at least 6 months
In-vivo markers of Alzheimer’s pathology:
Corticospinal fluid (CSF): amyloid b, total tau, and
phospho-tau
Positron emission tomography (PET): Regional accumulation
of amyloid and tau tracers, reduced mid-temporal and
mid-parietal glucose metabolism
Structural magnetic resonance imaging (MRI): Atrophy of
medial temporal lobe, medial parietal cortex
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involved cells and CBF changes can be invoked in response to
stimulation of the mentioned nuclei (43).

The extrinsic neurovascular supply system is composed of
sympathetic, parasympathetic and sensory nerve fibers (44)
running in the adventitia of pial arteries and arterioles (45).
These fibers, which predominantly originate in the superior
cervical ganglion (sympathetic), otic and sphenopalatine
ganglia (parasympathetic) and the trigeminal ganglion
(sensory), follow various paths including the ethmoidal nerve
to re-enter the cranial cavity. These systems are controlled by
brainstem and mesencephalic circuits and seemingly have no
major function in autoregulation during physiological conditions
(46). However, in certain states such as hypercapnia-induced
vasodilation or chronic conditions they do exert influence (47).
In hypertension, sympathetic innervation extends autoregulation
to higher pressures and may protect the brain against pressure
surges whereas sensory innervation may serve a protective role
restoring vessel tone after constriction (48, 49).

The Neurovascular Unit
The neurovascular unit (NVU) consists of a set of cells that
intimately interact to enable a temporal and spatial NVC and
secures that local blood supply is rapidly aligned to moment-to-
moment changes in regional neural activity and associated
fluctuations in metabolic demand and waste production (45).
The cells involved are neurons (pyramidal cells and
interneurons), astrocytes, smooth muscle cells, endothelial
cells, and pericytes (45). Depending on the ongoing level of
regional activity, neurons and astrocytes release vasodilatory
factors that act directly on the perivascular cells to induce
vasodilation and increase local arterial blood supply.

NVC involves five consecutive steps: Initiation, modulation
and spatial shaping, neurovascular transmission, retrograde
propagation and implementation (Figure 3) (45). It is
noteworthy that influences at the arteriolar and capillary level
Frontiers in Endocrinology | www.frontiersin.org 4
differ since arterioles, as opposed to capillaries, are not only
subject to locally mediated vasodilation in response to neuronal
activation, but also to retrograde propagation from capillaries
which also reaches pial arteries (45). NVC employs both feed-
forward (glutamate receptors, Ca2+, nitric oxide (NO),
eicosanoids) and feed-backward (adenosine, lactate and CO2)
signaling mechanisms, and the many messengers involved
provide redundancy and condition-dependent signaling
reflecting the previous and current state of the system (50).

Neurons. About eighty percent of the brain’s energy
expenditure is attributed to the generation of action
potentials in neurons, maintenance of ion-concentrations and
postsynaptic effects (51). Any perturbation of cellular supply
compromises the signaling function of neurons. To secure
sufficient neuronal blood supply, neurons directly control
their own homeostatic environment through glutamate
actions on N-methyl-D-aspartate (NMDA)-receptors which,
via downstream signaling and nitric oxide synthase (NOS)-
activation with subsequent increase in NO-synthesis, induces
vasodilation (52). The same glutamate signal also activates
receptors on neighboring astrocytes.

Although most cortical neurons in the cortex are
glutamatergic pyramidal cel ls , gabaergic inhibitory
interneurons are also relevant. The gabaergic interneurons
project to microvessels influencing the release of NO,
prostanoids, endothelin among others (53). The relative
contribution of pyramidal cells or interneurons to NVC likely
depends on multiple factors including location and the neuronal
circuit in question and requires further investigation (54).

Astrocytes are glial cells of key importance to NVC by virtue of
their perisynaptic and endfeet processes extending from their
soma (55, 56). They exert differential control according to the
metabolic state of the tissue through constriction and dilation
control pathways (57). In vitro studies have cast light on the
multiple factors influencing the balance between these
FIGURE 2 | Possible scenario for clinical progression (x-axis) from pre-diabetes to manifest clinical diabetic “cognopathy”. Moderators and comorbidity represent all
diseases and factors present before and after T2DM onset such as sleep apnea, obesity, hypertension etc. Adapted from Jessen and colleagues (27).
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vasoconstrictors and -dilators including previous vascular tone
(58), NO (59), O2, lactate and adenosine (57). As the primary
neurotransmitter, glutamate in itself activates specific astrocyte
group 1 metabotropic glutamate receptors (mGluR) leading to
increasing calcium concentrations which in turn forces release of
vasoactive substances (dilator and constrictor eicosanoid
gliotransmitters) from astrocyte endfeet proximate to the
smooth muscle cells (SMC) lining the vessels (60).
Phospholipase A2 activation induces release of arachidonic acid
which is converted to prostaglandins (for example PGE2, PGI2)
and epoxyeicosatrienoic acids (EETs). These reduce vascular tone
via prostaglandin receptor activation and TRPV4- and BKCa-
channels. Detrimental increase of vascular tone happens when
arachidonic acid is converted to 20-hydroxyeicosatetraenoic acid
(20-HETE) which may occur pathologically (61). It has been
observed that under physiological conditions simultaneous
activation of both neurons and astrocytes induces a 4-fold
increase in local CBF than the increase in ATP (60 vs 15%)
which is indirectly supportive of a feed-forward mechanism (62).

Smooth muscle cells, pericytes and endothelium. Smooth
muscle cells and pericytes make up the vasomotor apparatus of
the NVU (45). These cells ultimately determine vascular tone on
the basis of neuronal, astrocytic and possibly intrinsic system
influence (43). In cerebral capillaries, pericytes replace smooth
muscle cells and also serve to maintain structure and BBB (63).
Pericytes likely exist in both contractile and non-contractile
variations (64) and are interspersed at regular intervals along
Frontiers in Endocrinology | www.frontiersin.org 5
these vessels (65). Although they have been shown to dilate and
constrict in response to various stimuli (66), including amyloid b
(67) and during mild CO2-challenges (68), results are divergent
and their contribution to NVC is debated (69, 70). Recent results
suggest a substantial but slow regulation of capillary diameter by
pericytes, again introducing a serial layer of control of tissue
perfusion (68).

The endothelium itself possesses strong intercellular
vasodilators including NO and endothelin and has gap
junctions with vasomotor cells ensuring retrograde
propagation (45). The labile NO itself seems to exert influence
dependent on its concentration dynamics but in vivo studies are
sparse (71). Recent research has also identified a caveolae-
mediated pathway in arteriolar endothelial cells as a major
mechanism of neurovascular coupling. Caveolae are
invaginations of the plasma membrane that are specifically
abundant in arteriolar endothelial cells and mediate NVC
independently of endothelial NOS (72). It has been
hypothesized that caveolae in the arteriolar endothelial cells
may serve as local clusters for ion channels and receptors that
convey vasodilatory signals to adjacent smooth muscle cells (72).
A recent study in mice found that arteriolar endothelial cells are
unique in that they possess abundant caveolae (72). It seems this
caveola-specific function in NVC acts independently of the NOS-
pathway described above as partial ablation of either NOS or
caveolae both partially impair NVC. Ablation of both pathways
induces complete decoupling (72).
FIGURE 3 | Schematic summary of the neurovascular coupling cascade (46). The cellular substrate for each step is seen, PN – principal neuron, IN – interneuron,
AC – astrocyte, PC – pericyte, SMC – smooth muscle cell, ETC – endothelial cells, SC-proj. – subcortical projections from locus coeruleus, basal forebrain, raphe
nuclei, PV-proj. – perivascular projections from cranial autonomic ganglia. The bottom rows describe the possible influence of diabetes on each step and how this
has been detected.
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THE INFLUENCE OF DIABETES ON
CEREBRAL BLOOD FLOW

While it is now generally accepted that diabetes mellitus affects
NVC, it remains a challenge to dissect the contributions of
chronic hyperglycemia, dysinsulinemia and other modifiers
such as hypertension, aging and still other variables (Figure 1,
also, see section on investigations in humans below). This has
been exemplified in the attempt to disentangle diabetic and pre-
diabetic vascular complications from the associated (sub-)
clinical manifestations (73).

Hyperglycemia itself has acute and chronic adverse effects on
NVC. In humans, acute hyperglycemia reduces light-flicker
induced vasodilation of retinal arteries (74). Such impairment
has been confirmed in animal models pointing to
hyperpolarization at the gliovascular interface as the possible
mechanism (75–77). This would occur when neuronal activation
and subsequent Ca-increase in the endfeet result in potassium-
increase and Kir-channel activation in adjacent smooth muscle
cells (76). Implicating the NOS-pathway, administration of
sodium nitroprusside (an NO donor), seems effective in
ameliorating such hyperglycemia-induced decoupling (77).
Whether manipulating NO-pathways in humans represents a
valid therapeutic avenue remains to be seen.

Increased glucose concentrations also induce oxidative stress
and compromise the function of gap junctions of in vitro
astrocytes (78). Oxidative stress represents an important
pathogenetic factor that is shared between T2DM and AD,
contributing to endothelial and microvascular dysfunction with
neurovascular uncoupling in T2DM (79) and increased amyloid-
b deposition in AD (80). Hyperglycemia has also been shown to
increase tau phosphorylation in hippocampal neurons of diabetic
rats, involving a reduced expression of caveolin-1, the essential
structure protein of caveolae, mentioned above, and activation of
the mTOR/S6K signaling pathway (81). Namely caveolae
represent a recently discovered research target with particular
relevance for NVC.

Transcranial doppler (TCD) and functional MRI studies
dominate the available clinical knowledge but findings are not
entirely congruent (16). Phase-contrast MR measurements did not
identify global CBF differences between T2DM patients and
controls although it did correlate with cognitive ability (82). Also,
global CBF did not predict changes over time suggesting that
deteriorating cerebral perfusion does not drive cognitive decline
(83). Regional blood flow assessed using arterial spin-labeling
(ASL)-MRI confirmed these findings to a degree with
comparable CBF reductions in patients with T2DM with
subjective cognitive decline, vascular dementia and AD compared
to controls (84). However, impaired glycemic control was related to
reduced CBF hinting at a possible specific diabetes mechanism.

Overall, these results indicate that CBF-changes and cognitive
decline in T2DM are determined by tertiary risk factors and not a
particular T2DM pathology. Conversely, other studies have found
compelling evidence for T2DM specific changes. Cerebral
hypoperfusion has been shown with ASL-MRI in individuals
with T2DM (85–87). While the magnitude of hypoperfusion
Frontiers in Endocrinology | www.frontiersin.org 6
varies, it correlates with cognitive declineClick or tap here to
enter text.. In one study, an interaction between hypoperfusion
and hypertension suggests that increased blood pressure may
precipitate the CBF-decrease, possibly involving compromised
autoregulation (87). In these populations, brain atrophy was
comparable to controls suggesting that altered perfusion
precedes structural changes. Another ASL-study investigated
healthy controls, patients with insulin resistance (but not
diabetes) and T2DM patients (88). Here, CBF fluctuated with
spontaneous end-tidal CO2 indicating intact cerebrovascular
reactivity (CVR) in manifest T2DM and healthy controls, but
not in unmedicated patients with insulin resistance. This was
speculated to be attributable to glucose-lowering medications,
statins and antihypertensives, thought to increase NVC in the
diabetics but not the unmedicated insulin resistance group.

Regional low-grade neuroinflammation represents another
overlap between neurodegeneration and diabetes (89)It is likely
that the mechanism leading to CNS insulin resistance in
Alzheimer’s disease, diabetes and obesity in general is the same
and involves such persisting low-grade neuroinflammation. This
is likely caused by recruitment of macrophages and secretion of
an “inflammatory soup” with cytokines such as TNF-a, IL-1b
and IL-6 (90). The initiation of the inflammation cascade can be
ascribed to various elements including toxic metabolites,
ischemia, infection, trauma. This is a difficult research target as
it likely occurs over several years and before symptom onset.
Neuroinflammation may induce exaggerated vasoconstriction
and diminished vascular reactivity (89). In humans, a
prospective ASL-study in T2DM patients supported this view
(91). Using CO2-rebreathing to assess CVR, prospective rCBF
measurements showed diminished reactivity after just two years
which was associated with a decrease in cognitive ability (91).
This T2DM group also had higher inflammation markers, the
levels of which corresponded with decreases in vasoreactivity
independently of glycemic and blood pressure control.

While ASL provides measures of regional blood flow,
functional MRI (fMRI) maps regional changes in the blood
oxygen level-dependent (BOLD) signal (92). The regional
BOLD signal, with some caveats (see below), can be used to
specifically assess regional NVC at the tissue level (93). BOLD
fMRI in early T2DM revealed changes in the hemodynamic
response function were observed indicating deterioration of
NVC (94). Using similar methods in a breath-hold paradigm,
Tschistiakova and colleagues showed that T2DM patients with
hypertension had decreased CVR and cortical thickness
compared to patients with only hypertension, again suggesting
a specific T2DM effect on NVC (95). Hu and colleagues
pioneered co-analyzing resting state fMRI and ASL data, an
elaboration upon methods previously applied in schizophrenia
and depression, to develop specific NVC biomarkers (96, 97).
They found that several of these hybrid markers were decreased
regionally in T2DM patients without cognitive impairment
which might identify patients where early intervention would
arrest a pathological cerebrovascular trajectory.

Astrocyte involvement in maintaining BBB also deserves
mention in this context. White matter lesions (WML) are
July 2022 | Volume 13 | Article 874007
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associated with increased risk of dementia and cognitive decline
as well as stroke (98). Their cause is disputed but may relate to
BBB dysfunction (99). In T2DM, cognitive decline is associated
with WMLs, atrophy, infarcts and HbA1c and BBB permeability
may be increased in these patients (100, 101). Thus, there is an
indirect connection between WMLs and BBB disruption in the
setting of T2DM with cognitive decline, however, findings are
not homogenous and further studies are needed as the specificity
of these changes is debatable (102).

Effect of Antidiabetic Treatment on NVC
Therapeutic manipulation of impaired NVC is in its infancy.
Aside from improving vascular health, other interventions may
protect against cognitive decline (103). Resveratrol may acutely
enhance cerebrovascular responsiveness, as measured by TCD,
and possibly also clinically measures of cognition but findings
need to be reproduced (104, 105). In diabetic mice,
empagliflozin, a sodium glucose transporter inhibitor,
ameliorated detrimental structural changes in the NVU (106),
possibly through a specific action on astrocyte foot process
detachment (107). Other drugs may have detrimental effects,
for example, non-steroidal anti-inflammatory drugs including
indomethacin and naproxen have been shown to attenuate NVC
(108). Semaglutide, a long-acting GLP-1 analogue, which is very
effective in T2DM, is entering phase 3 development for the
indication of Alzheimer’s disease. Both clinical and preclinical
studies have shown promising results with regards to this drug’s
effect on cognitive decline (109, 110). Several mechanisms have
been suggested and it is particularly interesting that these drugs
may have anti-inflammatory properties (111).
INVESTIGATING NEUROVASCULAR
COUPLING IN HUMANS

In humans, NVC is studied non-invasively using MRI, positron
emission tomography (PET) and TCD. NVC is typically studied
as the regional or global response in blood flow to various forms
of stimulation. In the following section, we discuss the strengths
and weaknesses of relevant modalities to probe NVC.

Transcranial Doppler Ultrasound
TCD is highly accessible, non-invasive, safe and provides
measurements in real-time with high temporal resolution (112).
Blood flow velocities in the major arteries are measured as regional
CBF surrogates and evoked changes are typically in the range of
10-20% in the posterior and 5-8% in the middle cerebral artery
(50, 113). Vessel diameter changes with blood gas composition
and during hypercapnia, metabolic regulation of the NVC is
reduced during passive flexion of the arm (114). Consequently,
changes are reliable only if vessel diameter is unchanged which
may be fair to assume when looking at rapid responses (115).
However, end-tidal CO2 does fluctuate on a breath-by-breath basis
and CBF measurements by TCD may be falsely lowered during
hypoxia and hypercapnia (116). Also, reliable measurements
require user experience and while being highly accessible,
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portable and non-invasive this method’s sensitivity and
reproducibility may be lower and is highly user-dependent.

Positron Emission Tomography
and Single-Photon Emission
Computed Tomography
The tracer employed defines the usefulness of PET to study
biological processes. With regards to studying metabolism and
blood-flow 18F-fluro-deoxy-glucose (FDG) and 15O-H2O water
are gold standard. Amyloid tracers are available and used
clinically in the diagnosis of AD. Cellular FDG-uptake is
representative of glucose metabolism in the 20-30 minutes
following tracer injection with a theoretical spatial resolution
of around 4-6 mm. While the time resolution is low, this method
allows investigation of neurometabolic coupling (change in
cerebral metabolic rate vs. blood flow (DCMRGlu/DCBF)). NVC
per se is not always defined in the same manner and FDG-PET as
well as calibrated BOLD (see below) allows for more stringent
measurement of the neuronally-induced change in CBF at an
arteriolar and capillary level whether this is defined as neuro-
metabolic or neurovascular coupling.

The freely diffusible 15O-H2O, as detected by PET, is the gold
standard for minimally-invasive measurement of blood flow and
can detect transient phenomena of around 30 sec. Academically,
it has been discussed whether glucose metabolism is an accurate
proxy for neuronal activation. However, at least in health,
perfusion in the CNS is closely coupled to metabolism. Indeed,
the case has been made that regional CBF increases during
activation is driven primarily by coupling to glucose
metabolism whereas oxygen consumption increases are less
pronounced (117). The PET-modality can be combined with
CT or MR to give hybrid measurements of CBF and brain
anatomy and function. The major drawbacks are the use of
ionizing radiation and limited availability.

Magnetic Resonance Imaging
Compared to PET, fMRI has the advantage of excellent spatial
resolution and not using ionizing radiation although sometimes
contrast agents are required. Several MRI methods are relevant
in the study of NVC including BOLD, ASL and phase-contrast
fMRI. Gadolinium has been used to evaluate the intactness of the
BBB. Cardiovascular reactivity has been assessed using ASL and
BOLD fMRI during breathing of CO2-enriched gas, breath-
holding or rebreathing.

Arterial Spin Labeling
ASL quantitates regional CBF without use of contrast or
radiation. The method labels blood water molecules in a slab
and tracks them circulating the brain. Clinically, ASL can
distinguish normal brains from AD (118) and in the research
setting it directly allows evaluation of NVC during a
neurostimulation paradigm. Discussion is ongoing whether
regional CBF, measured by ASL, correlates with oxygen and
glucose consumption. However, FDG-PET and ASL-MRI
correlate in CBF and the cerebral metabolic rate of oxygen
(CMRO2) and glucose metabolism (r=0.54, p<0.0001 and
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r=0.31, p=0.005 respectively) indicating that ASL-CBF reflects
oxygen and glucose metabolism (119, 120). Combining fMRI
and ASL, functional and CBF maps can be assessed together and
may provide more specific markers for neurovascular decoupling
(96, 97).

Blood Oxygen Level Dependent MRI
BOLD fMRI can capture the regional vascular response to neuronal
activation with high temporal and spatial resolution in heavily T2*-
weighted sequences (Figure 4). To use this signal as a measure for
NVC requires factoring in dynamics of CBF, volume and cerebral
metabolic rate for oxygen (CMRO2). It is a proxy for neuronal
activation and its validity relies on intact physiological cascades. The
BOLD-signal reflects the uniformity of themagnetic field in response
to paramagnetic deoxyhemoglobin washout from the capillary bed.
Thus, deoxyhemoglobin can be thought of as an endogenous
contrast agent. With no NVC, neuronal activity would result in
increased deoxyhemoglobin and a decreased BOLD signal. However,
NVC induces an overcompensating flow increase leading to a
relative decrease of deoxyhemoglobin and an increase in the BOLD
signal. That NVC is likely initially driven by glutamate-release and
not O2 consumption, means that theoretically BOLD is a measure of
the intactness of NVC as induced by synaptic activity (15). Thus,
reduced BOLD signals can indicate decreased neuronal activation or
dysfunctional NVC at some point in the cascade. To mitigate other
influences BOLD signals can be evaluated in conjunction with ASL
and a vascular challenge, a combination also called calibrated BOLD
(121). This combination allows disentanglement of the neuro-
metabolic response from the vascular CBF response to a stimulus,
that is DCMRO2/DCBF. Other methods have been used to
disentangle vascular and neural factors including normalization to
baseline CBF or CVR; comparison with other neuronalmarkers such
as electro-encephalogram, magnetoencephalography and PET; and
FIGURE 4 | Idealized BOLD response. Steady-state is disrupted by a stimulus which
state is re-acquired. The rising curve reflects an increase in magnetic field uniformity d
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statistical modelling (122). Event-related approaches and
performance-matched stimuli are likely preferable in group
comparisons (94, 96, 97).

Phase-Contrast MRI
Phase contrast MRI has been used to assess blood velocity or
bulk flow in supplying vessels and is based on the principle that
hydrogen nuclei moving through a magnetic field gradient will
acquire a velocity-dependent phase shift. Together with brain
volume, acquired from a structural scan, CBF per ml brain tissue
per minute can be obtained and corrected for brain tissue
density. The method provides absolute measures of global
blood flow with a high temporal resolution and without
requiring a contrast agent.

Dynamic Contrast-Enhanced MRI
Lastly, pericyte control of microcirculation may be affected and a
measure for their function may be capillary transit time
heterogeneity which can be measured with dynamic contrast-
enhanced MRI (123). The biological basis is an increase in transit
time heterogeneity following neuronal activity and consequent
capillary recruitment. Theoretically, compromised regulation of
this capillary dilation, as would be expected to be present in
T2DM-mediated neurovascular uncoupling, would manifest as
increased capillary transit time heterogeneity. This has not yet
been investigated in T2DM to our knowledge.

Technical Considerations
Technical limitations need to be considered when measuring
regional cerebral activation and blood flow simultaneously and
contribute to the heterogeneity of NVC investigations. Aging has
its own detrimental effects on cerebral hemodynamics (124) and
increasing age is associated with increasing prevalence of
results in an initial dip, an overshoot and lastly an undershoot before steady-
ue to washout of paramagnetic deoxyhemoglobin.
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comorbid conditions such as hypertension (125) and obesity
(126). Arterial vascular pathology produces multiple secondary
effects, lowering capillary density, disrupting the BBB, damaging
the endothelia, reducing contractility, increasing pulsatility and
compromising retrograde propagation (122). In some of these
cases, CO2-enriched air may trigger vascular steal phenomena
which necessitates evaluation of the global vascular
haemodynamics. Other variables such as time of day, level of
arousal, alcohol, caffeine, exercise, menstrual phase and
medications also affect measurements (127). Age, sex and body-
mass index influence cardiac output distribution to the brain but
complete correlation between neurocognitive and neurovascular
ageing is not given and reduced CBF in the elderly does not seem
to result from age-related decreases in cardiac output (128).
Further, age likely affects glia and neurons differently and
changes may be driven more by one group of cells.

Lastly, as stated above, each modality has distinct
characteristics with regards to temporal and spatial resolution.
With regards to temporal resolution, ultrasound has the highest
and PET the lowest. With regards to spatial resolution, with some
variation, fMRI and ASL are likely superior. However, a typical
fMRI pixel size of around 3-4 mm is still far from the
approximately 200 µm at which some mechanisms have been
described for NO-mediation of NVC between neurons and
arterioles in the rat hippocampus (71). The anatomical substrate
is present since both neurons and smooth muscle cells can co-
inhabit a space of this size (129). While higher-field systems may
provide greater spatial resolution they are still no substitute for the
insights which invasive animal studies can provide.
CONCLUSIONS AND FUTURE
RESEARCH TRAJECTORIES

The cellular mechanisms regulating NVC are complex and still
incompletely understood. Each modality used to measure NVC
Frontiers in Endocrinology | www.frontiersin.org 9
in humans has its limitations, and the multiple confounding
variables need to be considered in the population of interest.
Despite of these limitations, there is converging evidence for an
independent effect of the T2DM-state on NVC with cognitive
decline as a possible progressing clinical correlate. Potentially, all
steps of the NVC-cascade may be affected by separate diabetes-
induces changes and currently it is impossible to discern which
are clinically relevant. Further, how the induced pathological
changes precisely affect measurements of the discussed
modalities needs clarification.

Early detection of impaired NVC in T2DM patients could
represent an opportunity for initiation of preventive treatment
before irreversible damage occurs, especially since it is plausible
that novel therapeutics may directly or indirectly involve NVC.
Future studies could explore subgroups of T2DM where specific
aspects of CBF control may be compromised such as those with
autonomic neuropathy. NVC effects of medications such as
pioglitazone and GLP-1 receptor agonists with effects on
insulin sensitivity and low-activity inflammation commonly
used in diabetes also need further exploration.
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