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Abstract: Background: A common task in machine learning is clustering data into different groups
based on similarities. Clustering methods can be divided in two groups: linear and nonlinear.
A commonly used linear clustering method is K-means. Its extension, kernel K-means, is a
non-linear technique that utilizes a kernel function to project the data to a higher dimensional
space. The projected data will then be clustered in different groups. Different kernels do not perform
similarly when they are applied to different datasets. Methods: A kernel function might be relevant
for one application but perform poorly to project data for another application. In turn choosing
the right kernel for an arbitrary dataset is a challenging task. To address this challenge, a potential
approach is aggregating the clustering results to obtain an impartial clustering result regardless
of the selected kernel function. To this end, the main challenge is how to aggregate the clustering
results. A potential solution is to combine the clustering results using a weight function. In this
work, we introduce Weighted Mutual Information (WMI) for calculating the weights for different
clustering methods based on their performance to combine the results. The performance of each
method is evaluated using a training set with known labels. Results: We applied the proposed
Weighted Mutual Information to four data sets that cannot be linearly separated. We also tested the
method in different noise conditions. Conclusions: Our results show that the proposed Weighted
Mutual Information method is impartial, does not rely on a single kernel, and performs better than
each individual kernel specially in high noise.

Keywords: weighted mutual information; aggregated clustering; kernel k-means; conditional entropy

1. Introduction

Large amounts of data are collected on a daily basis through social media, medical imaging
equipments, satellite imagery, surveillance cameras, and many more. Developing advanced methods
for summarizing, grouping, and mining these large dataset is in high demand [1]. Cluster analysis
is a common unsupervised learning method used to discover underlying patterns for dividing data
into different groups. Cluster analysis is performed to discover distinct individuals with similar
features within a large population and group them in the same cluster [2]. Clustering has been
increasingly used to address multidisciplinary problems as an important step in machine learning [3]
and data mining [4]. Cluster analysis plays an important role in many areas such as marketing, medical
diagnosis, information retrieval, psychology and social sciences, pattern classification, and many
more [5]. Some examples are:
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• Marketing: Clustering is used for market segmentation to identify customers with similar profiles
for advertising purposes [1].

• Web Browsing: Clustering analysis helps to categorize web documents for providing better results
for the search target [6].

• Cancer Research: Clustering helps to partition the patients into subgroups with the similar gene
expressions. These subgroups can help with better understanding of the disease as well as
diagnostic purposes [1].

• City Planning: Clustering can be used to group houses according to their value and location [1].

Clustering methods try to discover the hidden features in the data, group data points based on the
similarities of the identified features while optimizing an objective function [7–9]. Several clustering
methods have been developed [3,9] such as K-means, Fuzzy c-means, mixture models, and spectral
clustering. The focus of our study is on the class of K-means clustering methods including K-means
and kernel K-means. K-means is a well known clustering method that is commonly used for clustering
analysis. It is based on minimizing Euclidean distance between each point and the center of the cluster
to which it belongs. The advantages of K-means are its simplicity and speed [10–14].

K-means can discover clusters that are linearly separable. Kernel K-means is a non-linear extension
of K-means clustering method. Kernel K-means clustering, as the name implies, uses a kernel function
to project nonlinearly separable clusters into a higher-dimensional feature space to make them linearly
separable. In our previous work [15], we introduced the idea of combining clustering results of
different kernels given the true labels of the entire dataset, i.e., assuming a fully supervised method.
This assumption, of course was essentially hypothetical and was only considered to demonstrate proof
of concept for the proposed idea.

Because the assumption of knowing the labels for the entire dataset is not true for any real world
machine learning application, we extended the work to be applicable to real problems. The proposed
clustering method here, aggregates the clustering results obtained using several kernels. To aggregate
the clustering results, we develop a weighting function based on normalized mutual information
(NMI) score [16–19] where NMI is computed for clustering results (of a training set with known labels)
obtained by different kernels.

1.1. Clustering Challenges

There are several challenges associated with data clustering. A major issue is clustering data
points that are not linearly separable. A common approach is to project the data points to a different
feature space. This is a sound solution. However, the challenge is choosing the relevant transform
function. In real world applications, the true groups are unknown. Hence, there is not an obvious
choice among transforming functions. To address this issue, one may apply a set of different transform
functions, cluster the transformed data points, and aggregate the clustering results. The next related
challenge is aggregating the results. Our potential solution to this issue is combining the results using
a weight function. The question is: How do we weigh the results? To address this challenge, we
propose to use a training set with known labels. First, we cluster the training set. We then evaluate
the clustering performance of the training set using the known true labels. The weights are assigned
based on the evaluated clustering performance of each transform function. We should point out
that kernel K-means as a clustering algorithm is an unsupervised learning method and hence, the
proposed aggregated kernel clustering algorithm is essentially an unsupervised method. However, our
performance weighting function is based on NMI which is a supervised learning method for evaluation
of the clustering performance. It means we use a supervised performance measure along with an
unsupervised learning method. Our future work is focused on replacing the supervised performance
measure with an unsupervised one and make the whole algorithm unsupervised.
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1.2. Related Data

To evaluate the performance of the proposed method, four datasets are used. We apply kernel
K-means using three different kernels to group he following datasets. Each dataset is then corrupted
with low, moderate, and high noise levels and kernel K-means is applied to the noisy data. The datasets
are summarized below.

• Two Inner Circles;

• Noiseless;
• Corrupted with low noise;
• Corrupted with moderate noise;
• Corrupted with high noise;

• Two Moons (half rings);

• Noiseless;
• Corrupted with low noise;
• Corrupted with moderate noise;
• Corrupted with high noise;

• Iris data;

• DNA copy number data.

2. Methods

An overview of k-means and kernel K-means is presented first. Next, we discuss the proposed
weighting method using normalized mutual information (NMI) which is calculated to evaluate
clustering performance [4,16–19].

2.1. Brief Review of K-Means Clustering

2.1.1. K-means

K-means identifies K centers by minimizing the total squared distance between each point and its
assigned cluster center. K-means technique can be summarized by first selecting K arbitrary centers,
which are usually, as Lloyd’s algorithm suggests, uniformly selected at random from the data. Second,
each point is assigned to a cluster that is the closest to it based on the Euclidean distance between them.
Third, a new cluster center is calculated based on the average distance of all data points that belong to
that cluster. Finally, the second and third steps are repeated until the algorithm converges. K-means
objective function can be written as ∑k

j=1 ∑xa∈Cj

∥∥xa −mj
∥∥2 , where Cj is the cluster j, mj is the center

of cluster j, and ‖.‖ is the Euclidean distance.

2.1.2. Kernel K-Means

Kernel K-means was introduced to identify clusters that are not linearly separable. The idea of
kernel K-means clustering relies on transforming the data into a higher-dimensional feature space
using a nonlinear function to make the data points linearly separable in the projected space. Let
{x1, x2, . . ., xn} be a set of data points, k be the number of clusters, Cj be the cluster j,

{
Cj
}k

j=1 be a
partitioning of data points, and φ be a non-linear function. Kernel K-means algorithm is summarized
below [4].

1. Form the kernel matrix K by calculating its elements. Each element of K is a dot-product in the
kernel feature space:

κ(xa, xb) = φ(xa) · φ(xb), a, b = 1, 2, . . ., n. (1)
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where φ(xa) denotes the data point xa in transformed space. The dot product φ(xa) · φ(xb) is
computed using kernel function κ. Some popular kernel functions are Gaussian, polynomial, and
Sigmoid [20].

2. Randomly initialize each cluster center.
3. Compute Euclidean distance of each data point from the cluster center mj in the

transformed space:

φ(xa)−mj = φ(xa)− ∑
xb∈Cj

φ(xb)

|Cj|
= φ(xa) · φ(xa)−

2 ∑xb∈Cj
φ(xa) · φ(xb)

|Cj|
+

2 ∑xb ,xc∈Cj
φ(xb) · φ(xc)

|Cj|2
(2)

where |Cj| is the number of elements in the cluster Cj.
4. Assign data points to a cluster with minimum distance.
5. Compute the new cluster centers mj, j ∈ 1, 2, . . ., k as the average of the points belong to cluster

Cj in transformed space:

mj = ∑
xb∈Cj

φ(xb)

|Cj|
, j = 1, 2, . . ., k (3)

6. Repeat from step 3 until the objective function is minimized:

argmin
mj

D(
{

Cj
}k

j=1) = argmin
mj

k

∑
j=1

∑
xa∈Cj

∥∥φ(xa)−mj
∥∥2 (4)

2.2. Aggregated Kernel Clustering

In kernel K-means method, the clustering result of a particular dataset depends on the selected
kernel function. Several kernel functions have been introduced for kernel clustering such as Gaussian,
polynomial, linear, spline, and hyperbolic tangent. Selecting a kernel function for a clustering
application is a challenging task. Hence, one may use a set of different kernel functions, perform kernel
K-means using each kernel, and combine the clustering results.

A common approach to combine the clustering results is majority voting where the cluster label
of each object is decided by the majority and therefore often an odd number of clustering results are
combined by this method. For example, assume three clustering methods group object xa in cluster 1
and two clustering methods group xa in cluster 2. Because there are 3 votes for cluster 1 and 2 votes
for cluster 2, the majority voting method will cluster xa to group 1. In this way, each method gets the
same weight regardless of their performance.

To address this issue, we aggregate the results of several kernel functions by proposing Weighted
Mutual Information (WMI). The idea of WMI is appealing, because it will address the shortcoming of
majority voting by introducing the concept of "weights" based on clustering performance. Therefore, to
combine the results, we first calculate mutual information to quantify the performance of each method.
Computing the performance weights (WMIs) from partially labeled data is based on supervised
learning concept assuming that a training set with true class labels is available.

2.2.1. Normalized Mutual Information

Mutual Information (MI) is defined by:

MI = H(T)− H(T|C) (5)

where H(T) is entropy of true class labels T:

H(T) = −
t

∑
i=1

P(Ti)log(P(Ti)) (6)
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where t is the number of true classes and Ti is true class i. H(T|C) is conditional entropy of true class
labels T given clustering result C, i.e., the entropy of class labels within each cluster:

H(T|Cj) = −P(Cj)
t

∑
i=1

P(Ti|Cj)log(P(Ti|Cj)) (7)

where Cj is cluster j in the clustering result. Although, MI can be used to evaluate the clustering
result, it is not bounded. To compare the clustering results obtained by different methods, we prefer
to use a criterion with specific bounds. To put bounds on MI, it can be normalized. Normalized
Mutual Information (NMI) is obtained by normalizing MI using entropy of the true class labels and
the clustering result as follow:

η =
2MI

H(T) + H(C)
=

2(H(T)− H(T|C))
H(T) + H(C)

(8)

where η is NMI, and H(C) is:

H(C) = −
c

∑
j=1

P(Cj)log(P(Cj)) (9)

where c is the number of clusters in the clustering result. For a perfect clustering result where t = c,
Ti = Cj, and so H(C) = H(T). Moreover, P(Ti|Cj) = 1, and hence log(P(Ti|Cj)) = 0, H(T|C) = 0,
and in turn:

η =
2MI

H(T) + H(C)
=

2H(T)
2H(T)

= 1 (10)

NMI values close to one indicate that most of identified cluster labels agree with the true class
labels. That is, most of the objects that belong to the same class are clustered in the same cluster [4].
NMI value ranges from zero to one, but we should point out that it is a non-linear criterion for the
clustering performance. For example, if in the clustering result, half of the data is correctly clustered,
a linear criterion will score 0.5, while NMI score is zero. Figure 1 shows NMI values with regard
to clustering performance. It shows that NMI has a value of zero when 50% of the elements are
correctly clustered, a value of about 0.5 when 88% of the elements are correctly clustered, a value of 0.6
when 93% of the elements are correctly clustered, and a value of one when 100% of the elements are
correctly clustered.

Figure 1. NMI (Normalized Mutual Information) score vs. true positive rate (percentage of elements
clustered in right groups).
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2.2.2. Weighted Mutual Information (WMI)

Assume R different kernel functions are used to generate R clustering results. Let ηr be obtained
NMI score using a training set for clustering result r ∈ 1, 2, . . ., R:

ηr =
2MIr

H(T) + H(Cr)
=

2(H(T)− H(T|Cr))
H(T) + H(Cr)

(11)

where H(Cr) is the entropy of clustering result r, MIr is MI regarding clustering result r, and ηr is
NMI of clustering result r. We define Weighted Mutual Information (WMI) or performance weight of
clustering result r by:

wr =
ηr

∑R
k=1 ηk

=

2MIr
H(T)+H(Cr)

∑R
k=1

2MIk
H(T)+H(Ck)

=

H(T)−H(T|Cr)
H(T)+H(Cr)

∑R
k=1

H(T)−H(T|Ck)
H(T)+H(Ck)

, r = 1, 2, . . ., R. (12)

and ∑R
r=1 wr = 1. H(T), H(C), and H(T|C) are computed by:

H(T) = −
t

∑
i=1

ni
n

log(
ni
n
), (13)

H(C) = −
c

∑
j=1

nj

n
log(

nj

n
), (14)

and

H(T|C) =
C

∑
j=1

nj

n

t

∑
i=1

ni
j

ni
log(

ni
j

ni
) (15)

where ni is the number of objects in the true class i, nj is the number of objects grouped in the cluster
j, ni

j is the number of objects grouped in the cluster j and belong to the true class i, and n is the total
number of objects.

After calculating the performance weights (WMIs) for R clustering result, we combine the results
obtained by different kernels (different clustering methods) as follow. For a given object xa, we obtain
the assigned group label by each kernel and compute:

wxa
j =

R

∑
r=1

wr|(xa ∈ Cj) (16)

where wr is the performance weight (WMI) of the method r and

wr|(xa ∈ Cj) = wr if xa ∈ Cj, (17)

and it is equal to zero if xa /∈ Cj. The cluster label for object xa will then be determined by:

argmax
j

wxa
j (18)

3. Results

Two datasets including two inner circles and two moons are two-dimensional, Iris data is
four-dimensional, and DNA copy number data is several thousand-dimensional. In the first step,
kernel K-means method is applied to a training set with known labels. Three different kernels including
Gaussian, polynomial, and hyperbolic tangent are used. NMI score is computed for clustering result
obtained by each kernel for the training set. For each noise level and each kernel, clustering results for
100 different instances of noisy data are obtained and NMI scores are computed. Monte Carlo average
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NMI is then computed. The Monte Carlo average NMI score obtained by kernel r (for the training set
corrupted with specific noise level) will be used to calculate the weight of the kernel r. Next, we use
the kernels to group the whole dataset. The clustering results are then aggregated by the weights that
were calculated for the training set in the previous step. Finally, we compare the aggregated results
obtained by majority voting and WMI.

3.1. Two Inner Circles

We first calculate the average NMI score and estimate WMI for each kernel using partially labeled
data. The clustering results and estimated WMIs are summarized in Table 1. For the noiseless inner
circles, among all kernels, Gaussian kernel has the best performance evaluated by average NMI score.
The clustering results are then combined using WMI obtained for each kernel. Gaussian kernel gets
the highest weight of 0.740. Figure 2 shows the clustering results of training data marked in black and
red obtained by three different kernels. Training data is a subset with known labels that is randomly
selected from the original true groups (marked in light gray). Among the three kernels, Gaussian
is able to completely separate the two original clusters. Table 2 summarizes the clustering results
obtained using Gaussian, polynomial, and tangent kernels along with combined results using majority
voting and the proposed WMI. The first row of the table shows NMI score for Gaussian (score of
one), polynomial (score of zero), and hyperbolic tangent kernel (score of zero). The results indicate
that polynomial and hyperbolic tangent kernels with NMI of zero can cluster only half of the data
points into the right clusters. WMI scores (Table 1) are calculated for the training data and are used
for aggregating the results. As we can see in Table 2, the WMI method performs better than majority
voting. The visual representation of clustering result (Figure 3) obtained by WMI and majority voting
show how WMI is able to detect the original classes while majority voting suffers by giving equal
votes to each kernel.

Table 1. NMI (Normalized Mutual Information) scores and WMI (Weighted Mutual Information)
values obtained by different kernels for clustering of a training set (with known labels) randomly
selected from inner circles data corrupted with different levels of noise.

Gaussian Kernel Polynomial Kernel Tangent Kernel

NMI 1 0.344 0.008Noiseless WMI 0.740 0.254 0.006

NMI 0.698 0.240 0.028Low Noise WMI 0.722 0.248 0.029

NMI 0.678 0.238 0.027Moderate Noise WMI 0.719 0.252 0.029

NMI 0.602 0.216 0.03High Noise WMI 0.710 0.254 0.036

Figure 2. Clustering of the labeled training set for two inner circles (gray dots show entire data)
obtained by Gaussian, polynomial, and tangent kernels.
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Table 2. Performance of clustering results (evaluated by NMI score) obtained by different kernels along
with majority voting and WMI kernel clustering for inner circles corrupted with different noise levels.

Gaussian
Kernel

Polynomial
Kernel

Tangent
Kernel

Majority
Voting

WMI
Kernel Clustering

Noiseless 1 0 0 0.001 1
Low Noise 0.799 0.020 0.0003 0.176 0.801

Moderate Noise 0.821 0.140 0.001 0.162 0.810
High Noise 0.713 0.154 0.002 0.175 0.742

Figure 3. Clustering results obtained by Gaussian, polynomial, and tangent kernels along
with aggregated results obtained by majority voting and WMI (Weighted Mutual Information)
kernel clustering.

Next, we added low level of noise to the inner circles. With low noise, Gaussian kernel has the
highest weight of 0.722, while the weights for polynomial and tangent kernels are 0.248 and 0.029
respectively (Table 1). Figure 4 shows clustering results obtained by three different kernels, and
aggregated result obtained using majority voting and WMI for inner circles corrupted with high noise.
Aggregated result using WMI is impartial and yields an NMI score of 0.74. It means the weighted
method not only outperforms majority voting, but also performs better than Gaussian kernel that had
the best performance among all kernels with NMI score of 0.71 (Table 2).

3.2. Two Moons

The average NMI score along with WMI value of each kernel are computed for a training set (with
known labels) and are summarized in Table 3. The clustering results for noiseless two moons data and
two moons data corrupted with high noise are depicted in Figures 5 and 6 respectively. Based on NMI
scores, tangent kernel performs better than the other kernels for clustering two moons data. The weight
of the tangent kernel obtained for the training set is the highest among all kernels. The calculated NMI
of the proposed method (WMI) for the clustering of two moons corrupted with low noise is 0.55 in
comparison with NMI score of 0.48 yields by majority voting (Table 4). Because NMI is a non-linear
criterion, 0.55− 0.48 = 0.07 is a substantial difference between the NMI scores (Figure 1).
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Figure 4. Clustering results obtained by Gaussian, polynomial, and tangent kernels along with
aggregated results obtained by majority voting and WMI kernel clustering for inner circles corrupted
with high noise.

Table 3. NMI scores and WMI values obtained by different kernels for clustering of a training set (with
known labels) randomly selected from two moons data corrupted with different levels of noise.

Gaussian Kernel Polynomial Kernel Tangent Kernel

NMI 0.353 0.241 0.769Noiseless WMI 0.259 0.177 0.564

NMI 0.285 0.238 0.576Low Noise WMI 0.259 0.216 0.524

NMI 0.31 0.232 0.568Moderate Noise WMI 0.279 0.209 0.512

NMI 0.322 0.208 0.531High Noise WMI 0.303 0.196 0.501

Figure 5. Clustering results obtained by Gaussian, polynomial, and tangent kernels along with
aggregated results obtained by majority voting and WMI kernel clustering for Two Moons.
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Figure 6. Clustering results obtained by Gaussian, polynomial, and tangent kernels along with
aggregated results obtained by majority voting and WMI kernel clustering for Two Moons corrupted
with high noise.

Table 4. Performance of clustering results (evaluated by NMI score) obtained by different kernels along
with majority voting and WMI kernel clustering for Two Moons corrupted with different noise levels.

Gaussian
Kernel

Polynomial
Kernel

Tangent
Kernel

Majority
Voting

WMI
Kernel Clustering

Noiseless 0.333 0.372 0.551 0.482 0.55
Low Noise 0.337 0.230 0.559 0.464 0.551

Moderate Noise 0.322 0.224 0.532 0.473 0.526
High Noise 0.336 0.373 0.479 0.436 0.479

3.3. Iris

We applied the proposed method to Iris data, a 4-dimensional dataset with three classes. A training
set is randomly selected to calculate NMI score and weight of each kernel. For Iris data, polynomial
kernel performs better than the Gaussian and tangent kernels (Table 5). WMIs are 0.429, 0.505, and
0.066 for Gaussian, polynomial, and tangent respectively. The aggregated result obtained by WMI
(Figure 7) yields an NMI score of 0.725 which is higher than the NMI score of 0.58 obtained by majority
voting (Table 6).

Table 5. NMI scores and WMI values obtained by different kernels for clustering of a training set (with
known labels) randomly selected from Iris data.

Gaussian Kernel Polynomial Kernel Tangent Kernel

NMI 0.765 0.899 0.117Iris Data WMI 0.429 0.505 0.066

Table 6. Performance of clustering results (evaluated by NMI score) obtained by different kernels along
with majority voting and WMI kernel clustering for Iris data.

Gaussian
Kernel

Polynomial
Kernel

Tangent
Kernel

Majority
Voting

WMI
Kernel Clustering

Iris Data 0.732 0.696 0.006 0.582 0.725
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Figure 7. Clustering results obtained by Gaussian, polynomial, and tangent kernels along with
aggregated results obtained by majority voting and WMI kernel clustering for Iris data.

3.4. Application to DNA Copy Number Data

Lung cancer is the leading cause of cancer death among both men and women, making up almost
25% of all cancer deaths and early diagnosis increases the chance of patient survival. Hence, it is
important to recognize lung cancer from the non-involved tissue in the early stage of cancer. A potential
approach is to use similarities and disparities between cancer and control (paired peripheral blood)
samples [21,22]. The dataset contains DNA copy numbers obtained for paired cancer-control samples
of 63 early stage non-small cell lung cancer patients. We applied the proposed WMI kernel clustering
method to group the DNA copy numbers of chromosome one into two groups. Let {x1, x2, . . ., x126},
x ∈ Rm, be a set of 126 subjects including cancer and matched blood samples for each patient (total
of 63 patients), where m is the number of features for the chromosome. We should point out that,
this is a very challenging clustering task because the data is several-thousand dimensional. There are
19,873 obtained copy numbers (features) for cancer and blood samples in the chromosome one of each
patient. For the visualization of the clustering results, the first and the second principal components are
selected. First, NMI score and WMI value are computed for clustering of a training set by each kernel.
The clustering results are depicted in Figure 8, and NMI scores and WMI values are summarized in
Table 7. As we can see in Table 7, polynomial kernel performs better than the other kernels based on
NMI score. The obtained weight by the polynomial kernel for the training set is 0.762 which is the
highest among all kernels. Aggregated result using WMI yields an NMI score of 0.075 and outperforms
majority voting (Table 8). Figure 9 shows that the clustering results obtained by the proposed method
(bottom right corner) is closer to the true classes (top left corner) than the majority voting.

Table 7. NMI scores and WMI values obtained by different kernels for clustering of a training set (with
known labels) randomly selected from DNA copy number data for chromosome one.

Gaussian Kernel Polynomial Kernel Tangent Kernel

NMI 0.002 0.037 0.009Chromosome Data WMI 0.048 0.762 0.189
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Table 8. Performance of clustering results (evaluated by NMI score) obtained by different kernels along
with majority voting and WMI kernel clustering for chromosome one in DNA copy number dataset.

Gaussian
Kernel

Polynomial
Kernel

Tangent
Kernel

Majority
Voting

WMI
Kernel Clustering

Chromosome Data 0.054 0.075 0.012 0.064 0.075

Figure 8. Clustering of the labeled training set for chromosome one (gray dots show entire data)
obtained by Gaussian, polynomial, and tangent kernels.

Figure 9. Clustering results obtained by Gaussian, polynomial, and tangent kernels along with
aggregated results obtained by majority voting and WMI kernel clustering for chromosome one.

4. Conclusions

An important task in machine learning is dividing data into different groups. K-means and its
extensions are broadly used for cluster analysis. While K-means can identify the groups that are
linearly separable, kernel K-means has been introduced to separate the clusters that are not linearly
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separable. Kernel K-means projects the data points to a new feature space using a transforming
function. Different kernel functions do not perform at the same level when they are applied to
cluster a dataset. Therefore, choosing the right kernel for an arbitrary dataset is a challenging task.
To address this issue, one can apply a set of different kernels and aggregate the results. In this study, we
introduced Weighted Mutual Information (WMI) to combine the clustering results obtained by different
transforming functions. The performance weights (WMIs) are calculated based on performance of each
transform function for clustering of a training set. We first calculate WMI for each kernel using its NMI
score. Then, we cluster the entire dataset using the same set of kernel functions. Next, we aggregate
the clustering results using the calculated WMI for each kernel. The proposed method provides an
impartial performance regardless of choice of transforming function. The combined result is rather
obtained by collective performance of all kernel functions. For example, in clustering of Iris data, the
performance of polynomial function is better than Gaussian kernel and as such it has a higher WMI.
However, clustering performance of polynomial function is lower than that of Gaussian for clustering
of the entire Iris data. Regardless of the inconsistent performance of polynomial function to cluster this
dataset, the aggregated kernel result is comparable with the highest WMI yielded by Gaussian kernel
for clustering of the entire Iris dataset. In contrast in clustering of copy number data, the performance
of polynomial function is better than Gaussian and tangent kernels for both training set and entire
data. However, tangent kernel performs better than Gaussian for clustering of the training set, but it
performs worse than Gaussian for clustering of the entire copy number data. Again, regardless of the
inconsistent performance of different kernels to cluster copy number data, the aggregated kernel result
is impartial and comparable with the highest WMI yielded by polynomial kernel for clustering of the
entire dataset. Overall, the proposed WMI can potentially improve the clustering result specially in
high noise.

How to Handle Undersampled Data, How to Select k, and How to Select a Kernel?

To choose the number of clusters k, kernel K-means will be performed for different values of k
by varying k from 1 to K for each kernel separately. Total within-cluster sum of square (WSS) will be
calculated for each kernel and each value of k. The average WSS (AWSS) of all kernels for each value
of k will then be obtained. Plot the AWSS curve with regard to the number of clusters k. The value of
k that provides the minimum AWSS (MAWSS) will be chosen. For undersampled data, in place of
Equations (13) to (15), NSB (Nemenman, Shafee, and Bialek) algorithm [23] can be used for estimation
of entropy. We should point out that, the main motivation to implement the proposed method is that
choosing the relevant kernel for an arbitrary application is challenging. Therefore, in place of relying
and justifying the use of a specific kernel for the application at hand, we propose to use a pool of
kernels and aggregate the results obtained by different kernels in the pool.
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