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Abstract: Feline chronic gingivostomatitis (FCGS) has an unclear pathogenesis with the oral
microbiome and viral infections, such as feline immunodeficiency virus (FIV), thought to contribute.
Although the relationship between the FIV status and FCGS is not clear, one theory is FIV-induced
immune dysregulation could contribute to oral dysbiosis, promoting FCGS development. To further
understand the relationship between FCGS, FIV infection, and the oral microbiome, oral cavities of
forty cats fitting within 4 groups (FIV- without gingivitis, FIV+ without gingivitis, FIV- with gingivitis,
FIV+ with gingivitis) were swabbed. Next generation sequencing targeting the V4 region of the
16s rRNA gene was performed for bacterial community profiling. No differences in diversity were
observed, however, analysis of the data in terms of gingivitis revealed differences in the relative
abundance of taxa and predicted functional output. Odoribacter spp., a bacteria associated with oral
disease, was found in higher relative abundances in cats with the highest gingivitis grade. Cats with
gingivitis were also found to harbor communities more involved in production of short-chain fatty
acids, which have been connected with oral disease. Significant findings associated with the FIV
status were few and of low impact, suggesting any connection between the FIV status and FCGS is
likely not related to the oral microbiota.
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1. Introduction

Feline chronic gingivostomatitis (FCGS) has an unclear pathogenesis with many factors thought
to contribute, including the oral microbiome. Several bacteria have been found to have different
frequencies of isolation in the oral cavity of cats affected by periodontal disease compared to healthy
cats, suggesting there may be an important role for the oral microbial communities [1–4]. While the
presence or absence and/or increases in abundances of certain bacteria is not proof of microbiome
involvement, some of the same microorganisms that are isolated from the oral cavity of cats affected by
oral disease, such as Porphyromonas spp. and Prevotella spp., are also implicated in human periodontal
disease [5]. Although several bacteria have been identified with differential abundance, none have
consistently been proposed as important pathogens or commensals that convey benefits to the host.
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Besides these culture-dependent studies, a single next generation sequencing survey of subgingival
samples has also been performed [6]. This study demonstrated several taxa with differential abundance,
but unlike the culture-based studies, identified increased diversity in samples from cats affected by
FCGS. It seems there is some microbial dysbiosis related to FCGS, but the particular changes that are
associated with this disease are not clear.

Viral infections have also long been suspected to contribute to FCGS, primarily due to the
increased prevalence of FCGS observed in cats with various viral diseases [7–13]. Several mechanisms
for the involvement of viruses have been proposed. For instance, perhaps, the immune dysregulation
associated with viral infection [14] results in an inability to maintain a healthy oral microbiome, allowing
pathogens to more easily colonize and infect. The oral microbiome of feline immunodeficiency
virus-positive (FIV+) cats has previously been described as dysbiotic, characterized by higher
abundances of Fusobacteria, a phylum containing many taxa that are associated with oral disease,
as well as increased abundances of Actinobacteria and a different community structure relative to
non-infected cats [15]. While our understanding of the oral microbiome in FIV+ cats is limited to this
single study, some studies of the oral microbiome in human patients with human immunodeficiency
virus (HIV) have also identified alterations in the microbiome [16–18]. However, even in HIV+ patients,
the role of the microbiome is still unclear, since other studies have found relatively similar microbiomes
in both HIV+ and HIV- patients [19,20].

The oral microbiome represents a potentially important intermediate in the connection between
FIV infection and FCGS. While studies have provided evidence in support of the role of FIV
status and FCGS in modulating the oral microbiome separately, the relationship between FCGS,
FIV, and the oral microbiome is still unclear. Furthermore, most studies of the feline oral
microbiota have been culture-based. Although culture-dependent studies have greatly added to
our understanding, Next-generation sequencing (NGS) can complement these studies by providing a
broader representation of the microbial community through circumventing the fastidious nature of
many bacteria. Understanding how microbial communities may be altered in disease states can allow
for more specific therapeutic development and may be helpful in diagnosing disease and preventing
disease flares. Therefore, the aim of this study was to describe the microbial communities in the oral
cavity of cats with and without FIV and FCGS using next generation sequencing.

2. Results

After quality filtering and removal of sequences classified as Eukarya, Archaea, mitochondria, and
Cyanobacteria, a total of 4,165,485 sequences remained for analysis. For diversity analysis, samples
were rarefied to 76,829 sequences per sample. No significant differences between the four groups were
demonstrated for any of the signalment data (age, sex, city, and diet variables).

Oral bacterial communities were found to be consistent across the four sample groups (FIV-
without gingivitis, FIV+ without gingivitis, FIV+ with gingivitis, and FIV- with gingivitis). Alpha
and beta diversity analysis did not reveal any differences between the communities, regardless of the
metric used. Taxonomic composition and predicted functional output of the microbiome was also
consistent. Average relative abundances for each group are shown in Figure 1 (the data for individual
samples are shown in Supplementary Figure S1). Analysis of the relative abundance of taxa only
identified phylum and class Actinobacteria as having a significant differential abundance (p = 0.0162
for phylum and p = 0.011 for class). Specifically, FIV+ cats with gingivitis harbored lower relative
abundances of this bacteria (average relative abundance of class Actinobacteria = 1.00%) compared to
FIV+ cats without gingivitis (p = 0.0174 and p = 0.0108, average relative abundance = 1.71%) and FIV-
cats without gingivitis (p = 0.0078 and p = 0.006, average relative abundance = 2.28%).
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Figure 1. Average relative abundance of the 12 most common genera based on the number of samples where 
their abundance was > 1%. Bacteroidetes was the most abundant phylum, followed by Firmicutes and 
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Besides comparing these four groups, the data were also analyzed in terms of the FIV status, gingivitis 
status, gingivitis grade, and diet. Analyzing these variables also did not result in any significant differences 
between groups with respect to alpha or beta diversity, suggesting the diversity of the oral microbiota is 
stable in this group of cats. However, analysis of the relative abundance of taxa and predicted functional 
output of the microbiome revealed several differences in the oral microbial communities, which are 
described below. 

2.1. Effect of the FIV Status 

Corynebacteriaceae and Corynebacteriales were found in higher relative abundances in FIV- cats 
relative to FIV+ cats (Linear discriminant analysis (LDA) score = 2.68, p = 0.0074 for both). Analysis of 
predicted functions of all samples (n = 40) did not result in differences between cats of different FIV status. 
However, when only cats with gingivitis (n = 20) were analyzed and compared based on the FIV status, 
FIV- cats had communities that were more prone to participate in pyruvate fermentation to acetone (LDA 
score = 2.55, p = 0.0015). 

2.2. Effect of the Gingivitis Status 

Regardless of the FIV status, Flavobacterium spp. were found in an increased relative abundance in cats 
without gingivitis relative to cats with gingivitis (LDA Score = 2.86, p < 0.001, Supplementary Figure S2). 
Several other bacteria were found to have an increased relative abundance in cats without gingivitis, 

Figure 1. Average relative abundance of the 12 most common genera based on the number of samples
where their abundance was > 1%. Bacteroidetes was the most abundant phylum, followed by Firmicutes
and Fusobacteria.

Besides comparing these four groups, the data were also analyzed in terms of the FIV status,
gingivitis status, gingivitis grade, and diet. Analyzing these variables also did not result in any
significant differences between groups with respect to alpha or beta diversity, suggesting the diversity
of the oral microbiota is stable in this group of cats. However, analysis of the relative abundance of taxa
and predicted functional output of the microbiome revealed several differences in the oral microbial
communities, which are described below.

2.1. Effect of the FIV Status

Corynebacteriaceae and Corynebacteriales were found in higher relative abundances in FIV- cats
relative to FIV+ cats (Linear discriminant analysis (LDA) score = 2.68, p = 0.0074 for both). Analysis of
predicted functions of all samples (n = 40) did not result in differences between cats of different FIV
status. However, when only cats with gingivitis (n = 20) were analyzed and compared based on the
FIV status, FIV- cats had communities that were more prone to participate in pyruvate fermentation to
acetone (LDA score = 2.55, p = 0.0015).

2.2. Effect of the Gingivitis Status

Regardless of the FIV status, Flavobacterium spp. were found in an increased relative abundance
in cats without gingivitis relative to cats with gingivitis (LDA Score = 2.86, p < 0.001, Supplementary
Figure S2). Several other bacteria were found to have an increased relative abundance in cats without
gingivitis, including Capnocytophaga spp. (LDA Score = 3.11, p = 0.0041), another genus within the
Flavobacteriaceae family (Figure 2A). When samples were evaluated in terms of the gingivitis grade,
cats with a gingivitis grade of IV had higher relative abundances of Odoribacter spp. (LDA Score = 2.73,
p < 0.001, Figure 2B). Differences in composition associated with gingivitis also translated to differences
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in predicted functions of the microbiome. Cats with gingivitis had more bacteria associated with
purine and vitamin B12 biosynthesis and fermentation to short-chain fatty acids, while cats without
gingivitis had more bacteria associated with energy production and biosynthesis of amino acids and
fatty acids (Figure 3). Cats with a gingivitis grade of II had increased palmitate biosynthesis II (LDA
Score = 2.94, p = 0.0064).
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were found to have higher relative abundances in the labelled group relative to others with p < 0.01.
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Figure 3. Linear discriminant analysis Effect Size (LEfSe) results analyzing differences in predicted
microbial functions between cats with and without gingivitis.

2.3. Effect of Diet

For the diet analyses, only cats without gingivitis were included, since gingivitis was found to
be impactful on oral communities. Inclusion of the functional ingredients did not appear to result in
microbiome differences, however, diet regimen and specific feed did have some influence. Cats fed diet
regimen A (dry food) only had higher abundances of UCG-011, a genus within family Defluviitaleaceae
(LDA Score = 2.92, p = 0.0034). Cats fed feed 2, which had the lowest lipid content of all the diets
and was one of the diets that contained two prebiotics, had increased saturated fatty acid elongation
(LDA Score = 2.80, p = 0.0091). Cats fed feed 3, which did not contain prebiotics, had the lowest
amount of proteins, and had one of the lowest amounts of lipids, harbored communities predicted to
be involved in increased lipid IVA biosynthesis (LDA Score = 2.57, p = 0.0089).

2.4. Other Factors

The effect of age and sex was also evaluated, with only the LEfSe analysis of predicted microbial
functions revealing some significant findings. Cats fitting into the senior age group (ages 13–15 years)
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had higher relative abundances of bacteria involved in L-methionine and L-arginine biosynthesis
(LDA Score > 2.66, p < 0.01), while mature cats (ages 7–9 years) had higher relative abundances of
bacteria involved in glucose and xylose degradation (LDA Score = 2.70, p = 0.0091). Female cats
were also found to have higher relative abundances of bacteria involved in L-arginine synthesis
(LDA Score = 2.53, p = 0.0043).

3. Discussion

In this study, we found the feline oral microbiota to be stable in terms of diversity, regardless
of the FIV status, gingivitis status, diet, and even intrinsic factors, such as age and sex. While alpha
and beta diversity were unaffected, composition and predicted functional output of the microbiota
were more sensitive to these factors. In particular, gingivitis seemed to be influential on community
composition and community functional output.

We were especially interested in the influence of the FIV status on the oral microbiome due to a
suspected relationship between FIV and gingivitis. While FIV cats seem to have higher incidences
of FCGS [7–12], it is unclear why this may occur. One theory is that the deficient immune system
could result in physiological changes within the oral cavity that would support an altered microbiome.
In humans, studies have found evidence of oral bacteria and their products [21] affecting activation
and replication of Epstein–Barr virus and HIV [22], demonstrating that not only what bacteria are
present, but also what they produce and how they interact with viruses may be important.

Within our study, the FIV status had a minimal effect on the oral microbiome. Only two taxa,
Corynebacteriaceae and Corynebacteriales, had a higher relative abundance in FIV- cats without
gingivitis. Given the low average relative abundance of these bacteria (less than 1% in both groups),
the biological impact of this finding is questionable. A previous study [15] also evaluated the oral
microbiomes in FIV+ and FIV- cats, and found phyla Fusobacteria and Actinobacteria were identified
in higher relative abundances in FIV+ cats. In the present study, although these taxa were found
in low abundances overall, differences in the relative abundance of Actinobacteria at the phylum
and class level were found between the four groups. FIV+ cats with gingivitis had lower relative
abundances of Actinobacteria compared to cats without gingivitis, regardless of the FIV status.
Although Actinobacteria may be relevant in some human oral diseases [15], it’s very low abundance in
both the previously mentioned study and our own (average relative abundance of class Actinobacteria
across all samples = 1.63%), as well as the conflicting results, makes the significance of Actinobacteria
in the feline oral cavity unknown.

Our results do not suggest a strong influence of the FIV status on the composition of the oral
microbiota, but it is possible our study was just not able to uncover evidence of this link. Differences in
composition of the microbiota may exist at a level (e.g., species or strain) which is not discernable with
the sequencing technology utilized in this study. Additionally, microbial activity is partly dependent
on the status of the host [23]; even if there are no differences in composition, there may be differences
in functional output of the microbiota which could not be derived from the predictive methods we
used. Further research would be needed to resolve the dynamic roles oral cavity-inhabiting microbes
may take on in the context of the FIV status.

Gingivitis status had a higher impact on the microbiome, with 17 taxa identified as differentially
abundant with LEfSe. Some notable microbes with differential abundance were genera Flavobacterium
and Capnocytophaga. Flavobacterium spp. were found in higher relative abundances in cats without
gingivitis, regardless of the FIV status. Capnocytophaga spp. was also present in higher relative
abundances of cats without gingivitis. Although Capnocytophaga spp. is often associated with disease
due to cat bites, it is a normal inhabitant of the feline oral microbiota [24]. The higher relative abundance
of these bacteria in the healthy feline oral cavity within the presented data is concordant with two
previous studies [3,6].

Besides Capnocytophaga spp., other bacteria have been suggested as potential contributors to
FCGS. Several novel bacteria have been identified in the oral cavity of cats, which were proposed to be
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relevant to the disease process [25]. This same research group also suggested that Pasteurella multocida
subsp. multocida may be relevant to FCGS [3]. Bacterial genus Pasteurella is recognized as a normal
inhabitant of the feline oral cavity, but they can also be a cause of infections associated with cat bites [26].
In their study utilizing sequencing of cultured isolates, they found P. multocida subsp. multocida was
prevalent in the oral cavity of cats affected with FCGS and absent in normal cats. Several culture-based
studies [1,4,27,28], a culture-independent survey of the subgingival microbiota [6], and the present
study, however, did not identify increased relative abundances or frequency of isolation from affected
cats. Considering these results and the small sample size included in the initial culture-based study,
there does not seem to be enough evidence to implicate Pasteurella spp. as an important pathogen
in FCGS.

Gingivitis also had an influence on predicted functional output of the microbiota. Twelve microbial
pathways were found to be predicted at different levels based on the gingivitis status. Cats with
gingivitis had more bacteria known to be involved in two pathways, fermentation to acetate and
butanoate. Bacteria-derived short-chain fatty acids (SCFAs), such as acetate and butanoate, are typically
found in higher amounts in the oral cavity of patients with periodontal disease [29–31]. In addition
to being associated with inflammation in these patients, research discovered these molecules have
the ability to negatively affect host cell proliferation and activity [32]. To our knowledge, this same
association and mechanism of SCFAs in feline oral disease have not been evaluated. Our results
suggest SCFAs may be important in the pathogenesis of FCGS and are worth further researching for
the potential of using specific SCFAs as biomarkers.

Evaluating cats based on the gingivitis grade also revealed multiple taxa as differentially abundant.
Of interest to us was Odoribacter spp., which was found in significantly higher relative abundances
in the oral cavity of cats with grade IV gingivitis relative to all other grades. The recently described
genus was created upon isolating a novel bacterial species, Odoribacter denticanis, from the oral cavity
of a dog with periodontal disease and was named accordingly due to the associated foul odor. In a
mouse model of periodontal disease, this bacteria was able to cause oral disease, indicating it may be a
relevant pathogen in animals [33]. This species was also found in cats with periodontal disease in a
study sequencing plaque-inhabiting bacteria [34]. The higher relative abundance of this microbe in
the cats with severe gingivitis in this study and another one [6] is particularly intriguing. If future
studies confirm these bacteria are important in the development of oral disease in cats, it could serve
as a target, either through diet changes or therapeutics, which could be useful in managing FCGS and
potentially the malodor associated with this condition.

In studying the oral microbiome, the diet is often a factor of particular interest. Nutrients could
shape oral communities through host or microbial metabolism. Although not the main objective of
this study, diet was analyzed with respect to the diet regimen (dry food, wet food, mix of dry and
homemade food), the specific feed, and the inclusion of functional ingredients. Diet regimen (wet vs.
dry food) had previously been shown to influence the microbial communities in a feline oral cavity,
with cats fed dry food having more diverse communities than cats fed wet food and with several
differences in composition of the communities [35]. Within the present study, a couple of differences in
the composition of these communities and their predicted functional output were observed, but no
significant difference in diversity was found. Diet certainly has an influence on the oral microbiome,
but, as emphasized previously, further research is needed to determine the impact it may have on
feline oral health [35].

Within this study, several differences in composition of the oral communities were observed.
Although identifying bacteria with different relative abundances between healthy and affected animals
is important in understanding which microbes may be relevant to disease, it is important to recognize
that many of these bacteria are not solely pathogenic or beneficial. As previously mentioned,
microbial activity depends on the environment, including other microbes they may be cohabiting or
competing with and the health status of the host. Further research is needed to clarify what the role
of the differentially abundant bacteria in disease may be. Future studies will need to evaluate the



Pathogens 2020, 9, 383 7 of 11

microbe–microbe interactions that occur under different physiological conditions and look into what
products these microbes may be producing. The microbiota can generate a vast range of metabolites,
and their identification and characterization is a challenge in metabolomics. In the presented findings,
we utilized PICRUSt2 to predict the functional output of the microbiome based on the taxa that are
found. Methods that can directly evaluate the activity or capabilities of microbes, such as microbial
transcriptomics or metabolomics, would be incredibly useful in better understanding what pathways
may be up- or down-regulated in affected animals. The possible changes in bacterial metabolism affect
how the host is able to respond to microbes or the regulation of the immune response, potentially
resulting in increased inflammation even in the absence of dysbiosis.

4. Materials and Methods

4.1. Sample Collection and DNA Extraction

Forty client-owned cats from four different groups (FIV- without gingivitis, FIV- with gingivitis,
FIV+ with gingivitis, FIV+ without gingivitis; ten cats per group) were included in this study. Cats were
examined by a veterinarian at the University of São Paulo (USP) veterinary hospital in Pirassununga,
São Paulo, Brazil. Approval for this study was obtained from the Bioethical Committee of the
Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo, Pirassununga,
São Paulo (protocol number 14.1.1500.74.6), and informed consent was obtained from each owner.
Gingivostomatitis was scored as previously described [15,36], with some modifications: 0 = normal
gingiva, 1 = slight inflammation, 2 = moderate inflammation, 3 = severe inflammation and bleeding,
and 4 = severe inflammation, bleeding, and missing teeth. Testing for FIV and FeLV infection were
performed in duplicate with the SNAP FIV/FeLV Combo Test (Idexx Laboratories, Wetbrook, ME,
USA). All cats were at least 1 year old, spayed or neutered, had not received any antimicrobial or
anti-inflammatory drugs within 30 days of sampling, and had negative FeLV results. At the time of
sampling, the information regarding approximate age (young = 1–3 years, adult = 4–6 years, mature
= 7–9 years, old = 10–12 years, senior = 13–15 years), sex, diet regimen (A = dry food, B = dry and
wet food, C = mix of dry and homemade food), specific feed, if the diet included prebiotics (mannan
oligosaccharides and inulin), environment (indoor or outdoor), vaccine history, and disease history was
recorded and is provided in Supplementary Table S1. Sample groups were not significantly different
with respect to signalment data. From each cat, two Isohelix buccal swabs (Cell Projects Ltd., Kent,
UK) were swabbed from the gums of both the upper and the lower dental arcades, tongue, palate, and
teeth, 10 times on each side of each swab. The two swabs were then stored in a MO BIO PowerBead
tube (MO BIO Laboratories, Carlsbad, CA, USA) and extracted using a modified protocol with a MO
BIO PowerSoil DNA Isolation Kit (MO BIO Laboratories).

4.2. Next Generation Sequencing

PCR reactions targeting the V4 region of the 16s rRNA gene consisted of 10 µL of
GoTaq® Colorless Master Mix 2× (Promega, Madison, WI, USA), 0.3 µM forward primer (515F:
GTGCCAGCMGCCGCGGTAA), 0.3 µM reverse primer (806R: GGACTACHVGGGTWTC), 20 ng of
genomic DNA, and 20 µL of water and were run on a Veriti Thermal Cycler (Applied Biosystems,
Foster City, CA). These reactions were run with an initial denaturation at 94 ◦C for 3 min, 29 cycles of
94 ◦C for 45 s, 50 ◦C for 1 min, 72 ◦C for 1 min and 30 s, followed by a final extension of 10 min at 72 ◦C.
PCR products were then checked on a 2% agarose gel.

For library preparation, PCR triplicates of each sample were pooled in an aliquot and purified using
Agencourt AMPure XP magnetic beads (Beckman Coulter, Brea, CA, USA). Libraries were quantified
by real-time PCR using a KAPA Library Quantification Kit for Illumina sequencing (Kapa Biosystems,
Wilmington, MA, USA). Samples were then normalized to 3 nM prior to sequencing on an Illumina
MiSeq sequencing system (Illumina, Inc., San Diego, CA, USA) at BPI Biotecnologia (São Paulo, Brazil).
Raw sequences are accessible under BioProject ID PRJNA580001 in the NCBI Sequence Read Archive.
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4.3. Sequence Processing

Primers were removed from the resulting sequences using cutadapt [37] and were further
processed in QIIME 2 (2018.6) [38], where sequence dereplication and chimera removal were performed
with VSEARCH [39] and UCHIME [40] and taxonomic assignments were determined using the
SILVA database (version 132 release) [41] with a scikit-learn classifier [42]. The resulting data were
also processed with PICRUSt2 (QIIME 2 plugin) [43] to generate predicted functional output of
the microbiota.

4.4. Data Analysis

Data were analyzed in terms of the group (FIV-, FIV+, FIV- with gingivitis, FIV+ with gingivitis),
FIV status, gingivitis status, gingivitis grade, age, sex, city, and diet. More specifically, the diet
was analyzed in terms of the diet regimen (A = dry food, B = dry and wet food, C = mix of dry
and homemade food), specific feed (Supplementary Table S2), and inclusion of prebiotics in diet
(mannan oligosaccharides and inulin). Taxonomic and predicted functional data were analyzed with
the Linear discriminant analysis (LDA) Effect Size (LEfSe) algorithm [44] and with Wilcoxon tests, or
Kruskal–Wallis tests where appropriate, in JMP Pro 14 (SAS Institute, Cary, NC). Alpha diversity was
calculated using the Chao1 diversity index, Faith’s phylogenetic diversity, observed OTUs (operational
taxonomic units), Pielou’s evenness, and Shannon diversity index, with the resulting data analyzed
using Wilcoxon or Kruskal-Wallis tests. Beta diversity was calculated with the Bray–Curtis dissimilarity,
Jaccard distance, and weighted and unweighted UniFrac metrics [45]. Resulting distance matrices
were analyzed using ANOSIM (Analysis of similarities) tests in R [46] with the vegan package [47].
Where appropriate, the Benjamini–Hochberg p-value correction was performed [48].

5. Conclusions

Although decreases in diversity are thought to be associated with diseased states, this was not
observed within the present study when analyzing the FIV status, gingivitis status, or both. Even when
considering other factors, such as age, sex, and diet, diversity of the feline bacterial oral microbiota
was consistent. While differences in alpha and beta diversity were not observed, several taxa were
identified as differentially abundant with respect to some of the factors analyzed. The FIV status
seemed to have only a minor influence on the oral microbiota of the cats sampled in this study,
with only a few differences in relative abundance of taxa with unknown biological impact identified.
In contrast, gingivitis had a notable impact on the oral communities with some changes that are
intelligible considering the clinical features and the bacteria. For example, Odoribacter spp. was found
in cats with the highest gingivitis score and is associated with oral malodor, a common clinical sign
in cats with gingivitis. Additionally, gingivitis was influential on predicted output of the microbiota,
with populations more associated with production of short-chain fatty acids, which have previously
been associated with oral disease severity, in cats with gingivitis. Our results indicate there is no clear
evidence to indicate gingivitis and the FIV status have some synergistic impact on the microbiota, but
gingivitis certainly has some influence. Further research into gingivitis-related dysbiosis may unveil
useful targets for therapeutic intervention and prevention.
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