
Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[16:28 7/5/2012 Bioinformatics-bts154.tex] Page: 1495 1495–1500

BIOINFORMATICS ORIGINAL PAPER Vol. 28 no. 11 2012, pages 1495–1500
doi:10.1093/bioinformatics/bts154

Systems biology Advance Access publication April 6, 2012

Bayesian integration of networks without gold standards
Jochen Weile 1, Katherine James 2, Jennifer Hallinan 2, Simon J. Cockell 3, Phillip Lord 2,
Anil Wipat 2,4 and Darren J. Wilkinson 4,5,∗
1Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada, 2School of Computing
Science, Faculty of Science Agriculture and Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU,
3Bioinformatics Support Unit, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle
University, Newcastle upon Tyne NE2 4HH, 4Centre for Integrative Systems Biology of Ageing and Nutrition, Institute
for Ageing and Health, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL and
5School of Mathematics and Statistics, Faculty of Science Agriculture and Engineering, Newcastle University,
Newcastle upon Tyne NE1 7RU, UK
Associate Editor: Martin Bishop

ABSTRACT

Motivation: Biological experiments give insight into networks of
processes inside a cell, but are subject to error and uncertainty.
However, due to the overlap between the large number of
experiments reported in public databases it is possible to assess
the chances of individual observations being correct. In order to do
so, existing methods rely on high-quality ‘gold standard’ reference
networks, but such reference networks are not always available.
Results: We present a novel algorithm for computing the probability
of network interactions that operates without gold standard reference
data. We show that our algorithm outperforms existing gold
standard-based methods. Finally, we apply the new algorithm to a
large collection of genetic interaction and protein–protein interaction
experiments.
Availability: The integrated dataset and a reference implementation
of the algorithm as a plug-in for the Ondex data integration
framework are available for download at http://bio-nexus.ncl.ac.uk/
projects/nogold/
Contact: darren.wilkinson@ncl.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
A significant proportion of knowledge about molecular biological
processes is distributed over a large number of online databases
(Stein, 2002). This knowledge has been obtained through
experiments performed in laboratories all over the world. Overlaps
often exist across the contents of these databases. The sub-discipline
of integrative bioinformatics aims at collating this knowledge and
making it accessible to both humans and computers.

A popular integration paradigm is the construction of functional
networks (James et al., 2009; Lee et al., 2004; von Mering et al.,
2003). Functional networks represent different types of relationships
between biological entities in an abstract manner. Associations such
as genetic interactions (GIs), protein–protein interactions (PPIs),
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gene regulation and co-expression are combined into simple abstract
statements of functional relatedness, which are termed functional
interactions.

An alternative paradigm is semantic data integration (Cerami
et al., 2010; Cheung et al., 2005; Koehler et al., 2006; Smith
et al., 2007). These approaches aim at representing the biological
information (and as much of its meaning as possible) in a
computationally accessible fashion. Rather than generalizing over
all types of associations between entities to infer functional
interactions, each type of association is considered separately.

An important question regarding such networks is how to assess
the degree of confidence in each statement, that is, how likely
the statement is to be correct. Several popular solutions to this
problem exist for functional networks (Lee et al., 2004; Lycett,
2007). These methods assess the quality of each input dataset
against one or more additional datasets of higher quality, usually
manually-curated collections. Based on the confidence measures
gained from this comparison it is then possible to calculate a
confidence measure for each functional interaction. The high-quality
datasets used in these comparisons are often referred to as ‘gold
standards’.

The method described by Lee et al. evaluates each evidential
dataset against such a gold standard and obtain a log likelihood score
(LLS). Subsequently, for each interaction in question, a weighted
sum is formed over the LLS scores of those datasets that report the
interaction. The weights are chosen in a manner that represents the
degree of dependency between the datasets (Lee et al., 2004).

Lycett describes a method that extends the original method of
Lee et al. Not only one, but several different gold standards are
used to generate LLS scores for the datasets. Furthermore, instead of
creating a score for each interaction via the weighted sum described
above, this method computes an existence probability from the
original LLS scores and then averages over the different probabilities
according to the different gold standards. The authors show that
any bias inherent in the used gold standards can thus be overcome
(Lycett, 2007).

These methods work very well for functional networks. However,
inferring confidence assessments for semantic networks, rather than
functional networks, is more challenging, because each single type
of association must be scored separately. Reliable gold standards
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only exist for some of these types. The methods discussed above
are thus only of limited use for assessing semantic networks. While
solutions for specific types of data do exist, for example, PPIs (Bader
et al., 2004; Braun et al., 2009; Troyanskaya et al., 2003; Venkatesan
et al., 2009), these are again dependent on additional data. It would
desirable to find a method that can infer confidence measures on
biological networks in the absence of a gold standard, that is, based
only on the existing experimental data.

To provide a more generic solution to this problem, we present
a fully Bayesian method which calculates, for each statement in a
semantically-integrated dataset, the probability that it is true. We
have evaluated the method’s effectiveness in comparison to related
methods. The validity of any results of the method’s application to
real data is difficult to verify without knowing the absolute biological
truth. Therefore, we have developed a tool that tests integration
methods on simulated data with the same characteristics as real
biological networks.

2 METHODS

2.1 Probabilistic integration
The complete set of interactions of a certain type within the cell (e.g. PPIs)
can be modelled as a network G= (V ,E), where entities, such as proteins, are
nodes (vertices) V={v1,...,vN } and their associations are undirected edges
E={e1,...,eM }⊆

(V
2

)
. If one considers each pair of nodes to potentially have

an edge, it is possible to model the process of the experimental prediction of
such an edge as described below.

Let X={X1,...,Xn} be a collection of n networks which have been
experimentally derived from G. Considering a single potential edge e, each
experiment Xi makes a statement about e’s existence. Let De

i be a random
variable that assumes realization 1 when the i-th experiment Xi predicts that
the edge exists and 0 when it predicts that the edge does not exist. Let de

i be the
measured realization from Xi, then (De

i =de
i ) is the event that the measured

realization in experiment i is de
i . Furthermore, let De

(n) be the vector of all
n experimental measurement events (De

i =de
i ) for the edge. Finally, let Le

be the event that the edge really does exist in G (e∈E). We are interested
in P(Le|De

(n)), that is, the probability that the edge really exists given all our
experimental measurements.

An important concept necessary to determine this probability is the Bayes
factor (Kass and Raftery, 1995). For each of the n experiments a Bayes factor
�i can be determined, which is defined as

�i := P(De
i =de

i |Le)

P(De
i =de

i |¬Le)
. (1)

If experiment i predicts that the edge exists, then �i is the probability of a
true positive in i divided by the probability of a false positive in i. Otherwise,
if i predicts that the edge does not exist, then �i is the probability of a false
negative in i divided by the probability of a true negative in i.

Then, under the assumption that all measurements are independent from
each other, Bayes theorem can be used to show that

O(Le|De
(n))=�nO(Le|De

(n−1)), (2)

where O(·) is used to denote the odds of an event, and is defined for an
arbitrary event F by

O(F) := P(F)

P(¬F)
= P(F)

1−P(F)
. (3)

A full proof of Equation (2) is provided in the Supplementary Methods. This
recursive equation can be expressed iteratively as

O(Le|De
(n))=O(Le)

n∏
i=1

�i. (4)

That is, the odds of the edge existing, given all the experimental
measurements, is the product of the Bayes factors for these measurements

with the prior odds of edge existence. The specification of prior odds O(Le) is
described in the Supplementary Methods. Odds can obviously be converted
into the corresponding probability using inversion.

As mentioned above, Equation (2) and thus also Equation (4) work
under the assumption that experimental measurements are stochastically
independent. This assumption is not valid for real data, and thus introduces
a potential source of error into the methodology. Lee et al. address this
problem by introducing dependency coefficients for their datasets (Lee et al.,
2004), a solution which we argue is somewhat ad hoc. Instead we assume
independence and focus on verifying that our method is robust to this
assumption.

In order to calculate the Bayes factors above it is necessary to determine
the rates of false positives and false negatives in each dataset. One approach
is to compare each dataset to a gold standard and count the number of
differences. However, due to the limited availability of gold standards as
discussed above, this approach is not feasible here. Therefore, the only
available option is to evaluate the datasets against a common consensus.
A naive approach is to start with random values for the error rates, and to
use these rates to create a candidate integrated network. Updated parameter
values and the resulting integrated networks can then be computed iteratively.
However, a series of networks produced by this method does not typically
converge to any sensible result (data not shown).

To overcome this problem, a fully Bayesian approach was employed to
generate samples from the full joint posterior distribution of π (θ,G|X), where
θ={(α1,β1),...,(αn,βn)} is the vector of error rates associated with the
members of the vector of experimental networks X, and where αi is the
false positive rate of Xi and βi is the false negative rate of Xi.

To determine the joint posterior distribution π (θ,G|X), one may exploit
the following equation:

π (θ,G|X)= π (θ,G,X)

P(X)
. (5)

Thus, the posterior distribution π (θ,G|X) is proportional to the joint
distribution π (θ,G,X). The joint distribution may in turn be factored as:

π (θ,G,X)=π (G)·π (θ )·P(X|θ,G). (6)

In summary, we conclude that

π (θ,G|X)∝π (G)·π (θ )·P(X|θ,G). (7)

As a consequence, three values need to be determined: the prior distribution
π (G), the prior distribution π (θ ) and the likelihood P(X|θ,G). We define the
prior distribution of π (G) as a random graph prior:

π (G)=
∏

e∈(V
2
)π (Ge) (8)

= (1−q)

∣∣∣(V
2
)\EG

∣∣∣ ·q|EG|, (9)

where q is the prior probability of an edge really existing.
To determine the prior distribution π (θ ), we have to consider the nature

of the error rates αi and βi as ‘success rates’ for misreading each potential
edge. Modelling each observation event over a potential edge as a Bernoulli
experiment with such a success rate, the number of false positives and
false negatives in an experimental graph Xi would follow a binomial
distribution. The Beta distribution is conjugate to this binomial likelihood,
and is dependent on two parameters, a and b. We make the assumptions:

αi∼Be(aα,bα)∀i=1,...,n (10)

βi∼Be(aβ ,bβ )∀i=1,...,n. (11)

For the sake of simplicity, we will later assume that all prior parameters are
equal to 1, giving U[0,1] priors for all rates. Since sampling from π (θ,G|X)
directly would be very difficult, we instead employ a Gibbs sampling
approach (Gelfand and Smith, 1990) and alternately sample from π (θ |G,X)
and π (G|θ,X).
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The algorithm proceeds in cycles. At the beginning of each new cycle, a
potential true graph G needs to be sampled based on the error rate vector θ .
The sampling is accomplished by using the Bayesian method discussed above
to infer posterior existence probabilities for each edge. These probabilities
can then be used to sample a potential G by lookup. That is, for each potential
edge, a U[0,1] random number is sampled. If that random number is smaller
than the posterior existence probability of that edge, G will contain the edge.
Otherwise G will not contain the edge.

The second step in each cycle is the sampling of a new error rate vector θ

based on G. As explained above, Beta distributions can be used to describe
uncertainty about θ . One can compare each Xi to the currently assumed true
graph G and use it to count the number of supposed true positives (tp), false
positives (fp), true negatives (tn) and false negatives (fn). Then, the full
conditionals for α and β are as follows:

αi∼Be(fpi+aα,tni+bα) (12)

βi∼Be(fni+aβ ,tpi+bβ ). (13)

To initiate the algorithm as a whole, we need to generate an initial error
rate vector θinit. It is sufficient to sample the initial values for each αi and βi

from their prior distribution.

Input: X= (X1,...,Xn), O(L), tmax
1 main(X,O(L),tmax) {
2 ∀1≤ i≤n αi∼Be(1,1) ; βi∼Be(1,1)
3 θ0←{(α1,β1),...,(αn,βn)}
4 G0← (V ,EG0 ) : EG0←

⋃n
i=1 EXi

5 ∀1≤ t≤ tmax {
6 Gt← sampleG(X,θt−1,O(L))
7 θt← sampleTheta(Gt )
8 }
9 θfinal←E(θ1,...,θn)
10 p←computePosterior(X,θfinal)
11 }
12
13
14 sampleG(X,θt ,O(L)) {
15 p←computePosterior(X,θt )
16 ∀e∈(V

2
) {

17 r∼U[0,1]

18 EGt←
{

r <p(e) EGt−1 ∪{e}
r≥p(e) EGt−1 \{e}

19 }
20 }
21
22
23 sampleTheta(Gt ) {
24 ∀1≤ i≤n {
25 tpi←|EXi ∩EGt |
26 fpi←|EXi \EGt |
27 tni←|

(V
2
)\(EXi ∪EGt )|

28 fni←|EGt \EXi |
29 αi∼Be(fpi+1,tni+1)
30 βi∼Be(fni+1,tpi+1)
31 }
32 θt←{(α1,β1),...,(αn,βn)}
33 }
34
35
36 computePosterior(X,θt ,O(L)) {

37 ∀1≤ i≤n �
(+)
i ← 1−βi

αi
, �

(−)
i ← β

1−α

38 ∀e∈(V
2
) {

39 Ke← ln(O(L))+∑n
i=1 ln

{
e∈EXi �

(+)
i

e /∈EXi �
(−)
i

40 p(e)← exp(Ke)
1+exp(Ke)

41 }
42 }

Pseudocode 1. The Gibbs sampling algorithm for sampling from π (θ,G|X).

2.2 Evaluation method
In order to evaluate the method described above and to compare it against
other probabilistic integration methods, a simulation and testing environment
was created. The testing tool creates a random graph according to a specified
model. In the simulation, this graph assumes the role of a true biological
graph. The tool then derives a set of graphs from the true graph with pre-
determined error rates. In the simulation these graphs assume the role of
experimental datasets. The simulated experimental datasets are subsequently
passed to the integration method under investigation. The integrated graph
resulting from the integration method is then compared with the original
simulated true graph to evaluate the integration method’s performance.

Such a testing workflow can be programmed to be executed a large number
of times in order to measure a method’s average behaviour. Furthermore, the
testing tool allows for the automatic variation of different input parameters.

The simulated true graph is created as a scale-free graph using a
preferential attachment algorithm, since many molecular-biological graphs
have been shown to be approximately scale-free (Eisenberg and Levanon,
2003; Jeong et al., 2001). A description of the algorithm can be found in the
Supplementary Methods. Not only does the choice of scale-free background
graphs more closely match the topology of real biological graphs; it also
poses an additional challenge for the new algorithm, since such graphs break
with the assumption of a random graph prior distribution for G.

The next step consists of the simulation of experimental measurements
on the true graph. This is the most crucial step of the artificial testing
environment as it is responsible for replicating all the different faults and
problems of real data. The simplest type of error occurring in experimental
measurements is random noise. This type of error is easily simulated by
randomly inserting edges that do not exist in the real data and removing
edges that do exist in the real data until the desired error rates are reached.

The next problem is systematic error, also known as experimental
bias. This phenomenon in particular leads to the violation of stochastic
independence between datasets. We simulate this by sampling separate false
negative probabilities for each interaction and false positive probabilities for
each non-interacting node pair from Beta distributions. We then use these
prepared probabilities to generate false positives and false negatives in the
experiments, thus introducing the same bias/systematic error. More detail is
provided in the Supplementary Methods.

After the simulated evidential graphs have been given to the integration
method in question the resulting integrated network is evaluated against the
original graph. There are a number of different quality measures that can
be applied. One important aspect is to measure the accuracy of error rate
estimates in the individual experiments. We can define the quadratic loss for
the error estimates as follows:

LER= 1

2n

n∑
i=1

(αi−α̂i)
2+(βi−β̂i)

2, (14)

where α̂i and β̂i are the estimates of the false positive and false negative
rates for experiment i according to the integration method in question.

Also, to measure the accuracy of the final edge probabilities produced by
the method, we can define further loss functions. Since we can expect a vast
number of true negatives when working with sparse, scale-free graphs, it
would be helpful to see the loss over interacting and non-interacting node
pairs separately. These can be interpreted as analogue to the algorithm’s false
negative rate and false positive rate:

L(+)= 1

|EG|
∑
e∈EG

(1−P(e∈EG|X))2 (15)

L(−)= 1

|(V
2

)\EG|
∑

e∈(V
2
)\EG

P(e∈EG|X)2. (16)

We have evaluated the new algorithm in comparison with two gold
standard-based methods presented by Lee et al. (2004) and Lycett (2007). For
our evaluation we have examined the following scenario: each integration
method is given the task of processing a number (3, 5, 7, 9 and 11) of
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experimental scale-free networks with 500 nodes, an average false negative
rate 0.15 and average false discovery rate of 0.15 (corresponds to false
positive rate of 0.0006). For the two gold standard-based methods (Lee and
Lycett), one bias-free input experiment with the same FN and FDR rates was
assigned as the gold standard. The additional input parameters for the gold
standard-based methods (such as the dependency factor) have been set to
optimal values to ensure peak performance. We have run 5000 replicates of
the above test and averaged over the results. As a basic benchmark, we have
also executed the same workflow for a naive integration method. The naive
method simply assigns the observed proportion of experiments that support
a given edge as its existence probability.

2.3 Application to biological networks
In addition to the evaluation on artificial data we applied the new method to
semantically integrated biological data. We used the data integration system
Ondex (Koehler et al., 2006) to gather as much data as possible on the
Saccharomyces cerevisiae PPI and GI network. We imported all S. cerevisiae
data from the BioGRID (Breitkreutz et al., 2008), MINT (Chatr-aryamontri
et al., 2007), IntAct (Hermjakob et al., 2004) and MIPS-MPACT (Guldener,
2006) via the PSI-MI 2.5 XML (Kerrien et al., 2007) format. The resulting
Ondex dataset represented proteins and genetic features, as well as their
interactions, the experiments in which the interactions have been observed
and the publications in which the experiments were described. To identify
and interlink equivalent entries we used a semantic merger method. This
method carefully identifies and resolves redundancies between data from the
different databases, while preserving separate any separate lines of evidence.
Finally, we summarized small low-throughput experiments (<20 nodes) into
larger groups according to their experimental type, since low sample sizes
can be expected to lead to very imprecise error rate estimates. To determine
the above cut-off, we analyzed the variance of the sampling distribution with
respect to the sample size. The chosen cut-off excludes datasets for which
the statistical power substantially drops. Further details on the semantic
integration procedure can be found in the Supplementary Material.

Having established a semantic knowledge network of physical and GIs
within S. cerevisiae we executed the new algorithm over all 51 006 contained
physical interactions (PSI-MI ontology ID MI:0915) and all 15 006 contained
synthetic GIs (PSI-MI ontology ID MI:0794), as an exemplary type of GI.
For comparison purposes, we also executed the naive integration method
described above on the physical interaction data.

3 RESULTS AND DISCUSSION

3.1 Evaluation on simulated data
Figure 1 shows the performances of the four tested methods (Naive
integration, Lee et al., Lycett and the method proposed here) over
different numbers of input datasets. It is clearly visible that the new
fully Bayesian method overall outperforms both gold standard-based
methods. For low numbers of input datasets, the fully Bayesian
method’s loss over existing interactions (L(+)) is substantially lower
and is the only method to perform better than the naive approach
for three input experiments. Given more than five experiments, all
methods show comparably low loss of existing interactions. The
variance in performance is at comparable levels in all methods.

Regarding non-existing interactions the fully Bayesian method
constantly performs better than Lycett’s method. Lee’s method
shows unexpected behaviour here as its performance on non-existing
edges actually worsens with increasing numbers of datasets. Both
the mean and the variance of its loss function increase steadily. This
is most likely caused by the method not taking into account any
available negative evidence. The Lee method’s central weighted
sum only comprises the positive LLS scores for datasets that

Fig. 1. Evaluation of the algorithm in comparison with the naive method
as well as the GS-based methods by Lee et al. and Lycett given different
numbers of experiments. Losses are averaged over 5000 replicates. Top:
average loss over interacting node pairs (L(+)). Centre: average loss over
non-interacting node pairs (L(−)). Bottom: average loss regarding error rate
estimates (LER). Whiskers indicate one SD. The naive method does not
estimate error rates and is thus excluded from this metric. The performance
of the gold standard-based methods regarding error rate estimation cannot be
expected to improve with the number of experiments, since their estimates
are always based on the gold standard and not on the experiments.

support an edge, but no negative components for datasets that
do not support the same edge. Thus, with a rising number of
datasets it becomes increasingly likely for non-existing edges to
be misclassified. The proposed method, on the other hand, improves
strongly with a growing number of input datasets. As expected, the
SDs regarding the L(−) metric are ∼100 times smaller than those
for the L(+) metric, since the number of existing edges is very small
compared with the number of potential edges.

1498



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[16:28 7/5/2012 Bioinformatics-bts154.tex] Page: 1499 1495–1500

Bayesian integration of networks without gold standards

The average loss regarding the θ estimates (LER) shows the fully
Bayesian method’s superior precision, which improves in both mean
and variance with the number of input experiments, while both gold
standard-based methods stagnate at constant large amounts of loss.
This observation is to be expected, since these methods do not use
the input datasets in order to predict error rates, but instead only rely
on the gold standard.

3.2 Interaction probabilities for S. cerevisiae
As discussed in Section 2.3, we have applied the proposed method
to physical and GI datasets for the yeast S. cerevisiae. Figure 2
shows histograms of the resulting existence probabilities. Regarding
physical interactions, 20 180 (39.03%) of the experimentally
reported interactions have been assigned probabilities <0.1. A total
of 22 090 (43.3%) have been assigned probabilities >0.9. The
remaining interactions are widely distributed around a small peak
near probability 0.3.

When looking at the probability distribution over synthetic genetic
interactions it is apparent that with 14 386 (95.8%) a vast majority
of interactions have been assigned values of <0.5. Of these, 8086
(53.9%) have a probability <0.1. Only 230 (1.5%) have a probability
>0.9. This is most likely due to the much poorer coverage and data
quality for synthetic GIs compared with physical interactions. An
examination of the data shows that only 3.32% of the synthetic
interactions are backed up by >2 experiments, whereas for physical
interactions the same is true for 18.08%.

Even though it would be desirable to evaluate the correctness of
these confidence assessments, without knowing the absolute truth
regarding which interactions are real and which are not, a satisfying
answer cannot be found. Apart from the discussed limitations of
existing reference datasets often treated as gold standards, it would
be problematic to evaluate the Lee and Lycett methods on the basis
of the same gold standard data they received as input.

However, it is possible to illustrate the difference in results
between the naive method and methods that take into account
the reliability of each input dataset. Figure 3 shows a comparison
between probabilities assigned to PPIs according to the naive method
and according to the proposed method. It is clearly visible that only
few agreements exist. A correlation of only 0.36 can be measured.
This is to be expected. In contrast to the naive method, the proposed
algorithm infers false positive and false negative error rates for each
experiment and thus reaches more refined conclusions.

3.3 Summary and conclusion
We have presented a novel, fully Bayesian method for assessing
the credibility of experimental network data in the absence of
gold standards. We have evaluated the method’s performance in
comparison with two existing gold standard-based methods using a
rigorous testing environment. The new method has shown excellent
performance despite the testing environment being designed to
favour the competing gold standard-based methods: both competing
reference methods have been given optimal input parameters as well
as unbiased gold standards, which would not normally be available.
Additionally, the environment has been set up to simulate scale-free
graphs, which emulate the topology of real biological graphs and
thus do not meet the proposed algorithm’s assumptions regarding the
prior distribution of G. Finally, the simulation of experimental data

Fig. 2. Histogram of existence probabilities for the interactions in the
integrated dataset. Top: PPIs, bottom: synthetic GIs.

Fig. 3. Probabilities assigned to PPIs by the naive integration method and
the proposed method. As expected, a strong difference is clearly visible, as
the proposed method takes into account the reliability of each experiment.

has been designed to introduce bias and thus violate the algorithm’s
assumption of statistical independence of the datasets.

We have evaluated the performance of the new algorithm and
the two reference methods using three different metrics. These
metrics express the accuracy of error rate estimation as well as
the accuracy of probability assignment to existing and non-existing
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edges. Other performance metrics could have been used as well
(e.g. ROC–AUC or weighted sums of loss functions). However, we
argue that such metrics would have provided less detail, since they
represent a method’s performance as a single number rather than
yielding information on different categories of performance. Given
biological networks or their simulated equivalents, it is crucial to
highlight the difference between existing and non-existing edges,
since their respective amounts are so vastly different. Thus errors on
non-existing edges would always overshadow the errors on existing
edges in summarizing metrics like ROC–AUC.

While we have shown that the new algorithm performs well
on large input experiments, it remains yet to be shown how
the method performs on smaller datasets originating from low-
throughput experiments. A further limitation to the approach is that
it does not take into account any potential pre-existing confidence
assessments from the original experiments.

We conclude that the new fully Bayesian method is a valuable
addition to the set of tools available for confidence assessment of
experimental datasets. It is particularly useful for the application
on semantically integrated knowledge networks that consist of
heterogeneous data, since it allows for every sub-network to be
addressed separately without need for reconfiguration or search for
applicable gold standards. As shown in Section 2.3, we were able to
easily apply the method to the PPI and synthetic GI sub-networks
of the same dataset.

3.4 Outlook
Future work will include a further evaluation of the method on
real biological data. It is possible to compare the algorithm’s
performance to other methods when using the calculated confidence
values for protein function prediction.

Furthermore, we would intend to analyze the method’s
performance on small low-throughput type input datasets. Finally,
it would be interesting to explore more of the huge simulation
parameter space. A great number of combinations of different
numbers of small and large input experiments with varying false
positive and false negative rates remain to be surveyed.

Another useful feature would be the incorporation of potential pre-
existing prior information. This endeavour is largely complicated by
the lack of a common standard. For example, PPI data as available in
PSI-MI format from the databases mentioned above contains various
different confidence values in different metrics, such as probabilities,
letter grades or bit-scores. If these difficulties can be successfully
tackled, the resulting improvements will make the presented method
even more reliable and useful.
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