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Quantum coherence–driven self-organized criticality
and nonequilibrium light localization
Kosmas L. Tsakmakidis,1* Pankaj K. Jha,1* Yuan Wang,1 Xiang Zhang1,2†

Self-organized criticality emerges in dynamical complex systems driven out of equilibrium and characterizes a wide
range of classical phenomena in physics, geology, and biology. We report on a quantum coherence–controlled self-
organized critical transition observed in the light localization behavior of a coherence-driven nanophotonic
configuration. Our system is composed of a gain-enhanced plasmonic heterostructure controlled by a coherent drive,
in which photons close to the stopped-light regime interact in the presence of the active nonlinearities, eventually
synchronizing their dynamics. In this system, on the basis of analytical and corroborating full-wave Maxwell-Bloch
computations, we observe quantum coherence–controlled self-organized criticality in the emergence of light localiza-
tion arising from the synchronization of the photons. It is associated with two first-order phase transitions: one per-
taining to the synchronization of the dynamics of the photons and the second pertaining to an inversionless lasing
transition by the coherent drive. The so-attained light localization, which is robust to dissipation, fluctuations, and
many-body interactions, exhibits scale-invariant power laws and absence of finely tuned control parameters. We also
found that, in this nonequilibrium dynamical system, the effective critical “temperature” of the system drops to zero,
whereupon one enters the quantum self-organized critical regime.
INTRODUCTION
The self-organization of many nonequilibrium complex systems (1)
toward an “ordered” state is a profound concept in basic science, rang-
ing from biochemistry to physics (2–4). Examples include the group
movement of flocks of birds (5),motions of human crowds (6), neutrino
oscillations in the early universe (7), and the formation of shapes
(“morphogenesis”) in biological organisms (8, 9). An intriguing trait of
this nonequilibrium, driven-dissipative systems (2, 3) is that their self-
organization can lead them to aphase transition and to critical behavior—
a phenomenon known as self-organized criticality (SOC) (10). Unlike
equilibrium phase-transition phenomena, such as superconductivity or
ferromagnetism, where an exogenous control parameter (for example,
temperature or pressure) needs to be precisely tuned for the phase transi-
tion to occur, no such fine-tuning is needed in SOC systems (10–13): They
can self-organize and reach their critical state even when driven far away
from it. Similar to all critical phenomena (14), at exactly the phase-
transition point, the SOC systems are described by scale-invariant
power lawswithwell-defined critical exponents (15). Biological extinction
events, dynamics of granular or mechanical media, and nonlinear pro-
cesses in astrophysics, in magnetospheric, planetary, solar, and stellar
physics, and in cosmology are examples of dynamical systems exhibiting
SOC behavior (10–13, 16).

As is evident from the above examples, most SOC systems studied
until now have been classical, driven by a control parameter equivalent to
temperature in conventional phase transitions (14) (“thermally” driven).
It is thus intriguing to identify quantum-coherently controlled systems
that exhibit a phase transition in a self-organizedway, wherein the critical
point behaves as an attractor of the dynamics. In such a nonequilibrium,
self-organized critical system, it may also be possible to enter the regime
of quantum SOC (11–13, 17–20)—similar to the regime of quantum
criticality in equilibrium condensed matter phase transitions (21–25). For
a complex system to enter such a regime, several requirements should
be fulfilled (10–17, 21–23). These include (i) the dropping of the control
parameter (effective or equivalent “temperature”) to zero upon
application of an external coherent field (21–23), (ii) the absence of finely
tuned control parameters (10, 11), (iii) automated attraction toward
a nonequilibrium steady state (15, 16), (iv) emergence of scaling and
power lawswithwell-defined critical exponents (10–12, 15), (v) statistical
independence of the events (“avalanches”; compare section S4) (10–13),
and (vi) a nonlinear coherent growth phase upon exceeding a critical
threshold (10–13).

To address the above issues, and profiting from the principle of uni-
versality in statistical physics, we introduce and study here a semi-
classical many-body system in active nanophotonics that exhibits all
characteristics of classical SOC but can be quantum-coherently driven.
Specifically, we investigate whether light can exhibit a quantum self-
organized phase transition to localization in fluctuating dissipative (2, 3)
media where simple cavity effects are absent. Many-body interactions
(26, 27) in the driven-dissipative nanostructure considered (Fig. 1) arise
from the competition betweenmany photonicmodes in the presence of
nonlinear gain (Fig. 2 andMaterials andMethods) and, as shown later
on, are vital for robust localization to emerge. Likewise, quantum effects
in this system arise from the presence of a coherent driveWamixing two
quantum states in the active core layer of the system (Fig. 1 and section
S3), leading to their quantum-coherent superposition—similar to quan-
tum critical systems (for example, ferromagnets) in condensed matter
where the application of a classical magnetic field realigns the spins in
the direction of the field, leading to a quantum-coherent superposition
of “up” and “down” spins (for example, j→〉i ¼ ðj↑〉i þ j↓〉iÞ=

ffiffiffi

2
p

), that
is, to a “quantum paramagnet” (21–25).

Localization in optics and photonics is usually achieved by using a
barrier (optical potential) to confine light, for example, in microstruc-
tured dielectric cavities or plasmonic nanoparticles and metamaterials.
In all cases, this type of localization is thus known as “potential localiza-
tion” (28–30): The light wave is localized, owing to the sheer presence of
a refractive index barrier, without any phase transition occurring. Most
existing light localization active structures (such as, for example, optical
microcavity or photonic crystal lasers, light-emitting diodes, and mod-
ulators) normally involve intricate optogeometric configurations, are
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difficult to integrate with waveguides and further multiplexing, and are
not CMOS (complementary metal-oxide semiconductor)–compatible
nor suitable for scalable, high-volume fabrication (for example, often
requiring the creation of air bridge structures or fabrication using elec-
tron beam lithography, which is an accurate but time-consuming pro-
cess) (29). Thus, it is desirable froma technological perspective to design
light-localizing structures that can, ideally, be in the form of planar het-
erostructures, fully compatiblewith integratedCMOSplatforms (for ex-
ample, suitable for stepper photolithography), and minimalistic—not
requiring the fabrication of well-defined longitudinal mirrors/boundaries
to confine light. Furthermore, until now, the only known nonpotential
light localization mechanism is the Anderson transition in strongly
disordered media (28–32) where in three dimensions an equilibrium
phase transition occurs from diffusion to exponential localization.
However, the so-attained nonpotential light localization is not robust:
Dissipative losses (33, 34), nonlinear photon interactions, or time-
varying refractive indices (32) can all destroy localization and restore
diffusion (see also section S1) (28, 30, 32).

Here, we report on a coherence-driven photonic nanosystem that
can dynamically localize light far from thermodynamic equilibrium
(35) by interfering many nonlinearly coupled photonic modes in the
presence of gain. In sharp contrast to conventional light localization
schemes, this is achieved in the absence of refractive index barriers
(non–potential-well localization); that is, there is a phase transition
Tsakmakidis et al., Sci. Adv. 2018;4 : eaaq0465 16 March 2018
to localization—similarly to the Anderson scheme. However, although
there is a phase transition to localization in both our case and the
Anderson configuration, our scheme is inherently different: It does
not involvedisorderedmediabut longitudinally uniform, active plasmonic
heterostructures; thus, the localization mechanism here fundamentally
differs from that in disordered media (where coherent backscattering
by disorder leads to destructive interference ofwaves returning to points
in the medium along time-reversed paths). Furthermore, unlike the
Anderson scheme, the attained localization in our case is robust to the
simultaneous presence of dissipation, many-body nonlinear interac-
tions, and time-varying media parameters. In this quantum-coherently
driven, nonequilibrium configuration, we observe all six of the previously
outlined characteristics that a complex system must have to enter the
regime of quantumSOC.Moreover, we identify a supercritical region in
the phase diagram that is inaccessible to all classically driven SOC sys-
tems, emerging only if quantum effects drive the SOC nanosystem.

We note that a variety of light-based many-body systems (36), as
well as of open, driven-dissipative quantum systems (37), have been re-
ported in the past, such as cold atomic ensembles and quantum gases in
optical cavities (38), arrays of nonlinear cavities and superconducting
circuits (enabling quantum simulators) (39, 40), and exciton-polaritons
in semiconductor microcavities (41, 42), to name only a few. These
systems exhibit a rich variety of dissipative, nonequilibrium dynamics
[for example, described by a dissipative Gross-Pitaevskii equation (41)]
or even quantum phase transitions such as, for example, open-system
realizations of the Dickie quantum phase transition (38). However,
these systems typically do not exhibit classical or quantum SOCbecause
they do not fulfill one or more of the aforementioned six general char-
acteristics (10–13) of this type of phase transitions. In particular, those
systems typically require precise tuning of a range of parameters, such
as, for example, the pumping strength of a far-detuned laser beam,
atomic detuning, cavity detuning, atom-field coupling strength, etc.,
withoutwhich dynamical instabilities are prevented. Evenwith the right
choice of parameters, those systems typically exhibit self-organization
(rather than SOC), similar to Bénard cell convection or to pattern for-
mation far from equilibrium (2, 3, 8, 9), such as polarization gratings
induced by intense femtosecond light irradiation of amorphous ma-
terials (42), involving system-wide processes that operate with long-range
interactions, rather than statistically independent events (avalanches)
arising from next-neighbor interactions (11–13). For the above reasons,
those systems are not classified as SOC in the pertinent literature. In
contrast, as shown here in the following, our quantum-coherently driven
light-localizing nanophotonic system inherently exhibits all generic
characteristics of SOC systems, and for a judicious choice of parameters,
it may also be possible for the system to enter the previously described
regime of quantum SOC.
RESULTS
The quantum-coherently driven complex nanosystem
To see how robust nonpotential light localization and quantum
coherence–driven SOC can arise, consider an active nanophotonic
heterostructure, as shown in Fig. 1. It consists of a deep–ultraviolet
(UV)QW [for example, AlGaN/AlN (43, 44)] bounded on both sides
by a nanoplasmonicmedium, Al (45, 46). The active nonlinearities in
theQWallow formany-body interactions among the supported photonic
states (Fig. 2) (27), whereas the nanoplasmonic layers (47) provide, in
the stopped-light regime, the positive-feedback mechanism necessary
for the system to reach criticality in a self-organized manner without
Fig. 1. The conceived coherence-driven photonic nanosystem. The nonequilib-
rium systemwe consider is a quantum-coherently driven active nanophotonic hetero-
structure in its stopped-light regime. It consists of a 26-nm-thick quantum well (QW)
bounded by aluminum (Al), with the upper cladding having a thickness of 50 nm. The
QW is described by a three-level scheme (57), as shown in the lower inset. An in-
coherent incident pump (shown in red) sends electrons from level |1> to level |3> with
a pump rate g, whereas a coherent drive (shown inwhite) couples the levels |2> and
|3> with a Rabi frequency Wa. Photons emitted in the |2>-|1> transition stimulate co-
herently the stopped-light (“heavy photon”) mode that the heterostructure supports
(see Fig. 4). The pump beam deposits gain over the middle region highlighted trans-
lucently. Numerical Maxwell-Bloch-Langevin computations (61, 62) reveal the emer-
gence of a sinc-shaped nonequilibrium-localized light field (shown in false color), in
agreement with theory (see Fig. 2B, right).
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the presence of an actual optical potential in the longitudinal direction
(see also section S1).

In our analysis of this complex system, we first need to determine an
accurate expression for the macroscopic permittivity of the Al layers,
eAl(w), and for this, we first focus on the electron-electron interactions
(26) in the cover and substrate regions. InMaterials andMethods, we
present the details of the derived many-electron description of the
polarization process in the above layers in the deep-UV regime.We find
excellent agreement between experimentally extracted data for the per-
Tsakmakidis et al., Sci. Adv. 2018;4 : eaaq0465 16 March 2018
mittivity of Al, eAl(w), from Ehrenreich et al. (46) and a fit using our
analytically derived expression, verifying the accuracy of this de-
scription of the deep-UV plasmonic medium. Note from Fig. 3 that
the standard Drude theory fails to predict Re{eAl(w)} < 0 for w > ~13 ×
1015 rad/s and, in particular, in the deep-UV region, Re{w} ~ 16.8 ×
1015 rad/s, which is the region of interest to us here.

Next, we calculate the complex frequency (48, 49) (complex w)
photonic states that the heterostructure supports (see Materials
andMethods). Figure 4 presents an example of such a complex band
A

B

Fig. 2. Synchronization in classical mechanics and in optics. (A) The dynamics and emergence of synchronization in many-body classical systems can be modeled using
coupled mechanical oscillators (metronomes) (16). When a collection of metronomes is placed on a fixed basis (top), in which case they do not couple, they oscillate randomly
(“disordered phase”), never synchronizing. In contrast, when the metronomes are placed on a basis that can freely move (bottom), in which case the metronomes couple, they
eventually synchronize without any external intervention (that is, “spontaneously”), reaching an “ordered” state where they all move in phase. (B) In the active nanophotonic
heterostructure that we study (Fig. 1), a large number of oscillating lasingmodes couple nonlinearly in the gain region (translucent in Fig. 1) just as themetronomes of (A) couple
nonlinearly via the moving base. Each lasing mode can be considered a “particle” in a many-body nonequilibrium system (27) and, on its own, is delocalized, oscillating in space
with a spatial frequency bn (n= 1, 2,…) (left). These {bn} modes initially oscillate out of phase, giving rise to a noise pattern resulting from their superposition and interference (left).
However, owing to their nonlinear coupling, they eventually synchronize in space after a transient time interval, giving rise to the emergence of a localized sinc function–shaped
supermode (right). The onset of spatial synchronization of the {bn} modes is associated with a nonequilibrium first-order phase transition (see main text and Materials and
Methods).
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structure calculation for the TM2 photonic mode, showing the real and
imaginary parts of the angular frequency w as a function of the (real)
longitudinal propagation constant b. Note from Fig. 4 (bottom) that
there are two points, one at b = 0 and a second at b ~ 30 × 106 m−1,
where the group velocity vg → 0, making the band very flat for b <
40 × 106m−1 and inducing a large effective mass of the photonic states
in that region (“heavy photons”).

We now pump a small region of the active nanoplasmonic hetero-
structure with a Gaussian incident beam (white beam in Fig. 1),
depositing sufficient gain to exceed the dissipative losses (given by
Im{w} in Fig. 4) throughout the {b ∈ R: b < 40 × 106 m−1} TM2 band,
indicated with a dashed colored circle in the dispersion diagram of
Fig. 4. Each bn point in that part of the bandmay now become a lasing
state (an optical oscillator) (50, 51), with all of them coupling non-
linearly in the gain region where they overlap spatially; that is, we
have amany-body systemmade of a continuous ensemble of coupled
optical nano-oscillators, similar to the prototypical SOC model of
Tsakmakidis et al., Sci. Adv. 2018;4 : eaaq0465 16 March 2018
coupled mechanical oscillators (see Fig. 2) (16). The optical oscillators
are not identical here because, although they have nearly the same os-
cillating frequency w (because the band is flat in the above {b} region),
they have slightly different losses (red dashed curve in Fig. 4).
Nonetheless, we find below, in Fig. 5A, that all {b} states become un-
stable and spatially synchronize, similar to the synchronization in time
of the metronomes of Fig. 2A (bottom).

To clearly see the emergence of positive feedback in our structure,
without which the system cannot reach criticality in a self-organized
way, we visualize in Fig. 4 (bottom) the trajectory of a guided light ray in
that regime by calculating analytically (section S2) the total time-
averaged power flow in the structure. This gives the following com-
pact expression: Ptot = (1/4)Ex

maxHy
maxweff, where Ex

max (Hy
max) is

the maximum value of the Ex field (Hy field) component in the core
layer, and weff is the effective thickness of the heterostructure. In the
region where the TM2 band in Fig. 4 is flat and vg approaches zero,
Ptot must also approach zero (52, 53) so that weff → 0; that is, a light
A

B

Fig. 3. Many-electron characteristics of the nanoplasmonic layers of the structure of Fig. 1. (A) Feynman diagrams illustrating schematically the polarization process (top)
and renormalization of the electron-electron interaction strength, Ve, to Veff (bottom) in the considered plasmonic medium (Al). 1PI, one-particle irreducible. (B) Comparison
between the real part of the macroscopic permittivity of Al (−Re{eAl}), as derived from the microscopic theory presented here (Eq. M1), the experimental data by Ehrenreich et al.
(46), and the standard Drude formula (45).
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ray becomes trapped, forming a double light cone, as illustrated in
the lower inset of Fig. 4. This feedback-formingmechanism is crucial
for filtering out of out-of-phase fluctuations and the emergence of
robust attractors, as we see below.

Semiclassical mean-field model
We ascertain the regime of quantum coherence–assisted SOC on the
basis of a semiclassical mean-field model. We apply a coherent driving
fieldWa (red beam in Fig. 1) to the transition |2>→ |3> of the three-level
active core medium (QW) (54–58), as shown in the inset of Fig. 1. This
creates an asymmetry between absorption and stimulated emission on
the |2>→ |1> transition andmaintains the quantum coherence on the
|2>→ |3> transition. In contrast, the role of the incoherent pump, g, is
simply to excite electrons to the upper state |3>, which then decay to
states |1> and |2>.We design the nanostructure such that the |2>→ |1>
transition is resonantwith the {Re{w}≈ 16.8 × 1015 rad/s; b ∈R: b <40×
106m−1} TM2 band. TheHeisenberg equation ofmotion for the slowly
Tsakmakidis et al., Sci. Adv. 2018;4 : eaaq0465 16 March 2018
varying amplitudea0bn of an individual bn state is given by (see sec-
tion S3)

⋅a0bn ¼ �Gna0bn þ i∑
p
rðpÞ21

~W
ðpÞ
b ð1Þ

where |a0bn|
2 is the number of photons in the mode bn. The decay of

excitation of the mode bn is quantified by the parameter Gn,
whereas the polarization of the active (gain) medium is given by
the nondiagonal matrix elements, such as (section S3)

⋅r21 ¼ �G21r21 � iWbðr22 � r21Þ þ iW*
ar31 ð2Þ

A key ingredient of Eq. 2 is the presence of the matrix element
r31, which indicates the coherence between levels |3> and |1> that
develops as a result of the coherent drive field Wa. This coherence
Fig. 4. Complex band diagram of the nanophotonic heterostructure. Complex frequency dispersion band of the TM2 mode. Also shown schematically in the upper panel
with a filled Lorentzian shape is the bandwidth of the QWgain (57), whereas highlighted are the excited {bn} states. The lower panel shows the group velocity vg of the TM2mode,
which becomes zero at two points in the region where b < 40 × 106 m−1. The inset in the lower panel presents an intuitive ray picture understanding of how positive feedback
arises in the considered self-organized complex nanosystem.
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between the atomic states gives rise to quantum interference that is
destructive for absorption and constructive for emission processes
(55, 56, 58). The electric field associated with a0bn is given by

~EðzÞ ¼ i ∑
N�1

n¼0
f2pħwn=VÞ1=2ei½ðb1þn dbÞzþφn �at¼0

n � c:c:g ð3Þ

wherewe note that the phasesϕn are different for eachmode. Eventually,
because of the nonlinear coupling of the bnmodes in the pumped region
Tsakmakidis et al., Sci. Adv. 2018;4 : eaaq0465 16 March 2018
(Fig. 1), themodes synchronize as is shown in Fig. 5A, that is, they all
obtain the same phaseϕn, which can be set to zero without loss of gen-
erality. The supermode arising from the synchronization of all of these
modes has a sinc-shaped spatial profile given by (see Materials and
Methods)

Iºð2=LlocÞ2sinc2ðL=LlocÞ ð4Þ

where Lloc = 2/Db is the localization length. Finally, as shown in
Materials and Methods for the present system, but as it is also known
for active (lasing) systems in general (50, 51, 55), the control parameter
(“effective temperature”) in this configuration is the amount of gain in
the pumped region, that is, the population inversion r33 þ r22 � r11.

From the above discussion, it is thus evident that the succession of
elements used in the presentmodel to attain quantum coherence–driven
SOC and nonequilibrium light localization is as follows: (i) A pump field
deposits gain (population inversionr33 þ r22 � r11) in a finite region in
the core of the heterostructure (Fig. 1); (ii) the modes bn destabilize and
start oscillating, each with an amplitude a0bnðtÞ (Eq. 1); (iii) the modes
initially oscillate out of phase (Fig. 2B, left) but eventually synchronize
(Figs. 2B, right, and 5A), owing to their nonlinear coupling in the gain
region; (iv) the synchronization of themodes gives rise to a sinc-shaped
localized hotspot (Fig. 1 and Eq. 4); (v) the light intensity in this hotspot
is controlled by the population inversion r33 þ r22 � r11, which is a func-
tion of the coherent fieldWa (section S3 and Eq. 2); (vi) for a specific value
of Wa, the critical population inversion rc33 þ rc22 � rc11 [“critical tem-
perature” (50, 51, 55) of the system] drops to zero (Fig. 6B), which is a
requirement for entering the regime of quantum SOC.

Onset of activity
There is a further crucial point discerned from Fig. 5A: The onset of
synchronization is followed in time by the onset of “activity” (59), that
is, here, by buildup of temporal coherence (CB), which then destroys
synchronization, leading toASmotion (AS2 region in Fig. 5A), followed
again by synchronization (S2) and then CB (CB2). We thus have re-
peated cycles of “AS” motion→leading to “S” motion→leading to
“CB”→leading to “AS” motion, until the nonequilibrium steady state
is reached. Note that, even at a steady state, this semiclassical many-
body (27) nanosystem is still far from thermodynamic equilibrium
because the inverted active medium is described by an occupation
Boltzmann distribution function with a negative effective temperature
(Tactive-medium < 0), whereas the nanostructure has a temperature much
smaller than ħw/kB (kB being Boltzmann’s constant); hence, we may
effectively put Tnanostructure ≈ 0. Thus, the light field is coupled to two
reservoirs with very different temperatures, and for this reason, the com-
plex nanosystem is far from thermal equilibrium. Note also that,
similar to the sandpile cellular automaton SOC model (10, 15), where
although the current of incoming particles is known, the control
parameter (slope increase of the sandpile) varies randomly and does
not require external fine-tuning, also in our case, although the pump
rate may be known, the control parameter [atomic inversion (v)] can-
not be precisely known or tuned, owing to spontaneous emission; in
both cases, the complex system is automatically attracted to the none-
quilibrium self-organized critical point (Fig. 5B and Materials and
Methods).

The evolution in the phase space of the robustly (and nonpotentially)
localized hotspot, which, as we saw, arises from the superposition of all
{b} states, is reported in Fig. 5B, showing the emergence of a steady-state
A

B

Fig. 5. Spontaneous synchronization and emergence of attractors. (A) Onset of
synchronization: temporal dynamics of two coupled {bn} states showing repeated
cycles of asynchronous (AS) motion, followed by synchronization (S), and then tempo-
ral coherence buildup (CB). In all cases, the onset of spontaneous synchronization pre-
cedes that of activity (CB). (B) Emergence of attractors: dynamic evolution in the phase
space (control parameter/inversion versus order parameter/photon number) of the lo-
calized light field of Fig. 1. After a transient period (0< t <3), duringwhich the light field
remains robustly localized and the permittivity of the pumped core region dynamically
changes (the control parameter r22 − r11º Im{eco

pumped}), the system is attracted to a
stable point, robust to perturbations. The inset shows the same result but without
quantum coherence driving the system.
6 of 10
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nonequilibrium attractor, robust with respect to noise; that is, the self-
organized critical point becomes an attractor for the dynamics. Note
also from Fig. 5B the marked evolutionary advantage of the quantum
coherence–driven complex nanosystem compared with the case where
the system is only classically driven (inset in Fig. 5B): First, steady state is
reached faster, and second, the number of photons generated, that is, the
Tsakmakidis et al., Sci. Adv. 2018;4 : eaaq0465 16 March 2018
intensity of the nonequilibrium-localized hotspot, increases by more
than an order of magnitude.
DISCUSSION
To better observe the effect of the coherent control on the considered
nonequilibrium nanosystem, we have derived and show in Fig. 6A its
phase diagram, both with andwithout the external coherent drive. Note
how the continuous, second-order phase transition in the absence of
quantum coherence is transformed to a discontinuous first-order phase
transition when the coherent field drives the SOC nanosystem.We find
fromFig. 6A that the presence of quantumcoherence not only preserves
but also actually enhances SOC: The magnitude of the order parameter
markedly increases under the quantum-coherent drive, and further-
more, there is a region (highlighted with pale blue in Fig. 6A) that
was subcritical in the absence of quantum coherence but becomes
supercritical in the presence of quantum coherence.

Finally, Fig. 6B presents two of the key results of the present study:
First, similar to classical SOC systems (15), we find (in mean-field ap-
proximation) that the order parameter obeys a scale-invariant power
law as a function of the normalized quantum-coherent drive ~Wa with
a “critical isotherm” (14, 50, 51, 55) exponent d ~ 3.07. Our quasi-1D
system belongs to the Ising universality class, but unlike equilibrium
static systems in condensed matter, here, the critical point is reached
by starting far from thermodynamic equilibrium in a self-organized
manner. The presence of an attractor in Fig. 5B is insensitive to the
parameters of themodel. This robustness to dissipation, fluctuations,
and many-body interactions is the fundamental difference of the
present type of nonpotential light localization compared to light lo-
calization in disordered media. Second, similar to quantum criticality
in equilibrium static systems, which is reached when the critical tem-
perature Tc drops to zero upon application of an external magnetic
field (21–23), the lower inset of Fig. 6B shows that, for a suitable choice
of parameters (section S3), the effective critical temperature of our
nonequilibrium dynamical system falls to zero for sufficiently strong
coherent drive (Wa ~ 0.6). Exactly that point, where the total critical
inversion Drc (critical effective temperature; see Materials and Methods)
falls to zero, is a quantum self-organized critical point, analogous to the
quantum critical point in equilibrium phase-transition phenomena
(compare Fig. 1) (21–24) but without the need for fine-tuning.

In conclusion, the main findings of the present study can be sum-
marized as follows: First, we have identified a quantum coherence–
driven self-organized phase transition in an active nanophotonic system
(Figs. 1 and 4B). Second, we have shown that quantum coherence be-
stows a marked advantage in the evolution of self-organized systems
toward a phase transition; namely, it accelerates the reaching of the
critical point (Fig. 5B) and enhances the order parameter (Fig. 6A).
Third, we have identified a scheme where unconventional light localiza-
tion is attained: Similar to the Anderson scheme in disordered media,
there is phase transition to localization (that is, the localization is not
trivial because it is not aided by cavity-like effects); however, unlike the
Anderson scheme, we do not deploy disordered media (but active,
longitudinally uniform, plasmonic heterostructures), and the attained
dynamical localization remains unharmed by and robust to dissipative
effects, nonlinear many-body interactions, and time-varying media
parameters (Figs. 2B and 5). The fact that there is no need to design
optical potentials in this scheme for robustly localizing light [that is,
the fact that the conceived nanostructure is minimalistic (planar
and longitudinally uniform)] strongly suggests that it is also appealing
Pump rate, g × 1012 s–1

A

B

Fig. 6. Emergence of scaling and toward the quantum self-organized critical re-
gime. (A) Order parameter (number of photons) versus the pump rate, g, with and
without quantum coherence driving the nanosystem. The nonlinearly interacting
{bn} lasing modes self-organize into a critical state, with a second-order (first-order)
phase transition to a supercritical phase being observed without (with) the quantum-
coherent drive. (B) Emergence of scale-invariant (fractal) power law in the order pa-
rameter versus the normalized coherent drive ~Wa ¼ Wa=ðrc33 þ rc22 � rc11Þ, where
rc33 þ rc22 � rc11 is the critical inversion. The computed critical isotherm exponent is
d ~ 3.07. The upper inset shows the variation of the critical inversionwith the applied
coherent fieldWa. For another suitably selected choice of parameters (see section S3),
the control parameter (that is, the critical inversion rc33 þ rc22 � rc11, which plays the
role of the effective temperature here) reduces to zero for a sufficiently strong drive
Wa (lower inset). That point is the quantum self-organized critical point (QSCP) of our
nonequilibrium dynamical system, somewhat analogous to the quantum critical
point (QCP) in equilibrium static systems in condensed matter (21–25).
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from an applied perspective for a host of applications in condensed
matter photonics and nanophotonics.
MATERIALS AND METHODS
Many-electron polarization process in the cover and
substrate layers
The response of the electron gas to a spatiotemporally varying weak
potential Ve(r, t) = Ve(q, w)e

i(qr−wt)egt (g → 0) is governed by the

Hamiltonian (26)H ¼∑
p;s
epâ

þ
ps âps þ∑

s
∫F̂

þ
s ðrÞVeðr; tÞF̂sðrÞd3r, where

ep = ħ2k2/2m is the energy of a single-electron state, âps
ðþÞ is the

annihilation (creation) operator for a state with wave vector p and

spin s, and F̂s
ðþÞðrÞ ¼ 1

V1=2∑
p
â
ðþÞ
ps eð‐Þip⋅r is the corresponding electron field

operators. In the Heisenberg representation, the equation of motion
of the relevant density operator is, thus, given by iħdðr̂p;q;sÞ=dt ¼
ðepþq � eqÞr̂p;q;s þ ðâþp;sâp;s � âþpþq;sâpþq;sÞVeðq;wÞ from where

upon taking the thermal average (<Q̂>¼ TrðQ̂e�bHÞ=Z , b being

the thermodynamic beta, and Z being the canonical partition func-

tion), we found the dynamical response function c0ðq;wÞ ¼ ð1=VÞ
∑
p;s
ðn0pþq ;s � n0p ;sÞ=ðepþq � eq � ħw� iℏgÞ , wher e n0p;s ¼< âþp;s

âp;s >. For the polarization process in the plasmonic medium, we
needed to sum all one-particle irreducible Feynman diagrams that
can be inserted into an interaction wiggle [an example of which
(for ic0) is shown in Fig. 3A]. In the absence of a photon propaga-
tor at this stage, the aforementioned sum will simply renormalize
the potential, changing the interaction strength from −iVe to the
effective potential −iVeff. Carrying out the sum to infinity in the
usual way (see Fig. 3A), we got −iVeff = −iVe + (−iVe)(ic0)(−iVe) +
(−iVe)(ic0)(−iVe) (ic0)(−iVe) + … = (−iVe)/(1 − Vec0), from where
the equivalent permittivity may be defined as e(q, w) = 1 − Vec0 =
1 − 4pe2c0(q, w)/q

2. Here, we sought to identify the smallest possible
nanovolume over which nonequilibrium light localization of oscillato-
ry (that is, not surface) states may be achieved in the considered Al
nanoplasmonic heterostructure; hence, we needed to consider the
highest possible incident light frequencies (in this case, in the deep-
UV regime), for which not only conduction band (that is, sp band)
but also d band to sp band electronic transitions are important. In
particular, Al (and other non-noble metals) contains multiple valence
electrons that, for the high-energy deep-UV incident photons that we
shall consider here, can transition between parallel or near-parallel
one-electron conduction bands (sp band to sp band). Thus, assuming
that |q| ≪ kF (kF being the radius of the Fermi sphere in k space
around k = 0), expanding c0(q, w) in q, taking into account that
ep+q = ep + q·∇pep+…, n0pþq ¼ n0p þ ð∂n0=∂eÞq⋅∇pep þ…, and
∂n0=∂ep ¼ �dðep � eFÞ (at T = 0), with∇pep ¼ ħυFk=k being the
Fermi velocity, and using standard second-order perturbation theory,
we arrived at the following generic expression for the nonnoble metal
(Al) dynamic permittivity

eAlðwÞ ¼ lim
jqj→0

eðq;wÞ�

4pie2

wm2
∑
i;j

f ðEiÞ � f ðEjÞ
Ei � Ej

< ijpa j >< jjpbj ji >
�iwþ 1=tþ ði=ħÞðEi � EjÞ ðM1Þ
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where the sum is over the valence and conduction band states i and
j, f(Ei) and f(Ej) are the Fermi functions (appearing owing to the
Pauli principle), “a” is the direction upon which the current density
flows upon application of an electric field in the direction “b,” t is the
relaxation time, and < i | pa | j > is the magnitude of the momentum
matrix element coupling the valence band state i and the conduction
band state j. Figure 3B reports an excellent agreement between experi-
mentally extracted data for eAl(w) by Ehrenreich et al. (46) and a fit using
Eq. M1 above, verifying the accuracy of the above many-electron theory.

Transfer matrix and argument principle methods
Assuming that a light wave in the i-th layer oscillates as φi

1cos[ki(x −
xi−1)] + φi

2(ui/ki)sin[ki(x − xi−1)], with u = ei(mi) for transverse
magnetic (transverse electric) modes and that the light wave in the
terminating Nth layer is of the form aNegNðx�xN�1Þ, the photonic states
obey a general dispersion relation of the form (48) F(w, b2) = φN

2 −
φN

1(gN/uN) = 0, where gN = (b2 − k0
2nN

2)1/2, b being the longitudinal
propagation constant, k0 being the vacuum wave number, and φN

1

and φN
2 being the oscillatory wave constants. The M roots, w, of

the (analytic) function F in a bound domain K with smooth boundary
∂K can be found using the argument principle method (APM),

according to which 1
2pi ∮ ∂Kw

ℓ F′ðwÞ
FðwÞ dw ¼ ∑

M

i¼1
wℓ
i , with ℓ being a posi-

tive integer. The number of roots in the domain K is identified by
setting ℓ = 0. Upon isolation of a root, we may set ℓ = 1 to locate
its exact position on K. For the applicability of the APM, the complex
function F(w, b2) must be analytic and without poles in the domain K;
however, in its above form, F(w, b2) has two branch points at b2 =
k0

2n1
2 and b2 = k0

2nN
2, resulting in a four-sheeted Riemann surface

[where, for a given value of b2, F(w, b2) takes on four possible values].
To unfold the four-sheeted Riemann surface (b2 plane) and map it
onto a new complex variable z (H(z) = F[x(z)], with x representing
the original complex solution plane that is mapped onto the new
complex variable z), we introduced two functions, g(z) and h(z),
demanding that g2(z) = b2 − x(z)n1

2 and h2(z) = b2 − x(z)nN
2, which

can also be written as g(z) = n1(e
z + Re−z) and h(z) = nN(e

z – Re−z),
where R = b2(nN

2 − n1
2)/(4nN

2n1
2); hence, x(z) = S − e2z – R2e−2z, with

S = b2(nN
2 + n1

2)/(2nN
2n1

2), from where the angular frequency may
be calculated as w(z) = c[x(z)]1/2.

First-order phase transition to synchronization of the
{bn} states
The synchronization in space (rather than only in time) of the {bn} states
shown in Figs. 2B and 5A, leading to robust nonpotential localization, is
a first-order phase-transition phenomenon arising from their nonlinear
coupling. To better observe this, we started by considering the general
equation governing the coupling between the field amplitudes an in the
presence of dispersion andnonlinearity (27,60) :an ¼ ðcn � xn � idnÞanþ
ðusat þ iunonlÞ ∑

p�p′þq¼n
apa*p′aq þ SFn,wherecn is thegainat the frequen-

cy of the bn state, dn is the phase accumulated over a cycle (associatedwith
group-velocity dispersion),usat is associatedwith the saturable amplitude,
and unonl is associated with the third-order nonlinearity. The frequency-
dependent gain saturationmay, as usual, bemodeled bycn ¼ c0;n=ð1þ
∑
n
c0;nana*n=∑

n
csat0;na

sat
n asat*n Þ, where the constant ∑

n
csat0;na

sat
n asat*n term

represents the saturation power. It is now a simple exercise to show that
the fieldamplitudesanobey, equivalently, theequation _an ¼ �i∂H′=∂a*n �
∂H″=∂a*n þ SFn , where H′¼�υnonl ∑

p�p′þq¼n
apa*p′aqa*n �∑

n
dnana*n
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and H″ ¼ �υsat ∑
p�p′þq¼n

apa*p′aqa*n þ ∑
n
xnana*n � ∑

n
csat0;na

sat
n asat*n

lnð∑
n
csat0;na

sat
n asat*n þ ∑

n
c0;nana*nÞ. From Fig. 4, we can see that

the {b} band is very flat (that is, the group-velocity dispersion is negli-
gible), and hence, wemay put dn=0. Furthermore, if we assume that the
effect of self-phase modulation is inconsequential (unonl = 0) here, we
may immediately recognize from the above expression for an that −H″
can be associated with the Gibbs free energy, G. Upon expanding the
logarithmic term inH″ to second order, we may therefore arrive at the

following expression for G: G ¼ ∑
n
ðxn � c0;n� ysat∑

n
csat0;na

sat
n asat*n Þ

ana*n þ ð 1

2∑
n
csat0;na

sat
n asat*n

� υsatÞ ∑
p�p′þq¼n

apa*p′
aqa*n ,where ysat ¼
lnð∑
n
csat0;na

sat
n asat*n Þ. This expression forG is very similar to the Landau

expression for the free energy of a system spontaneously undergoing a
first-order phase transition: The coefficient of the second-order term
(anan*) can becomenegative for high values of the gain (c0,n), signifying
the onset of spontaneous symmetry-breaking, and for high values of the
nonlinear saturable amplitude, usat, the coefficient of the fourth-order
term of G is also negative, thereby describing a first-order phase
transition.

Emergence of sinc-shaped localized hotspot
As seen from Fig. 5A, initially, two quantum-coherently driven bn
states are completely AS, but they eventually synchronize, owing to
their nonlinear coupling in the pumped active region—similar to
the eventual synchronization of the motion of the pendulum met-
ronomes in Fig. 2A. As has just been demonstrated analytically
above, the onset of synchronization is associated here with a none-
quilibrium first-order phase transition, with the role of temperature
played by the atomic inversion (50, 51). The instantaneous electric
field along z at an arbitrary time instant t = 0 is given by the super-

position of all bn states ~EðzÞ ¼ i ∑
N�1

n¼0
f2pħwn=VÞ1=2ei½ðb1þn dbÞzþφn �

at¼0
n � c:c:g and is initially (before synchronization) a noise signal be-

cause φn is different for each bn state (Fig. 2B, left). To see how a non-
random localized field pattern emerges upon synchronization
(“optical morphogenesis”), we calculated ~EðzÞ at a later time instant

t = t′ at which the fields at a point z = L oscillate coherently, that is,

φn = φ = 0, ~Eðz¼ LÞ ¼A ∑
N�1

n¼0
ei n dbLei b1L→b1¼0; db→0 A ∫

bmax¼Db

0
e ibLdb¼

AðeiDbL � 1Þ=ðiLÞ. Therefore, in the pumped region, the field intensity

of the localized hotspot upon synchronization will be I º E2º
Db2½ðeiDbL � 1Þ=ðDbLÞ�⋅ ½ðe�iDbL � 1Þ=ðDbLÞ� ¼ Db2sinc2ðDbL=2Þ,
where Db = bmax ≈ 40 × 106 m−1, which can also be written as

I º ð2=LlocÞ2sinc2ðL=LlocÞ ðM2Þ

with Lloc = 2/Db being the localization length.
Note that these expressions for I and Lloc are completely inde-

pendent of the shape and width of the pump and coherent-drive beams
because they should be for true localization. The characteristics of the
nonequilibrium-localized hotspot depend only on the intrinsic charac-
teristics of the active nanostructure and arise from the interaction and
spontaneous synchronization of the bn states. The flatter the TM2
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band is in the reciprocal space [that is, the more bn states participate
in the cooperative process (that is, the larger theDb is)], the “tighter” in
space and more intense will the hotspot become. To further corrobo-
rate the validity of Eq. M2, Fig. 1 shows a steady-state snapshot from
full-wave Maxwell-Bloch-Langevin time domain simulations (61, 62)
of the spatial shape of the emergent localized light field, which has a
sinc function dependence in the longitudinal direction. Note that this
is not a potential localization: It does not arise from jumps in either the
real or the imaginary part of the permittivity of the active region (see
section S1).
SUPPLEMENTARY MATERIALS
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