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ABSTRACT

Homologous recombination (HR) is a template-
driven repair pathway that mends DNA double-
stranded breaks (DSBs), and thus helps to maintain
genome stability. The RAD51 recombinase facilitates
DNA joint formation during HR, but to accomplish
this task, RAD51 must be loaded onto the single-
stranded DNA. DSS1, a candidate gene for split
hand/split foot syndrome, provides the ability to rec-
ognize RPA-coated ssDNA to the tumor suppressor
BRCA2, which is complexed with RAD51. Together
BRCA2-DSS1 displace RPA and load RAD51 onto the
ssDNA. In addition, the BRCA2 interacting protein
BCCIP normally colocalizes with chromatin bound
BRCA2, and upon DSB induction, RAD51 colocal-
izes with BRCA2-BCCIP foci. Down-regulation of BC-
CIP reduces DSB repair and disrupts BRCA2 and
RAD51 foci formation. While BCCIP is known to in-
teract with BRCA2, the relationship between BCCIP
and RAD51 is not known. In this study, we investi-
gated the biochemical role of the �-isoform of BCCIP
in relation to the RAD51 recombinase. We demon-
strate that BCCIP� binds DNA and physically and
functionally interacts with RAD51 to stimulate its ho-
mologous DNA pairing activity. Notably, this stimula-
tory effect is not the result of RAD51 nucleoprotein
filament stabilization; rather, we demonstrate that
BCCIP� induces a conformational change within the
RAD51 filament that promotes release of ADP to help
maintain an active presynaptic filament. Our findings
reveal a functional role for BCCIP� as a RAD51 ac-
cessory factor in HR.

INTRODUCTION

Homologous recombination (HR) is an indispensable
repair pathway involved in both genome maintenance
through the repair of chromosomal lesions such as DNA
double-stranded breaks (DSBs) and in creating genetic di-
versity among progeny. DSBs can arise from reactive oxygen
species generated after exposure to exogenous agents, such
as ionizing radiation or radiomimetic chemicals, as well as
from endogenous stress, such as damaged replication forks
and metabolic processes (1). Defects in the HR machinery
may manifest as erroneously repaired DSBs that cause chro-
mosomal aberrations and cancer (2–5).

The repair of DSBs by HR is a carefully regulated, multi-
step process. The ends of the DSB are nucleolytically pro-
cessed to expose 3′ single-stranded DNA (ssDNA) over-
hangs that serve as the nucleation sites for the HR machin-
ery. One key component of the HR machinery is RAD51,
the eukaryotic ortholog of the Escherichia coli RecA recom-
binase, which binds the ssDNA tail to form a nucleoprotein
filament known as a presynaptic filament. The ATP-bound
active form of the RAD51 presynaptic filament searches
for homology within the sister chromatid. When homol-
ogy is located, the presynaptic filament base-pairs the ss-
DNA to its complementary strand, displacing the homolo-
gous strand to form a displacement loop (D-loop) structure.
RAD51 extends the D-loop via DNA strand exchange.

There are several well-characterized accessory proteins
that assist RAD51 in the HR pathway including replica-
tion protein A (RPA) and BRCA2. RPA is a heterotrimeric
ssDNA binding protein that is necessary to promote DNA
strand exchange by removing secondary structure (6). Para-
doxically, RPA also interferes with RAD51-mediated DNA
strand exchange by competing for the same binding sites
as RAD51 on the 3′ ssDNA overhangs. To overcome this
inhibitory effect, protein factors known as recombination
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mediators help to displace RPA and facilitate the loading of
RAD51 on the ssDNA nucleation site. The tumor suppres-
sor BRCA2 is a recombination mediator in humans (7–10)
that has an accessory factor of its own. DSS1, associated
with split hand/foot syndrome (11,12), is a small polypep-
tide that interacts with the oligonucleotide binding domain
(OB1) within the DNA binding domain of BRCA2. The in-
teraction of DSS1 with BRCA2 facilitates the loading of
RAD51 onto RPA-coated ssDNA because DSS1 functions
as a DNA mimic to reduce the affinity of RPA for ssDNA,
aiding in the function of BRCA2 (10).

In addition to DSS1 and RAD51, there are other
BRCA2-interacting partners (13–15), one of which is the
BRCA2 and CDKN1A Interacting Protein, BCCIP (16).
BCCIP is an essential gene, and two major splice variant
isoforms are present in humans: BCCIP� and BCCIP�
(17). Reduced expression of BCCIP is associated with ovar-
ian cancer, renal cell carcinoma, colorectal cancer (17,18)
and astrocytic brain tumors (19). BCCIP was identified as a
BRCA2-interacting protein from a yeast two-hybrid screen
that used the highly conserved DNA binding domain of
BRCA2 (exons 14–24) as bait (16). Subsequently, BCCIP
was shown to co-localize with RAD51 foci and BRCA2 foci
in the nucleus. RNA interference of BCCIP yielded a re-
duction in RAD51 and BRCA2 focus formation after irra-
diation (20,21) and reduction in the subsequent repair of
DSBs by HR in vivo (20). The significance of reduced lev-
els of BCCIP, the loss of RAD51 and BRCA2 foci, and
unrepaired DSBs is not known. Although previous stud-
ies demonstrated that RAD51 co-immunoprecipitated with
BCCIP (20), it is not known whether BCCIP interacts and
functions directly with RAD51 or indirectly through its in-
teraction with BRCA2.

In the majority of human cells, BCCIP� is the fore-
most expressed isoform (16). Therefore, the goal of this
study was to interrogate the biochemical role of BCCIP� in
HR. To do this, we expressed and purified BCCIP�-(HIS)6
to near homogeneity. Our data using purified BCCIP�-
(HIS)6 revealed that BCCIP�-(HIS)6 harbors DNA bind-
ing activity and physically interacts with RAD51. Impor-
tantly, we demonstrate a functional interaction of BCCIP�-
(HIS)6 with RAD51 through its ability to enhance RAD51-
mediated homologous DNA pairing. We provide evidence
that the enhancement by BCCIP�-(HIS)6 is not due to
the stabilization of the RAD51 nucleoprotein filament, but
rather to the ability of BCCIP�-(HIS)6 to stimulate RAD51
ATP hydrolysis and promote the release of ADP from the
inactive RAD51-ADP-ssDNA filament. We demonstrate
the enhanced release of ADP is likely due to a conforma-
tional change induced in RAD51 upon interaction with
BCCIP�-(HIS)6. These results are the first to provide di-
rect evidence that BCCIP�-(HIS)6 regulates the activity of
RAD51 and suggest that BCCIP� is a critical player in
maintaining chromosome stability.

MATERIALS AND METHODS

Plasmids and oligonucleotides

The human BCCIPβ cDNA was purchased from Open
Biosystems. A (HIS)6 tag was added to the 3′ end of
BCCIPβ via PCR using the forward primer 5′-GGGA

ATCCCATATGGCGTCCAGGTCTAAGCGGCGTG
and reverse primer 5′-CCCATATGGAATTCTTAATG
ATGATGATGATGATGAGGACCACCGACAGATA
GATATTCTTTCAGTTTATCCATG. The amplified
product was inserted into the bacterial expression plas-
mid pET11c (Novagen), and sequenced to ensure no
undesired mutations occurred. The oligonucleotide OL90
(5′-AAATCAATCTAAAGTATATATGAGTAAACTTG
GTCTGACAGTTACCAATGCTTAATCAGTGAGG
CACCTATCTCAGCGATCTGTCTATTT) was radiola-
beled using T4 polynucleotide kinase and [32P-� ]-ATP as
described (22). All oligonucleotides were purchased from
Integrated DNA Technologies. pBluescript was purified
from E. coli using a Giga Kit (Qiagen). �X174 (+) virion
ssDNA and �X174 replicative form I double-stranded
DNA (dsDNA) were purchased from New England
BioLabs––�X174 dsDNA was linearized with ApaLI (New
England BioLabs).

Cell growth, expression and purification of BCCIP�

The BCCIP�-(HIS)6 pET11c expression plasmid was trans-
formed into the E. coli strain BL21(DE3). Cells were grown
at 37◦C to an OD600 of 1.0, and protein expression was
induced with 0.4 mM IPTG for 20 hr at 16◦C. The cells
were harvested by centrifugation. All purification steps were
performed at 4◦C. The E. coli cell paste (26 g) was resus-
pended in 130 ml of Buffer A (50 mM Tris-HCl pH 7.5, 1
mM ethylenediaminetetraacetic acid (EDTA), 10% sucrose,
1 mM �-mercaptoethanol, 0.01% Igepal, 1 mM benzamide,
10 �g/ml lysozyme, 1 mM phenylmethylsulfonyl fluoride
and protease inhibitors: aprotinin, leupeptin, chymostatin
and pepstatin A at final concentrations of 5 �g/ml) con-
taining 500 mM KCl. The cells were sonicated with six 30 s
cycles at 80% amplitude using a sonicator (Qsonica Q125).
The lysate was clarified by ultracentrifugation at 40 000
rpm for 90 min in a Beckman Type Ti45 rotor. The clari-
fied lysate was incubated with 3 ml Ni-NTA agarose beads
(GE Healthcare) followed a wash with 30 ml of Buffer B (20
mM KH2PO4 pH 7.5, 10% glycerol, 0.5 mM EDTA) sup-
plemented with 0.01% Igepal, 1 mM �-mercaptoethanol, 1
M KCl and 50 mM imidazole. The BCCIP�-(HIS)6 pro-
tein was eluted using Buffer B containing 100 mM KCl and
500 mM imidazole. Fractions containing BCCIP�-(HIS)6
were pooled and loaded onto a 2.5 ml Macro hydroxyap-
atite column (Bio-Rad). The protein was eluted with a 50
ml gradient of Buffer B containing 0–400 mM KH2PO4
and 1 mM dithiothreitol. The peak fractions (∼290 mM
KH2PO4) were pooled and loaded onto an 8 ml Source
15Q column (GE Healthcare), which was fractionated us-
ing a 120 ml gradient of Buffer B containing 100 mM–1 M
KCl. BCCIP�-(HIS)6 eluted from the column at approxi-
mately 330 mM KCl, and the peak fractions were pooled
and concentrated to 3.5 mg/ml using an Amicon Ultra 30
000 MWCO (Millipore). Approximately 0.8 mg of purified
BCCIP�-(HIS)6 was frozen in small aliquots and stored at
−80◦C.

Other protein purifications

The purifications of untagged human RAD51, human
RAD51K133A, Saccharomyces cerevisiae Rad51 (ScRad51)
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and S. cerevisiae Rad54 (ScRad54) were performed as pre-
viously described (23–26).

�x174 DNA mobility shift assay

Increasing concentrations of BCCIP�-(HIS)6 (0.24 �M,
0.47 �M, 0.96 �M, 1.8 �M, 2.8 �M and 4.7 �M) were in-
cubated with �x174 circular ssDNA (30 �M nucleotides)
or linearized �x174 dsDNA (30 �M base pairs) in Buffer
C (25 mM Tris-HCl pH 7.4, 0.1 �g/�l bovine serum albu-
min (BSA), 40 mM KCl) at 37◦C for 10 min. DNA loading
dye (10 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 50% glycerol,
0.1% (w/v) Orange G) was added to each reaction, and the
samples were resolved on a 1% agarose gel at 4◦C. Gels were
stained with ethidium bromide and imaged using Image Lab
software (BioRad). A control reaction, containing the high-
est concentration of BCCIP�-(HIS)6 (4.7 �M), was depro-
teinized by addition of SDS (0.5%) and Proteinase K (0.5
�g/ml) followed by an incubation at 37◦C for 20 min. Three
independent experiments for each reaction yielded the same
results.

Pull-down assay

BCCIP�-(HIS)6 (5 �g) was incubated with human RAD51
(5 �g) or ScRad51 (5 �g) in the presence of Ni-NTA agarose
beads (GE Healthcare) with agitation at 4◦C for 60 min in
Buffer B (20 mM KH2PO4 pH 7.5, 10% glycerol, 0.5 mM
EDTA) containing 120 mM KCl. The supernatant was re-
moved, and the beads were washed three times with Buffer
B containing 120 mM KCl. An equal volume of sodium do-
decyl sulphate (SDS) loading dye (160 mM Tris-HCl pH
6.8, 60% glycerol, 4% SDS (w/v)) was added to the super-
natant and the wash, while 30 �l of SDS loading dye was
added to the beads to elute any bound proteins. The su-
pernatant, wash and eluate were separated on a 12% SDS-
polyacrylamide gel and stained with Coomassie blue. As a
control, RAD51 (5 �g) or ScRad51 (5 �g) was incubated
with Ni-NTA agarose beads in the absence of BCCIP�-
(HIS)6, under the same experimental conditions as above.

D-loop assay
32P-labeled oligonucleotide OL90 (4.5 �M) was incubated
with RAD51 (1.5 �M) in Buffer D (25 mM Tris-HCl pH
7.4, 0.1 �g/�l BSA, 1 mM DTT, 2 mM ATP, 1.4 mM
MgCl2, 16 mM creatine phosphate, 36 �g/ml creatine ki-
nase and 30 mM KCl) for 8 min at 37◦C. CaCl2 (1.8 mM
final) was added where indicated, followed by an addi-
tional 2 min incubation at 37◦C. Increasing concentrations
of BCCIP�-(HIS)6 (0.75 �M, 1.5 �M, 3 �M, 4.5 �M)
were added to the reactions followed by an 8 min incuba-
tion at 37◦C. The addition of supercoiled pBluescript (35
�M base pairs) initiated the reaction. After a 6 min incu-
bation at 37◦C, SDS (0.5%) and Proteinase K (5 �g/ml)
were added to deproteinize the reactions, followed by a 20
min incubation at 37◦C. All reaction products were resolved
on a 0.9% agarose gel, dried on DE81 anion exchange pa-
per (GE Healthcare), visualized using a phosphorimager
(Typhoon FLA 7000, GE Healthcare) and quantified us-
ing ImageQuant TL (GE Healthcare). The reactions mon-
itoring RAD51-mediated D-loop formation as a function

of time were carried out in the same manner as above, ex-
cept each reaction was stopped at the indicated times. To
test the species specificity, ScRad51 (1.5 �M) was incu-
bated with 32P-OL90 (4.5 �M) in Buffer E (25 mM Tris-HCl
pH 7.4, 0.1 �g/�l BSA, 1 mM DTT, 2 mM ATP, 2.4 mM
MgCl2, 16 mM creatine phosphate, 36 �g/ml creatine ki-
nase, and 30 mM KCl) for 10 min in a total reaction volume
of 12.5 �l. ScRad54 (0.2 �M) or increasing concentrations
of BCCIP�-(HIS)6 (1.5 �M, 3 �M, 4.5 �M) were added to
the reactions (as indicated) followed by an 8 min incubation
at 37◦C prior to the addition of pBluescript. After 8 min, the
reaction products were deproteinized and analyzed as de-
scribed above. Three independent experiments were tested
for each D-loop reaction, and the average percent D-loop
was graphed. Error bars represent s.e.m. Significance was
determined by comparing the results of RAD51 to each of
the conditions with BCCIP�-(HIS)6 using a two-sample t-
test.

BCCIP� gel filtration

Gel filtration was facilitated with the ÄKTA pure chro-
matography system (GE Healthcare). Purified BCCIP�-
(HIS)6 (100 �g) was loaded onto a 35 ml Sephacryl S-
400 (GE Healthcare) size exclusion chromatography col-
umn (1 cm diameter), pre-equilibrated in Buffer B (20 mM
KH2PO4 pH 7.5, 10% glycerol, 0.5 mM EDTA) with 100
mM KCl. Each fraction (40 fractions total, 1 ml each, 0.5
ml/min flow rate) was precipitated by the addition of de-
oxycholate (0.02%) and trichloroacetic acid (0.1%), resus-
pended in 20 �l of SDS loading dye, and resolved using
12% SDS-polyacrylamide gel electrophoresis. The gel was
transferred to a nitrocellulose membrane (Whatman) and
visualized using HRP-conjugated anti-poly-histidine anti-
bodies (Sigma-Aldrich, A7058; 1:2000) in Buffer F (0.12%
4-chloro-1-naphthol (w/v), 0.12% H2O2 (v/v), in PBS).
Molecular weight standards (Bio-Rad) were processed in
the same manner as above. To establish molecular sizing
for the fractions, molecular weight standards were plotted
based on the log of their molecular weight (y-axis) and frac-
tion number (x-axis) using KaleidaGraph 4.1.3, and the lin-
ear equation was derived using the linear curve fit tool.

Nuclease protection assay
32P-labeled OL90 (3 �M nucleotides) was incubated with
RAD51 (0.4 �M) in Buffer D (25 mM Tris-HCl pH 7.4,
0.1 �g/�l BSA, 1 mM DTT, 2 mM ATP, 1.4 mM MgCl2,
16 mM creatine phosphate, 36 �g/ml creatine kinase and
30 mM KCl) for 10 min at 37◦C. Increasing concentra-
tions of BCCIP�-(HIS)6 (0.4 �M, 0.8 �M, 1.2 �M) were
added to the reaction and incubated for 8 min. Subse-
quently, 2 units of DNase I (Promega) were added fol-
lowed by a 15 min incubation at 37◦C. The reactions were
stopped by the addition of equal parts SDS (0.8%) and
Proteinase K (1.6 �g/ml). The reaction products were re-
solved using 10% non-denaturing polyacrylamide gel elec-
trophoresis. The gels were then dried on Whatman cellu-
lose chromatography paper (Sigma-Aldrich) and analyzed
using a phosphorimager. Error bars represent s.e.m. The



714 Nucleic Acids Research, 2017, Vol. 45, No. 2

mean percent protection from three separate experiments
was graphed.

Trypsin treatment of RAD51 complexes

The trypsin digest of RAD51 complexes was performed
similar to a previously described procedure (27). Briefly,
RAD51 (5 �M) incubated in 10 �l of Buffer G (25 mM
Tris-HCl pH 7.4, 1 mM DTT, 1.4 mM MgCl2, 30 mM
KCl) in the presence or absence of the indicated combi-
nations of ATP (2 mM), �X174 circular ssDNA (30 �M
nucleotides), CaCl2 (1.8 mM) and/or BCCIP�-(HIS)6 (10
�M) for 10 min at 37◦C. Trypsin (20 �g/ml) was added to
each reaction and incubated for an additional 30 min. The
reactions were inactivated by the addition of SDS loading
dye (7.5 �l) and a 10 min incubation at 80◦C. The reac-
tion products were resolved using 16% SDS-polyacrylamide
gel electrophoresis, followed by transfer to a nitrocellulose
membrane (Whatman). The membrane was incubated with
anti-RAD51 as the primary antibody (1:2000; ab63801, Ab-
cam) and HRP-conjugated anti-rabbit IgG as the secondary
antibody (1:2000, Sigma-Aldrich). The membrane was de-
veloped using Buffer F (0.12% 4-chloro-1-naphthol (w/v),
0.12% H2O2 (v/v), in phosphate buffered saline (PBS)), and
imaged using Image Lab software (BioRad). The amount of
undigested RAD51 fragments was plotted, and the amount
of Fragments A, B, C and D was plotted based on relative
intensities of each band. Results were derived from three
separate experiments, and error bars represent s.e.m.

ATP hydrolysis

The ATP hydrolysis assay was performed with RAD51 as
previously described (28). Briefly, RAD51 (2 �M) was in-
cubated with �x174 ssDNA (60 �M nucleotides) in Buffer
G (25 mM Tris-HCl pH 7.4, 1 mM DTT, 1.4 mM MgCl2, 30
mM KCl) with 0.1 �g/�l BSA and 0.5 mM ATP for 5 min at
37◦C for filament formation. BCCIP�-(HIS)6 (4 �M) was
added to the reaction where indicated. After an additional 5
min incubation at 37◦C, 0.3 �Ci of [32P-� ]-ATP was added
to the reactions followed by the addition of an equal vol-
ume of 0.5 mM EDTA at the indicated time points to stop
each reaction. The reaction products were resolved using
thin-layer chromatography on polyethyleneimine-cellulose
plates (Sigma-Aldrich). The plates were analyzed using a
phosphorimager. The mean percent hydrolysis was graphed
from three independent experiments. Error bars represent
s.e.m, and significance was determined using a two-sample
t-test and comparing RAD51 to RAD51+BCCIP�-(HIS)6.

RAD51 MANT-ADP release

A Photon Technologies International Spectrometer Model
814 was used to monitor the fluorescence changes of un-
bound free MANT-ADP (ThermoFisher Scientific) and
MANT-ADP bound by RAD51 in the presence of ss-
DNA in several experiments, similar to previous studies on
DnaC and ClpB (29,30). (i) To obtain fluorescence emission
spectra of MANT-ADP and the MANT-ADP-RAD51-
ssDNA complex, MANT-ADP (0.5 �M) was preincubated
in Buffer H (25 mM Tris-HCl, pH 7.4, 1.4 mM MgCl2, 32

Figure 1. Purification of BCCIP�. (A) Schematic for the chromatography
procedure to purify BCCIP�. S100 is separation by centrifugation at 100
000 ×g. (B) Purified BCCIP� (0.5 �g) was resolved by gel electrophoresis
on a 12% sodium dodecyl sulphate (SDS)-polyacrylamide gel and stained
with Coomassie Blue.

mM KCl) with �X174 ssDNA (2.0 �M nucleotides) in the
absence or presence of RAD51 (0.5 �M) or RAD51K133A
(0.5 �M) for 30 min at 25◦C with constant stirring in a
quartz cuvette (1 cm path length). Samples were excited at
350 nm (5 nm bandwidth) and emission spectra were taken
from 400–500 nm (5 nm bandwidth) at 1 nm steps. (ii) The
dissociation of MANT-ADP from a pre-formed MANT-
ADP-RAD51-ssDNA in the complex was observed as a
decrease in the fluorescence signal. RAD51 (0.5 �M), ss-
DNA (2.0 �M nucleotides) and MANT-ADP (0.5 �M)
in either Buffer H alone or Buffer H supplemented with
CaCl2 (1.8 mM) were maintained in a quartz cuvette (1-
cm path length) with constant stirring. To initiate ADP re-
lease in the presence of magnesium, either BCCIP�-(HIS)6
(1.0 �M) or Buffer H was added to the cuvette. ADP re-
lease in the presence of calcium was initiated by the ad-
dition of either BCCIP�-(HIS)6 (1.0 �M) with or with-
out ATP (5 �M) or Buffer H with or without ATP (5
�M) to the cuvette. The resulting decrease in fluorescence
was monitored in time base mode with an excitation wave-
length of 350 nm (5 nm bandwidth) and an emission wave-
length of 444 nm (5 nm bandwidth). Significance was de-
termined using a two-sample t-test, comparing the 600 s
time point for RAD51+Buffer to RAD51+BCCIP�-(HIS)6
in the presence of magnesium and RAD51+Buffer+ATP to
RAD51+BCCIP�-(HIS)6+ATP in the presence of calcium.

RESULTS

BCCIP� purification

A (HIS)6 tag was fused to the C-terminus of BCCIP�
cDNA by PCR to generate the BCCIP�-(HIS)6 bacterial
expression plasmid. A procedure for protein expression and
purification was devised (Figure 1A) that utilized affin-
ity and ion exchange chromatography to purify BCCIP�-
(HIS)6 to near homogeneity (Figure 1B). The sole form of
BCCIP� used in this study was BCCIP�-(HIS)6, which will
be referred to as BCCIP� hereafter. Four separate protein
preparations yielded equivalent biochemical results. While
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Figure 2. BCCIP� binds DNA. (A) BCCIP� (0.24 �M, 0.47 �M, 0.96
�M, 1.8 �M, 2.8 �M and 4.7 �M; lanes 2–7, respectively) incubated with
�X174 (+) ssDNA (ss; 30 �M nucleotides). (B) BCCIP� (0.24 �M, 0.47
�M, 0.96 �M, 1.8 �M, 2.8 �M and 4.7 �M; lanes 2–7, respectively) was
incubated with �X174 RF (I) dsDNA (ds; 30 �M base pairs). The reac-
tion products were separated on a 1.0% agarose gel, and were stained with
ethidium bromide. Lane 1 contained no protein, and lane 8 was depro-
teinized with SDS and Proteinase K (S/P) prior to loading.

the predicted molecular weight of BCCIP� is ∼36 kDa,
the purified recombinant BCCIP� migrates aberrantly on
a SDS polyacrylamide gel at ∼47 kDa (Figure 1B) similar
to a previous report (16).

DNA binding activity of BCCIP�

BCCIP was reported to be present in chromatin-bound nu-
clear foci (20) suggesting that BCCIP may possess the abil-
ity to bind DNA. To test this idea, a DNA electrophoretic
mobility shift assay with plasmid length �X174 ssDNA and
linearized �X174 dsDNA was employed. In this assay, in-
creasing concentrations of BCCIP� were incubated with ss-
DNA or dsDNA, and the reaction products were resolved
on an agarose gel. BCCIP� bound both ssDNA (Figure
2A) and dsDNA (Figure 2B). The ssDNA started to shift
at a lower concentration of BCCIP� (0.47 �M; Figure 2A,
lane 3) than was seen with dsDNA (1.8 �M; Figure 2B, lane
5). At saturating concentrations, the ssDNA–BCCIP� com-
plex mostly entered the gel, whereas the dsDNA–BCCIP�
complex was trapped in the well of the agarose gel. To de-
termine if there was a preference for binding ssDNA or
dsDNA by BCCIP�, a competition experiment was per-
formed. Co-incubation of BCCIP� with both ssDNA and
dsDNA resulted in no significant difference in the ability
of BCCIP� to bind ssDNA or dsDNA (data not shown).
These results indicate BCCIP� harbors DNA binding ac-
tivity with no apparent preference for ssDNA or dsDNA.

BCCIP� interacts with RAD51

Previously, BCCIP was reported to co-localize with RAD51
foci in HT1080 cells (20). Additionally, BCCIP� was shown
to co-immunoprecipitate with RAD51 from HeLa cells
(20). These results suggest that BCCIP� interacts with
RAD51. To determine if there is a direct, physical inter-
action between purified BCCIP� and RAD51, an affin-
ity pull-down assay was performed. In this assay, purified
BCCIP� and RAD51 were incubated to allow a poten-
tial complex to form. The addition of Ni-NTA agarose
beads allowed for the capture of BCCIP� through its six-
histidine epitope tag. The supernatant was removed, and the
beads were washed to remove non-specifically bound pro-
tein. BCCIP� and RAD51 were both present in the elution
(Figure 3A) indicating that RAD51 formed a stable com-
plex with BCCIP�. This interaction was not due to non-
specific interactions of RAD51 with the Ni-NTA beads,
since RAD51 was present only in the supernatant when in-
cubated with Ni-NTA in the absence of BCCIP� (Figure
3A). To determine if the interaction between RAD51 and
BCCIP� was evolutionarily conserved, the same pull-down
assay was performed by incubation of BCCIP� with puri-
fied Saccharomyces cerevisiae Rad51 (24) instead of human
RAD51. As shown in Figure 3B, ScRad51 was only present
in the supernatant, indicating that ScRad51 failed to in-
teract with BCCIP�. These data suggest BCCIP� interacts
specifically with human RAD51.

Stimulation of RAD51-mediated D-loop formation by
BCCIP�

During HR, a ssDNA overhang from the processed DSB
is used by RAD51 to invade the sister chromatid in search
of homology. Several HR accessory factors are known to
interact with RAD51 to enhance homologous DNA pair-
ing activity (31–36). To determine if BCCIP� enhanced the
RAD51-mediated homologous DNA pairing activity, we
used an in vitro D-loop formation assay (22). In this as-
say, a single-stranded radiolabeled oligonucleotide is incu-
bated with RAD51 to form a presynaptic filament that in-
vades supercoiled duplex DNA to search for the homolo-
gous sequence. Once homology is located, the complemen-
tary strand is displaced, forming a D-loop (Figure 4A). Us-
ing this assay, our initial attempts showed that RAD51-
mediated D-loop formation was not affected by the pres-
ence of BCCIP� in the presence of magnesium (Figure
4B). Previous reports demonstrated that the presence of
calcium enhanced RAD51 D-loop formation by inhibit-
ing ATP hydrolysis, which results in a more stable presy-
naptic filament (37). With this in mind, we repeated the
experiment with magnesium and calcium present. Our re-
sults show that BCCIP� stimulated RAD51-mediated D-
loop formation nearly 2-fold (P-value *< 0.05, **< 0.01)
in a concentration-dependent manner (Figure 4C) in the
presence of magnesium and calcium. This D-loop for-
mation was dependent upon ATP and RAD51 (Figure
4C). To test whether BCCIP� functions with RAD51 in
a species-specific manner, we performed the D-loop assay
with ScRad51. The D-loop formation activity of ScRad51 is
barely detectable without the addition of the DNA translo-
case, ScRad54 (38). Our results show BCCIP� was unable
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Figure 3. BCCIP� interacts with human RAD51. (A) Human RAD51 (5
�g) was incubated with Ni-NTA beads in the presence (lanes 1–3) or ab-
sence of BCCIP�-(HIS)6 (5 �g; lanes 4–6). (B) ScRad51 (5 �g) was in-
cubated with Ni-NTA in the absence (lanes 1–3) or presence of BCCIP�-
(HIS)6 (5 �g; lanes 4–6). The supernatant was removed, the beads were
washed, and the bound proteins were eluted with SDS. The supernatant
(S), wash (W) and eluate (E), were resolved using SDS-PAGE and stained
with Coomassie blue.

to enhance ScRad51 D-loop formation in the presence of
magnesium regardless of the absence (Figure 4D) or pres-
ence of calcium (data not shown), which was expected since
BCCIP� did not interact with ScRad51.

The affinity pull-down assay suggested that BCCIP� did
not completely bind equimolar amounts of RAD51 (Figure
3A, lane 1). In addition, BCCIP� stimulated RAD51 D-

loop formation in a concentration-dependent manner, fur-
ther suggesting that a specific stoichiometric relationship
may be necessary for BCCIP� to stimulate RAD51 (Fig-
ure 4C). To further explore this idea, we examined the abil-
ity of BCCIP� to stimulate RAD51-mediated D-loop for-
mation as a function of time with RAD51 alone and in
combination with BCCIP� in stoichiometric molar ratios
of 1:1, 1:2 and 1:3 (Figure 5A). RAD51 alone produced
∼13% D-loop product. When equal molar (1:1) amounts
of RAD51 and BCCIP� were used, there was not a signifi-
cant increase in D-loop formation. A molar ratio of 1:2 or
1:3 (RAD51:BCCIP�) resulted in a 2-fold increase (∼27%,
P-value *< 0.05, **< 0.01) in the amount of D-loop forma-
tion (Figure 5A). Since a 1:3 molar ratio (RAD51:BCCIP�)
yielded the same amount of D-loop product as a 1:2 molar
ratio (RAD51:BCCIP�), we propose the preferred stoichio-
metric ratio for BCCIP� stimulation of RAD51-mediated
D-loop formation is 1:2 (RAD51:BCCIP�).

BCCIP� is a homodimer

The observation that there is a preferred stoichiometric mo-
lar ratio of two BCCIP� molecules to one RAD51 molecule
for optimal enhancement of RAD51 homologous DNA
pairing suggested the potential for BCCIP� to form a ho-
modimer. To test this notion, we utilized size exclusion chro-
matography to monitor the migration of BCCIP� through
a size exclusion column. The column was calibrated with
bovine thyroglobulin (670 kDa), bovine � -globulin (158
kDa), chicken ovalbumin (44 kDa) and horse myoglobin
(17 kDa), and their elution positions are as indicated (Fig-
ure 5B and C). Based on the elution positions of the molec-
ular weight standards, we plotted the log of the molecu-
lar weight (y-axis) of the protein standards and their elu-
tion fraction (x-axis) to yield the fitted equation y = 6.8799
– 0.071211x with R = 0.99479 (Figure 5B). Based on this
equation, BCCIP� was expected to elute in fraction 32 (∼36
500 Da). However, the peak fraction of BCCIP� eluted in
fraction 28 (Figure 5C), which correlates with a globular
protein having a molecular weight of ∼73 000 Da. These
results are consistent with BCCIP� forming a homodimer
in solution.

BCCIP� is unable to stabilize RAD51 filament

A number of HR accessory factors enhance the recombi-
nation activity of RAD51 through the stabilization of the
RAD51 nucleoprotein filament including RAD54, BRCA2,
HOP2-MND1, HED1, RAD55/RAD57 and SWI5-SFR1
(39–44). To determine whether BCCIP� stabilized the
RAD51 filament, a nuclease protection assay (22,26,45,46)
was employed. In this assay, RAD51 was incubated with
a radiolabeled ssDNA oligonucleotide in the presence of
ATP to allow for the formation of a presynaptic filament.
The resulting nucleoprotein filament was then subjected to
DNase I treatment. If BCCIP� possessed the ability to sta-
bilize the RAD51 filament, then nucleolytic degradation of
the oligonucleotide ssDNA would decrease in the presence
of BCCIP� (Figure 6A). Our data show that increasing con-
centrations of BCCIP� were unable to stabilize the RAD51
filament regardless of the presence of magnesium or cal-
cium (Figure 6B and data not shown, respectively). These
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Figure 4. BCCIP� stimulates human RAD51-mediated D-loop formation in the presence of calcium. (A) Schematic of the D-loop assay. (B) RAD51 (1.5
�M) was incubated with 32P-OL90 (ssDNA; 4.5 �M) in the absence (lane 2) or presence of increasing concentrations of BCCIP� (lanes 3–6; 0.75 �M, 1.5
�M, 3 �M, 4.5 �M, respectively). The supercoiled plasmid pBluescript (sc; 35 �M base pairs) was introduced to the reaction. After 6 min, the reactions
were deproteinized with SDS and Proteinase K. Lane 1 was devoid of protein, lane 7 contained RAD51 and BCCIP� (4.5 �M) in the absence of ATP, and
lane 8 contained BCCIP� (4.5 �M) alone. (C) The reactions in B were tested in the presence of (1.8 mM) calcium. (D) The D-loop assay was performed
with ScRad51 (1.5 �M) in presence of BCCIP� (lanes 4–6; 1.5 �M, 3 �M, 4.5 �M, respectively) or ScRad54 (0.2 �M; lane 3). All reaction products were
subjected to 0.9% agarose gel electrophoresis and visualized using a phosphorimager. Lane 1 contained no protein, and lane 2 contained only ScRad51.
S.e.m. (n = 3) are plotted as error bars; P-value *< 0.05, **< 0.01.

results and the observation that enhancement of RAD51
D-loop formation activity was dependent on a presynap-
tic filament stabilized by the presence of calcium, indicate
BCCIP� stimulation of RAD51-mediated D-loop forma-
tion occurs through a different mechanism.

BCCIP� induces conformational changes in RAD51

The observation that BCCIP� stimulated the D-loop for-
mation activity of RAD51 without stabilizing the presynap-
tic filament led us to hypothesize that physical interaction
with BCCIP� may induce a change within the RAD51–
ssDNA presynaptic filament to an active conformation ca-
pable of catalyzing homologous DNA pairing activity. To
investigate this possibility, a limited-trypsin proteolytic di-

gestion of RAD51 either with or without BCCIP� was
performed. Limited-proteolysis often provides information
about conformational changes that result from the inter-
action of a protein with effector molecules such as DNA
and/or other proteins (27,47–49). If the interaction of an
effector molecule causes conformational changes within the
protein of interest, then protease-sensitive regions may be-
come resistant to proteolytic cleavage while new cleavage
sites are potentially exposed, yielding an altered proteolytic
fingerprint of the protein. Here, we incubated RAD51 or
RAD51 and BCCIP� with or without calcium under re-
action conditions conducive to nucleoprotein filament for-
mation, followed by the addition of trypsin. Changes in
the protein fragmentation were monitored by western blot
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Figure 5. BCCIP� is a homodimer that stimulates of RAD51-mediated D-loop formation. (A) RAD51 (1.5 �M) was incubated with ssDNA (4.5 �M) in
the absence (lanes 2–6) or presence of increasing concentrations of BCCIP� (1.5 �M, lanes 8–12; 3 �M, lanes 14–18; 4.5 �M, lanes 20–24). Lane 1 was
devoid of any protein, and each concentration of BCCIP� (1.5 �M, 3 �M, 4.5 �M; lanes 7, 13 and 19, respectively) was tested in the absence of RAD51.
All reactions took place in the presence of calcium. The reactions were initiated by the addition of supercoiled DNA (35 �M base pairs) and deproteinized
with SDS and Proteinase K at the indicated times. Reaction products were separated on a 0.9% agarose gel and visualized using a phosphorimager. (B) Gel
filtration standards (bovine thyroglobulin 670 kDa, bovine � -globulin 158 kDa, chicken ovalbumin 44 kDa and horse myoglobin 17 kDa) were used to
calibrate a 35 ml S-400 gel filtration column. The eluate fraction (x-axis) and the log of the molecular weights were plotted (y-axis). The linear fit yielded: y
= 6.8799 - 0.071211x and R = 0.99479. The expected values for a BCCIP� monomer and a BCCIP� dimer are indicated. (C) BCCIP� (100 �g) was sized
using the 35 ml S-400 gel filtration column. A western blot was performed, and HRP-conjugated anti-poly-histidine was used to develop the membrane.
Error bars represent s.e.m. (n = 3); P-value *< 0.05, **< 0.01.
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Figure 6. RAD51 nucleoprotein filament is not stabilized by BCCIP�. (A) Schematic of the nuclease protection assay (adapted from Chi et al. 2007 (41)).
(B) RAD51 (0.4 �M) was incubated with radiolabeled ssDNA (3 �M nucleotides) alone (lane 3) or with increasing concentrations of BCCIP� (lanes 4–6;
0.4 �M, 0.8 �M, 1.2 �M, respectively). The reaction was initiated by the addition of DNase I (2 units). Reaction products were then deproteinized and
separated using 10% polyacrylamide gel electrophoresis. Lane 1 contained radiolabeled ssDNA alone, lane 2 contained only radiolabeled ssDNA in the
presence of DNase I, and lane 7 contained BCCIP� (1.6 �M) in the absence of RAD51 but in the presence of DNase I. deg, degraded radiolabeled ssDNA.

analysis using antibodies raised against RAD51. Our re-
sults, performed in the presence of magnesium (all reac-
tions contain magnesium) and calcium (where indicated),
show RAD51 is highly susceptible to trypsin proteolysis
with only 10% of RAD51 remaining uncleaved (Figure 7A
and B, lane 2) in the absence of effector molecules. The pres-
ence of ATP alone resulted in a slight increase in protec-
tion with 25% uncleaved RAD51 present (Figure 7A and B,
lane 3). Approximately 45% of the RAD51 was protected
from cleavage by trypsin in the presence of ATP and ss-
DNA under conditions that promote presynaptic filament
formation (Figure 7A and B, lane 4). When BCCIP� was
present with a RAD51 presynaptic filament, the amount of
uncleaved RAD51 increased to 70% (Figure 7A and B, com-
pare lanes 4 and 6). In addition, there was a 5-fold decrease
in the amount of Fragment B and a 16-fold decrease in Frag-
ment D (Figure 7A and B, compare lanes 4 to 6). When
calcium was included with a RAD51 presynaptic filament,
79% of RAD51 remained uncleaved (Figure 7A and B, lane
5). The addition of both calcium and BCCIP� under the
same conditions led to approximately the same level of un-
cleaved RAD51 (80%; Figure 7A and B, lane 7). However,
there was an 8-fold decrease in Fragment B and a 10-fold
decrease in the amount of Fragment D (Figure 7A and B,
compare lanes 5 and 7). Interestingly, Fragments E and F
were only observed when the RAD51 presynaptic filament
was proteolytically cleaved in the presence of calcium (Fig-
ure 7A and B, lane 5). The presence of BCCIP� altered this
cleavage pattern since Fragment E was no longer observed
(Figure 7A and B, compare lanes 5 and 7). Notably, Frag-
ment G was only present when RAD51 was in the presence
of ATP or in the presence of BCCIP� alone (Figure 7A and
B, lanes 3 and 9). We also observed a 9-fold increase in the

amount of Fragment C and 45-fold increase in Fragment D
when compared to trypsin digestion of RAD51 alone (Fig-
ure 7A and B, compare lanes 2 and 9). As expected, when
RAD51 was not included, there was no signal, demonstrat-
ing the specificity of the antibodies used for RAD51 (Figure
7A and B, lane 8). Taken together, BCCIP� has a significant
effect on the proteolytic digestion fingerprint of RAD51
and the RAD51 presynaptic filament, suggesting that in-
teraction with BCCIP� results in conformational changes
within RAD51.

ATP hydrolysis by RAD51 is stimulated by BCCIP�

The enhanced D-loop formation attributed to RAD51 by
the presence of calcium is through the inhibition of ATP
hydrolysis (37). Given that BCCIP� failed to stabilize the
RAD51 presynaptic filament, yet induced a conformational
change in the RAD51 filament, we asked whether BCCIP�
had an effect on the ATP hydrolysis activity of RAD51.
To monitor RAD51 ATP hydrolysis, RAD51 was incubated
with [32P-� ]-ATP in the presence of magnesium and in the
absence and presence of ssDNA under conditions that favor
presynaptic filament formation with or without BCCIP�.
At the given times, each reaction was stopped, and the
amount of hydrolyzed [32P-� ]-ATP was analyzed. Our re-
sults indicate that BCCIP� enhances the ATP hydrolysis
activity of RAD51 in the presence of ssDNA ∼1.7-fold (P-
value *< 0.05, Figure 8A and B). Upon further investiga-
tion, we found that there was no enhancement of ATP hy-
drolysis by RAD51 in the absence of ssDNA, (Figure 8A,
compare lanes 2 and 4). BCCIP� stimulated the ATP hy-
drolysis activity of RAD51 in the presence of ssDNA. These
results are in agreement with our finding that BCCIP� was
only able to stimulate RAD51 D-loop formation when a
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Figure 7. Interaction with BCCIP� induces conformational changes in RAD51. (A) RAD51 (5 �M) was incubated with trypsin (20 �g/ml) in the presence
and absence of ATP (2 mM), �X174 ssDNA (30 �M nucleotides), calcium (1.8 mM) and BCCIP� (10 �M), as indicated. The reactions were stopped with
SDS and heat. The reaction products were resolved using SDS-PAGE followed by western blot analysis. Antibodies against RAD51 were used to develop
the membrane. (B) The amounts of each band from undigested RAD51 and Fragments A, B, C and D were graphed based on the relative intensity of each
band. Quantitation of the proteolytic fragmentation of RAD51 was determined from three independent experiments.

stable RAD51 filament was present. As expected, no ATP
hydrolysis activity was observed with BCCIP� alone or in
combination with ssDNA (Figure 8A, lane 3 and 6, respec-
tively). These results demonstrate the ability of BCCIP� to
enhance ATP hydrolysis of RAD51 when bound to ssDNA,
suggesting that enhanced D-loop activity was not due to re-
duced ATP hydrolysis activity by RAD51.

BCCIP� mediates ADP release

A potential mechanism for the stimulation of RAD51 ho-
mologous DNA pairing activity by BCCIP� is through the
enhanced release of ADP from the RAD51 filament. In
support of this idea, Shim et al. and Su et al. previously
reported that XRCC2 and SWI5-SFR1, respectively, pro-
mote the release of ADP from a RAD51 filament (28,50). To
monitor the effect of BCCIP� on the RAD51-ADP-ssDNA
filament, we needed to monitor the ability of RAD51 to
form a filament in the presence of ADP. To do this, we in-
cubated fluorescently labeled ADP (MANT-ADP) and ss-
DNA in the presence or absence of RAD51. After allow-
ing ample time for filament formation, a fluorescence scan
from 400 to 500 nm was performed. We found a ∼33% in-
crease in the relative fluorescence and a 4 nm red shift in
peak fluorescence (445–441 nm) when RAD51 was in the re-
action, indicating the binding of MANT-ADP by RAD51–
ssDNA (Figure 8C). To confirm that the increase in flu-
orescence and red-shift in peak fluorescence were due to
RAD51 binding MANT-ADP, we substituted RAD51 for
the RAD51K133A variant, known to have low affinity for nu-
cleotides (26,27,51). As expected, there was no difference in
the fluorescence spectra of MANT-ADP in buffer regard-
less of the presence of RAD51K133A indicating the increase
in fluorescence and red-shift in peak fluorescence was due to
RAD51 binding MANT-ADP (Figure 8C). Since there was

an increase in fluorescence and a shift in the peak of the flu-
orescent signal upon RAD51 binding MANT-ADP, we per-
formed a time course experiment that monitored the disso-
ciation of MANT-ADP as a decrease in fluorescent signal.
Here, we incubated RAD51 with MANT-ADP and ssDNA
in the presence of magnesium to allow for the formation of
the RAD51-ADP-ssDNA filament. Upon the addition of
BCCIP� or reaction buffer containing magnesium, the de-
crease in fluorescence was monitored at 445 nm. As shown
in Figure 8D, the addition of BCCIP� in reaction buffer
containing magnesium resulted in a dramatic decrease (t1/2
= 32.0 ± 2.8 s) in the relative fluorescence compared to
the addition of buffer alone (t1/2 = 52.6 ± 4.3 s; P-value
**< 0.01). Next, we incubated RAD51 with MANT-ADP
and ssDNA in the presence of calcium during the forma-
tion of the RAD51-ADP-ssDNA filament. The addition of
reaction buffer containing calcium yielded a slow decrease
in fluorescence (Figure 8E). Surprisingly, the addition of
BCCIP� in reaction buffer containing calcium resulted in
no significant change in the level of fluorescence (Figure
8E). We found that the addition of BCCIP� in combina-
tion with 10-fold excess ATP resulted in a significant de-
crease in fluorescence (t1/2 = 30.0 ± 3.1 s) compared to the
addition of reaction buffer containing 10-fold excess ATP
alone (t1/2 = 82.4 ± 4.9 s P-value *< 0.05) (Figure 8E). Our
results suggest that BCCIP� promotes the release of ADP
from the RAD51-ADP-ssDNA filament in the presence of
magnesium. In the presence of calcium, the release of ADP
from RAD51–ssDNA is stimulated by BCCIP� when ATP
is present.

DISCUSSION

In this study, we sought to determine if BCCIP� had a di-
rect effect on the activity of RAD51. We show that BCCIP�
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Figure 8. BCCIP� stimulates RAD51 ATP hydrolysis and promotes ADP release. (A) RAD51 (0.5 �M) ATP hydrolysis assay in the presence or absence
of �X174 ssDNA (60 �M nucleotides) and BCCIP� (1 �M). (B) Time course analysis of RAD51 (0.5 �M) ATP hydrolysis in the presence of �X174
ssDNA (60 �M nucleotides), with or without BCCIP� (1 �M). Error bars represent s.e.m. (n = 3); P-value *< 0.05. (C) Fluorescence spectra (400–500
nm) of MANT-ADP (0.5 �M) and �X174 ssDNA (2.0 �M nucleotides) in the absence or presence of RAD51 or RAD51K133A (0.5 �M). (D) Time course
analysis of MANT-ADP dissociation from a RAD51-MANT-ADP-ssDNA complex in the presence of magnesium with or without BCCIP� (1 �M). (E)
Time course analysis of MANT-ADP release from the RAD51-MANT-ADP-ssDNA filament in the presence of calcium with or without BCCIP� (1 �M)
and/or ATP (5 �M), as indicated. P-value *< 0.05 and **< 0.01 is indicative of the 600 s time point.
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Figure 9. Model for the role of BCCIP in BRCA2-DSS1-RAD51-mediated HR. DSS1 targets the BRCA2-DSS1-RAD51-BCCIP� complex to RPA-coated
ssDNA. DSS1 helps BRCA2 displace RPA from the ssDNA to facilitate nucleation of RAD51 onto the ssDNA forming the presynaptic filament. The
active RAD51 filament hydrolyzes bound ATP (T) leading to a condensed and inactive ADP-bound RAD51 filament (D). BCCIP� promotes the release of
ADP from the inactive RAD51 filament, allowing ATP to bind reactivating the RAD51 presynaptic filament. Calcium inhibits ATP hydrolysis by RAD51
to help maintain the RAD51 filament in an active form.

interacts with RAD51 directly, and the interaction between
BCCIP� and RAD51 is species-specific as human BCCIP�
failed to interact with S. cerevisiae Rad51, despite ScRad51
having 67% identity and 81% similarity to human RAD51.
We conclude that the architecture of the interaction inter-
face between RAD51 and BCCIP� is likely to be suffi-
ciently different or not present between ScRad51 and hu-
man BCCIP�, preventing interaction.

The ability of BCCIP� to interact with RAD51 sug-
gested that BCCIP� might have an effect on RAD51 re-
combination activities. Our initial attempts to detect an ef-
fect of BCCIP� on RAD51-mediated D-loop formation
were unsuccessful until calcium was included in the reac-

tion. To understand the requirement for calcium, we first
ruled out the possibility that calcium was required for in-
teraction between BCCIP� and RAD51 because of the ab-
sence of calcium in the affinity pull-down experiments. The
results from our nuclease protection assay in the absence
of calcium suggested BCCIP� does not function to stimu-
late RAD51-mediated D-loop formation by stabilizing the
RAD51 presynaptic filament (22,26,45,46) as reported for
other HR factors (39–44). Since calcium is known to pre-
vent ATP hydrolysis by RAD51, thereby stabilizing the
RAD51 nucleoprotein filament in an active conformation
and leading to a large increase in the amount of D-loop
formed by RAD51 (37), we reasoned that BCCIP� might
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only function with the calcium-stabilized, active form of the
RAD51 presynaptic filament.

Based on the results of our ADP release and proteolysis
experiments, we propose that the presence of different co-
factors induce unique conformational changes in RAD51
that modulate the release of ADP. BCCIP� induced a con-
formational change in RAD51 that favors the release of
ADP in the absence of calcium, while the calcium-induced
conformation of RAD51 prevented the BCCIP�-induced
conformation from releasing ADP. However, the addition
of ATP in the presence of both calcium and BCCIP� in-
duced a third change in the conformation of RAD51 that
led to the release of ADP. Support for the existence of these
multiple conformations in RAD51 lies in our proteolytic
analysis. Our data show that interaction of RAD51 with
BCCIP�, ATP or both BCCIP� and ATP results in pro-
teolytic fingerprints of RAD51 that are distinct from those
in the absence of BCCIP� or ATP. Furthermore, the prote-
olytic fingerprint of a RAD51 presynaptic filament is dif-
ferent from one in which BCCIP� is added in either the
presence or absence of calcium. As a result, the RAD51
presynaptic filament appears to be dynamic allowing for
subtle changes in conformation that modulate its activity.
The ability to induce a conformational change in RAD51
is not unique to BCCIP�. The HOP2-MND1 complex, an
accessory factor that stabilizes the RAD51 filament and
strongly enhances homologous DNA pairing, induces con-
formational changes in RAD51 that modulates the binding
of nucleotides (27). Alternatively, an interaction between
calcium and BCCIP� could cause the observed activities.
A region within BCCIP� is reported to share homology
with the calcium binding sites of M-calpain (29% identity
and 58% similarity) and calmodulin (26% identity and 43%
similarity), both of which are calcium-binding proteins (16).
It is possible that calcium not only stabilizes and promotes
conformational changes in the RAD51 presynaptic filament
but also promotes a conformational change in BCCIP� that
allows BCCIP� to exert its effect on RAD51. Moreover, we
cannot rule out the possibility that calcium is acting as a
substitute for BRCA2, which interacts with BCCIP� and
stabilizes the RAD51 presynaptic filament in vitro (40).

A previous report showed that a 50% reduction in the BC-
CIP protein levels resulted in a striking ∼100-fold reduc-
tion in HR repair (20). This result led Lu et al. (2005) to
propose that BCCIP� is required at a specific stoichiome-
try for proper BRCA2-RAD51 function during HR. In sup-
port of this idea, we found that the stimulation of RAD51-
mediated D-loop formation was maximal at a ratio of two
BCCIP� proteins to one RAD51. Furthermore, we pro-
vide evidence that BCCIP� forms a homodimer in the ab-
sence of RAD51. These findings suggest that a dimer of
BCCIP� interacts with RAD51 to promote D-loop forma-
tion. Expression analysis revealed the presence of a second
isoform of BCCIP, BCCIP�, with primary sequence that
is 80% identical to BCCIP� (17). While the expression of
BCCIP� was relatively constant regardless of the tumor cell
analyzed, the expression of BCCIP� varied from being ab-
sent to overexpressed depending on the tumor cell line (16).
The demonstration that both isoforms of BCCIP are co-
expressed leaves open the possibility that BCCIP� can form
a heterodimer with BCCIP�.

The active form of the RAD51 presynaptic filament is
bound to ATP. Once the bound ATP is hydrolyzed, the
presynaptic filament converts into an inactive form with
ADP bound. The dissociation of ADP from the inactive
presynaptic filament is slow (37). We show that BCCIP� in-
creases the rate of ADP release from the inactive RAD51
presynaptic filament. This may allow RAD51 to bind ATP
and return to the active state. In support of this notion,
our results show the rate of ATP hydrolysis by the RAD51
presynaptic filament is elevated in the presence of BCCIP�.
The combination of calcium, to prevent ATP hydrolysis,
and BCCIP, to promote the release of ADP, likely results
in the RAD51 presynaptic filament remaining in the active
state.

BCCIP is not the first HR factor shown to stimu-
late RAD51 activities and promote the release of ADP.
XRCC2 enhances RAD51-mediated DNA strand ex-
change. XRCC2 reduces the affinity of RAD51 for ADP,
which leads to an increase in the rate of ADP release and
thus increases the ATP hydrolysis activity of RAD51 (50),
much like we report for BCCIP�. More recently, the murine
SWI5-SFR1 complex was shown to be involved in HR
by enhancing RAD51-mediated homologous DNA pairing
(28,44). In addition, the murine SWI5-SFR1 complex stim-
ulates the ATP hydrolysis activity of the RAD51–ssDNA
presynaptic filament and increases the rate of ADP release
(28). While these observations are similar to our results with
BCCIP�, the ability of SWI5-SFR1 to stabilize the RAD51
presynaptic filament (36,44) is an activity not shared with
BCCIP�. Furthermore, the stimulatory effect of SWI5-
SFR1 on RAD51 homologous DNA pairing was not de-
tected in the presence of a stabilized presynaptic filament
(44) suggesting that SWI5-SFR1 likely enhanced RAD51
recombinase activity via stabilization of the RAD51 presy-
naptic filament.

BCCIP is a BRCA2-interacting protein (16) that co-
localizes with RAD51 foci and BRCA2 foci in the nucleus.
Based on the work of others and our results, we suggest that
BRCA2-DSS1-BCCIP interact with RAD51 after the gen-
eration of DSBs. DSS1 targets BRCA2-BCCIP-RAD51 to
RPA-coated ssDNA at the DSB site and aids in the removal
of RPA. BRCA2 loads RAD51 onto the ssDNA and sta-
bilizes the newly formed RAD51 presynaptic filament. As
RAD51 binds ssDNA, its ATP hydrolysis activity is stimu-
lated, leading to inactive RAD51-ADP filaments. BCCIP�
stimulates the release of ADP from RAD51, which helps
maintain RAD51 in an active conformation capable of D-
loop formation (Figure 9). Given the activities we report
for BCCIP�, it is understandable that the loss of BCCIP
expression is frequently observed in brain, ovarian, kidney
and colorectal cancers (18,19) as it is important for the re-
pair of DSBs in vivo (20). Our study provides insight into the
molecular functions of BCCIP� enhancement of RAD51
in the HR pathway. Based on results of our study, the as-
sociation of BCCIP� with BRCA2 in vivo (16), and the
role BRCA2 has as an accessory factor in HR (7–10), it
will be important to investigate how BCCIP functions with
BRCA2 in the HR pathway.
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