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A P P L I E D  P H Y S I C S

Tensional twist-folding of sheets into multilayered 
scrolled yarns
Julien Chopin1,2* and Arshad Kudrolli1*

Twisting sheets as a strategy to form functional yarns relies on millennia of human practice in making catguts and 
fabric wearables, but it still lacks overarching principles to guide their intricate architectures. We show that twisted 
hyperelastic sheets form multilayered self-scrolled yarns, through recursive folding and twist localization, that 
can be reconfigured and redeployed. We combine weakly nonlinear elasticity and origami to explain the observed 
ordered progression beyond the realm of perturbative models. Incorporating dominant stretching modes with 
folding kinematics, we explain the measured torque and energetics originating from geometric nonlinearities 
due to large displacements. Complementarily, we show that the resulting structures can be algorithmically generated 
using Schläfli symbols for star-shaped polygons. A geometric model is then introduced to explain the formation 
and structure of self-scrolled yarns. Our tensional twist-folding framework shows that origami can be harnessed 
to understand the transformation of stretchable sheets into self-assembled architectures with a simple twist.

INTRODUCTION
Tensional twist-folding is a method to transform flat sheets into 
layered structures and yarns with ordered internal architectures by 
remote boundary manipulation. Twisting sheets under tension has 
been used since antiquity in making catgut bow strings, surgical 
sutures, musical chord instruments, sports rackets, sausage and candy 
wrappers, and fabric filters and wearables, such as turbans and crushed 
dupattas, and in the upcycling of plastic (Fig. 1, A to C). Scrolled 
yarns with nested structures optimized for fresh applications are 
being developed as in energy harnessing, in batteries, and in embed-
ding amorphous materials (1–4). These structures are difficult to 
achieve by compression-induced transformations of elastic sheets 
without further direct manipulation (5–7) and traditional fiber 
spinning methods (8). When appropriate materials are used, the 
transformations can be reversible, and twist-folding and scrolling 
can be used to reconfigure and repurpose flat sheets, as exemplified 
by the multifunctional Rajasthani turban.

The interplay between topology and large shape transformations 
has been studied in terms of inextensible twisted rods and ribbons 
to understand the conformation of DNA and proteins (9–11) and 
has contributed to the development of a now well-established theo-
retical framework (12, 13). However, the shape transformation of 
sheets that substantially stretch upon twist has remained undocu-
mented despite their ubiquity in a wide range of applications.

We report the spontaneous formation of twisted multilayered 
yarns with ordered internal architectures enabled by x-ray three- 
dimensional (3D) scanning. These structures obtained under extreme 
deformation and self-contact are distinct from those observed in 
rods and ribbons at moderate twist reported previously (14, 15) and 
are not known to occur by purely compression-driven transforma-
tions of elastic sheets, as in crumpling, folding, and capillary wrap-
ping (16–19). Modeling these large shape transformations and 
configurations is extremely challenging. Elastic plate models such 
as the Föppl–von Kármán (FvK) equation, and its more recent co-
variant extension (20), have solved the initial growth of wrinkling 

above onset of primary instability (20–26) but fail to anticipate, 
let alone explain, the proposed transformation of a flat sheet into 
scrolled yarns with functional guests (2). As in other paradigm 
pattern formation systems such as the buoyancy-driven Rayleigh-
Bénard convection, which displays intermittent spatiotemporal chaos 
(27), it is not a priori obvious what imprints of the primary instabil-
ities persist, as a sheet is twisted far beyond the perturbative regime 
where previous studies were focused. While origami and inextensible 
sheet models are amenable to address large shape transformations 
(18, 28–38), their generalization to significantly stretched sheets is 
unknown.

Going beyond reporting the discovery of ordered transformations, 
we develop a framework that combines the kinematics of stretched 
sheets, origami, and fold-induced transverse stiffness to explain our 
observations. We find that the observed accordion folded sheets 
have regular polygonal shapes described by Schläfli symbols (39) 
and show that origami kinematics can capture the main features of 
the structure. We provide an analytical framework to address the 
successive transformations experienced by a twisted sheet from the 
onset of transverse wrinkling via recursive folding and scrolling. 
Our framework can serve as a guide for the fabrication of yarns with 
precise control of cross-sectional architecture. When made with 
hyperelastic materials, which recover their unstressed states, they 
can be repeatedly reconfigured and redeployed with our twist- 
folding method.

RESULTS
Ordered shape transformation and nonmonotonic torque 
with twist
Examples of a polydimethylsiloxane (PDMS) sheet with increasing 
twist are shown in Fig. 1 (D to G) and movie S1. A system schematic 
and the Cartesian coordinates system (x, y, z) are shown in Fig. 1D 
(inset). The system consists of a sheet of length L, width W, and 
thickness t, twisted by an angle  while being held at opposite ends 
and stretched axially by L. Transverse wrinkles can be observed 
just above the onset of primary instability (Fig. 1D), which grow in 
amplitude and collapse into an accordion folded spiral structure 
with self-contact (Fig. 1E). As the applied twist is increased further, 
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a nested helical structure forms at the waist (Fig. 1F), and then a 
secondary instability occurs, which leads to recursive folding and a 
scrolled multilayered yarn (Fig. 1G). Each of the major shape trans-
formations causes the rate of change of applied torque M to change 
sign, leading to a sawtooth variation with twist (Fig. 1H). The pri-
mary instability and parameter space over which these transforma-
tions occur vary with L/W (Fig. 1I). The observed angle at which the 
primary instability occurs in Fig. 1I is consistent with the bendable 
ribbon regimes (L > W), which scales as p ∼ (L/W)1/2 and wave-
length     p   =        √ 

_
 Lt    (L / L)   −1/4  , with  = 2.2 reported previously 

(20, 21). The ordered nonperturbative sheet transformations as the 
sheets self-fold and form scrolled yarns, the sawtooth torque varia-
tion, and the phase diagram reported in Fig. 1 (E to I) are all docu-
mented previously and are the focus of the analysis to follow.

Tensional twist-folding framework
Figure 2 gives an overview of the tensional twist-folding framework 
that we introduce to understand the observed main stages of the 
transformation of a planar sheet into self-scrolled yarns. The covar-
iant form of the FvK equations, which was introduced recently (20), 
can only address longitudinal and transverse wrinkles observed at 
the onset of primary instabilities (14, 15). Therefore, we introduce 
a set of models combining geometry, elasticity, and kinematics to 
capture the observed shape transformations well beyond perturba-
tions about the helicoidal base state. Building on tensional field 
theory (40), we develop an elastogeometric torque model to capture 
the stored elastic energy and torsional response beyond the primary 
instability until the self-contact regime. We then introduce the 
Schläfli origami kinematics model to describe the accordion folded 
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Fig. 1. Experiments reveal a highly ordered transformation to yarns when sheets held under tension are twisted beyond the onset of primary instabilities. 
Examples of twisted, folded, and scrolled structures are the following: (A) wrapped candy, (B) multifunctional Rajashtani Turban (photo credit: Lauren Cohen), and 
(C) scrolled yarn from a polyethylene sheet (see section S4). (D to G) Shadowgraphs of a transparent PDMS sheet twisted through angle  as shown in the inset (L/W = 
1; t/W = 0.0028; L/L = 0.1; p = 60 ± 5°). Inset: Schematic and lab coordinate system. (D) Wrinkles observed just above the onset of primary instability. (E) Accordion folded 
sheet with self-contact. (F) A nested helicoid with folded layers that develop as the sheet is twisted further. (G) Secondary buckling instability occurs with further twisting, 
resulting in a yarn-like structure. The scale bar is the same in (D) to (G). (H) The measured torque shows a repeated increasing and decreasing sawtooth variation with 
twist. The amplitude of variation increases as L/W decreases. (I) A map delineating regions where the primary instability, self-contact, and secondary instability occur as a 
function of aspect ratio and twist. Lines are guides to the eye, except the primary instability for L/W > 3, which is from (21).
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spiral structure that forms. Last, we discuss the geometric yarn 
model to describe the development of the scrolled yarn structures 
that form via helical wrapping with continued multiple twists after 
secondary instabilities occur.

Curvature localization and accordion folds
We first discuss in more detail the morphologies of the sheet, 
obtained with noninvasive 3D x-ray tomography, beyond incipient 
wrinkling until self-contact. In Fig. 3A, we reconstruct the central 
80% of a twisted polyvinyl siloxane (PVS) sheet and render the 
surface with its mean curvature H (see section S6). High-curvature 
regions along wrinkle antinodes develop above the onset of trans-
verse instability. To recognize the spatial distribution of the curva-
ture as the sheet wraps around itself, we map H to a rectangular 
domain with axes (s, x), the curvilinear and longitudinal coordi-
nates, respectively (Fig. 3B and figs. S2 and S5A). The wrinkles are 
observed to be initially aligned with the applied tension when  = 90°, 
consistent with linear perturbation analysis (20). With increasing 
twist, H is increasingly localized along folds with essentially flat 
regions in between, and the folds rotate away from the tensional 
axis until they meet near the clamped edges.

We calculate the bending energy density wb = B/2 (H2 + 2(1 − )K), 
where B = E t3/[12(1 − 2)] is the bending stiffness,  is the Poisson 
ratio, K is the Gaussian curvature, and E is the Young’s modulus. 
Plotting wb across the sheet at mid-distance between the clamps, 
we observe that sharp peaks grow with , showing that the bending 
energy increasingly localizes along the folds (Fig. 3C). Because the 
number of peaks is unchanged as the twist is increased, we presume 
that the number of folds n are set by twice the ratio of W and p. 
Using sheets with various Young’s modulus and aspect ratios, we 
plot the measured number of folds versus 2W/p in Fig. 3D.The 
data collapse onto a line with slope 1, supporting our presumption 
that the primary instability determines the main features of the 
shape transformation far above the perturbative wrinkling regime.

To characterize the transformation with twist, we consider the 
projected length D onto the y axis of the mid-cross section located 
midway between the two clamps as sketched in Fig. 4A. Introducing 
a dimensionless compaction parameter  = D/W, we plot the mea-
sured  as a function of  in Fig. 4B. We find that  = 1 as the sheet 
deforms into a helicoid with diameter W and then starts to decrease 
for  > p as the sheet undergoes a transverse instability and begins 
to fold. In the limit of a very thin sheet, i.e., t → 0, we expect n ∝ 
W/p → ∞, because     p   ∝  √ 

_
 t   → 0 , and thus  ∝ nt/W → 0 as the 

sheet folds to the point (x, y, z) = (0,0,0). However, for finite t, one 
may expect  to decrease and plateau at a finite value as a result of 
competition between the fold-induced compression resistance and 
a stretched-induced compression that determines p (20, 21).

Elastogeometric torque model
On the basis of these observations, we develop an elastogeometric 
model to calculate the stored elastic energy and torsional response 
of the sheet as it folds beyond the wrinkling regime up until self-contact. 
Because the FvK equations are not valid in the large deformation 
regime, we draw inspiration from the tensional field theory (40, 41) 
used to describe highly wrinkled sheets, where flexural and compres-
sive stresses are negligible compared with tensile stresses. As dis-
cussed in detail in the following, we approximate the stretched sheet 
as it accordion folds with a skeleton surface, which enables us to 
evaluate an analytical expression for the elastic energy ℰel. We 
parametrize ℰel by defining a compaction parameter  = D/W, 
which captures the folding state of the sheet empirically. Then, we 
obtain the torque M as a function of applied twist using the deriva-
tive of the elastic energy with respect to applied twist angle  and the 
measured nonlinear elastic stress-strain constitutive relation.

Guided by the symmetry of the ±/2 twist about the x axis, we 
consider the end points of the projected mid-cross section on the 
y axis ( 0, ±  D _ 2  , 0 ) used to define . Then, joining these two points with 
the extremities of the upper and lower clamps, as shown by the blue 
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Fig. 2. An overview of the observation transformations with twist and the tensional twist-folding framework. The observed main transformations as a planar sheet 
experiences tensional twist-folding and scrolling with applied twist. The elastogeometric framework is shown, including the perturbative FvK formalism, the elastogeo-
metric torque model that incorporates geometric nonlinearities to explain the stress-strain relation with twist, the Schläfli origami kinematic model, and the geometric 
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and red lines in Fig. 4A, we obtain a simplified parametrization of 
the deformed sheet boundary, which retains the progressive rota-
tion of the cross section and its transverse compaction midway be-
tween the two clamps.

As in tensional field theory (41), we assume that the energetics during 
folding are predominantly given by the stretching modes in the longitu-
dinal direction while the bending modes are assumed subdominant. 

Thus, the sheet cross sections are approximated by straight lines with a 
maximum length W at the clamps and a minimum length D halfway 
between the clamps. Then, the backbone surface, shaded green, is de-
fined as a piecewise linear interpolation between the clamps and the pro-
jected mid-cross section whose parametrization is given by

     → r  (x, y ) =   ∣x∣ ─ L / 2      → r   c  
± (y ) +  (  1 −   ∣x∣ ─ L / 2   )      → r      (y)   (1)

PVS a 
PVS b
Latex
PDMS

A B

C

D

90° 120° 150° 180°

Fig. 3. Accordion folding through curvature localization. (A) The deformation of a polyvinyl siloxane (PVS) sheet twisted by  = 120° obtained with x-ray tomography 
and rendered with mean curvature H given by the color bar on the right (L/W = 3; t/W = 0.009; p = 75 ° ± 5°). The central 80% of the sheet away from the clamps is shown. 
(B) The spatial distribution H mapped to a rectangular domain shows symmetry breaking and localization of the sheet curvature with twist. (C) Bending content wb shows 
the localization of energy with creasing across the cross section indicated by the solid white line in (A). (D) The measured number of folds n compared with the relation 
given by the wavelength of the primary instability n = 2W/p. The aspect ratios (t/W, L/W) are as follows: PVS a (0.009,2), PVS b (0.006,3), PDMS (0.003,1), and latex (0.003,2). 
The three materials are hyperelastic with Young’s modulus E = 1.2 MPa (PVS), 6.2 MPa (PDMS), and 3.6 MPa (latex).
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Fig. 4. Elastogeometric torque model and comparison with measured torque and energy. (A) Schematics illustrating the backbone structure used in the elastogeo-
metric model. (B) Evolution of the compaction parameter with twist superposed on the sigmoid function S() defined in eq. S4. (C) The measured torsional stiffness 
M′ scaled by the FvK model torsional stiffness   M  FvK  ′     versus applied strain grows nonlinearly and is described by the strain-softening response of cross-linked elastomers to 
moderate strain captured by the hyperelastic parameter 𝒜. Error bars smaller than symbol size are not shown for clarity. (D) The increase and decrease of the measured 
torque M (circles) versus  are quantitatively captured by our elastogeometric model (solid line). (E) Elastic energy ℰel obtained experimentally (circles) and from folded 
model and unbuckled helicoid scaled by ℰ0 at zero twist. The elastic energy for  = 1 (helicoid case) is significantly higher for  > 180° (dashed line). (F) The scaled bending 
energy ℰb/ℰ0 (purple triangles) obtained by integrating the measured bending energy density is at least an order of magnitude lower than ℰel/ℰ0. Solid and dashed lines 
are guides to the eye.
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where     → r   c  
+   and     → r   c  

−   parametrize the upper and lower clamps, respective-
ly, and is given by

      → r   c  
±  ≡  (   ±   L + L ─ 2  ,  y cos  (      ─ 2   )  , ±  y sin  (      ─ 2   )   )     

The mid-cross section     → r      (y)  at x = 0 is parametrized by

     → r       = (0,  ( ) y,  0)  (2)

Equation 1 can also be interpreted as the parametrization of a 
piecewise ruled surface where two surfaces are stitched together 
along the straight mid-cross section.

In general, the evolution of  with twist is unknown for sheets 
with finite thickness, but we can make an estimate in the limit of 
very thin sheets. The compaction of the sheet is driven by a trans-
verse compressive force, which is expected to vanish with the edge 
curvature as in the case of a stretched helicoid (15, 20). However, 
because there is no fold-induced resistance to balance compression 
for very thin sheets, compression vanishes, and the sheet longitudinal 
edges are essentially straight. In this limit, the mid-cross section param-
etrization is given as the mean between the top and bottom clamp 
parametrizations, i.e.,      → r       = (0, y cos  (     _ 2   )  , 0)  . Hence,   ( ) = cos  (     _ 2   )    . 
We compare this estimate of  for very thin sheet with experimental 
data shown in Fig. 4B and find that the measured compaction 
parameter is systematically larger, illustrating the fold-induced re-
sistance to compaction for finite thickness sheets. To account for 
this effect, we adjusted, by the eye, a sigmoid function S() to the 
measured  and used it as an empirical input for our torque model 
(see Fig. 4B and eq. S4).

Building on this parametrization of the shape transformation 
with twist, we calculate the longitudinal Green-Lagrange strain defined 

as  ϵ =  ∂  u  x   _ ∂ x   +  1 _ 2  [   (    ∂  u  x   _ ∂ x   )     
2
  +   (    ∂  u  y   _ ∂ x   )     

2
  +   (    ∂  u  z   _ ∂ x   )     

2
 ] , where    → u   = ( u  x  ,  u  y  ,  u  z  )  is 

the displacement vector given by    → u   =   → r   − (x, y, z)  (42). Using the 
kinematics given in Eq. 1, the strain reads (see section S7)

  ϵ =  ϵ  0   +   1 ─ 2    ℱ   2    (     
y
 ─ W   )     

2
   (3)

where   ϵ  0   =  L _ L   +  1 _ 2    (    L _ L   )     
2
   is the -independent nonlinear strain as-

sociated with displacements along the x axis, and

   ℱ   2  =   (     W ─ L / 2   )     
2
  [ 1 +     2  − 2 cos  / 2]  (4)

is a characteristic amplitude of the -dependent contribution to the 
strain arising from displacement in the yz plane.

The elastic energy of the sheet is defined as ℰel = t ∫ wsdxdy, 
where the strain energy density ws = ∫ (ϵ′)dϵ′, and  is the longitu-
dinal stress. For a Hookean material under uniaxial loading, (ϵ) = 
Eϵ, hence ws = ϵ2/2 after integration. However, we observe experi-
mentally a moderate strain softening of the materials (see Fig. 4C), 
indicating that a Hookean elasticity is not accurate for the entire 
range of applied stretch. We then use an empirical nonlinear elastic 
constitutive law  = Eϵ(1 − 𝒜ϵ), where 𝒜 is a free parameter adjusted 
from the experimental torque profile at incipient twisting. After inte-
gration of the strain, the strain energy density is    w  s   =  1 _ 3  E  ϵ   2  (    3 _ 2  − Aϵ )    . 
Integrating ws over the sheet domain yields

   ℰ  el   =  ℰ  0   + EtLW [     1 ─ 24    ϵ  0  (1 − A  ϵ  0   )  ℱ   2  +   1 ─ 640  (1 − 2A  ϵ  0   )  ℱ   4  ]     (5)

where    ℰ  0   =  1 _ 3  EtLW  ϵ 0  2  (    3 _ 2  − A  ϵ  0   )     is the elastic energy at zero twist. 
In Eq. 5, higher-order terms in ℱ2 are neglected. Recalling that M = 
dℰel/d, we then obtain an analytical expression for the torque using 
the chain rule M = dℱ2/d dℰel/dℱ2

   M =  M  0   [     2Wsin  / 2 ─ L   ]    
 
  (     1 ─ 12    ϵ  0  (1 − A  ϵ  0   ) +   1 ─ 160  (1 − 2A  ϵ  0   )  ℱ   2  )     (6)

where M0 = EW2t. Now, assuming small strain ( ϵ ≈  L _ L   ≪ 1  and 
𝒜 = 0) and small twist  ≪ 1, we have  ≈ 1, and, using Eq. 4, ℱ2 ≈ 
(W/L)2. Thus, with Eq. 6, we recover the linearly increasing FvK 
torque at small twist    M  FvK   =   M  0   _ 12    W _ L   (    L _ L   )     and the linear increase with 
  L _ L    (43). To quantify 𝒜, we calculate the ratio of the torsional stiffnesses 
  M ′   ≡  dM _ d    and    M  FvK  ′   ≡  d  M  FvK   _ d    =   M  0   _ 12    W _ L   (    L _ L   )     at incipient twist. Then, 
we measure M′ by a linear fit of the data at  = 0 for various L/L 
and plot the evolution of   M ′   /  M  FvK  ′    with L/L in Fig. 4C. We find   
M ′   ≈  M  FvK  ′    for L/L < 0.1, but, for larger strains, the FvK stiffness 
increasingly overestimates the measured torque. This deviation is a 
result of strain softening experienced by cross-linked polymers (44), 
which we account for by using a nonzero hyperelastic parameter 𝒜.  
From Eq. 6, our model finds

      M ′   ─  M  FvK  ′     =  (  1 +   1 ─ 2     L ─ L   )  (1 − A  ϵ  0  )   

which we use to fit our data, and obtain 𝒜 = 1.6 ± 0.1.
Figure 4D shows a comparison of the measured torque as a func-

tion of twist with Eq. 6, corresponding to the elastogeometric torque 
model valid for various finite strains L/L incorporating the hyper-
elastic nature of the material. Our model can be seen to be in good 
agreement with the observed torque versus twist angle over a wide 
range of strains 0 to 0.3 and captures the nonmonotonic torsional 
response, quantitatively, until the onset of self-contact at  ≈ 180°. 
Thus, we find that the nonmonotonicity originates from finite rota-
tion effects in the yz plane, which are essentially captured in Eq. 6 by 
a sine function derived from dℱ2/d. Thus, the geometrical non-
linearities incorporated in our elastogeometric torque model (that 
are missing in the FvK model) are crucial to describe the observed 
torque. Furthermore, it is noteworthy that the torque peak occur-
ring at increasingly higher  > 90° with strain is also captured by our 
model. Considering the limit of very thin sheets for which fold- 
induced resistance vanishes,   = cos   _ 2   , we obtain a torque profile 
   M  0   _ 12    W _ L   sin   ϵ  0  (1 − A  ϵ  0  ) , which peaks at an angle  = 90° smaller than 
in our experiment with finite thickness sheets. Thus, the quantity 
 in our model encodes the fold-induced resistance to transverse 
displacement.

Next, we compare the elastic energy obtained in Eq. 5 as a func-
tion of  with the measured values in Fig. 4E after normalizing with 
the zero twist stretching energy ℰ0. We find very good agreement 
showing that the bending energy can be neglected (Fig. 4F and sec-
tion S8). It is noteworthy that, while the bending energy contribu-
tion to the elastic energy is small (note the difference in vertical scale 
in Fig. 4, E and F), folding is necessary to achieve a net energy re-
duction. To demonstrate this, we have plotted the helicoidal elastic 
energy (dashed line), which corresponds to  = 1 in Fig. 4E. The 
energy is observed to grow well above the elastic energy of a folded 
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sheet compared to when  < 1 as in the experiments, showing that 
folding results in a lower growth in the elastic energy.

Self-folding and Schläfli origami
To now explain the folded structure that develops at  = 180°, we 
complement our elastogeometric analysis with origami construction. 
Consider an inextensible sheet (Fig. 5A) that can be folded up or 
down along the dashed lines, resulting in a polygonal spiral origami 
(Fig. 5B). The apex angle of the isosceles triangular folds is . An 
image of an elastic sheet with the same aspect ratio is shown in 
Fig. 5C, where the thickness of the sheet has been chosen such that 
it results in the same number of folds as in the origami. We plot the 
segment angle  from the y axis made by initial horizontal lines in 
Fig. 5D. Quantitative agreement is found between the experimental 
value of  away from the clamps, with the expected value (red line) 
assuming the solid body rotation of the triangles, where each fold 
acts as a hinge. To quantify the role of the stretching on the origami 
pattern, we measure from shadowgraph images and find that it de-
creases with L/L (Fig. 5E). This variation follows from the decrease 
of p and the increase in sheet length with stretching, if one assumes 
 = p/(L + L). Thus, good agreement can be observed between the 
origami shape and the twisted sheet away from the clamped edges. 
Further quantitative agreement observed with physical cuts midway 
between the clamps can be found in section S9.

Origami corresponding to spiral accordion folded elastic sheets 
can be algorithmically generated using  as a parameter. Consider a 
right angle triangle with height L and angle /2 (Fig. 6A). (This triangle 

is also the same as that at the far left side of the sheet in Fig. 5A.) 
To help understand the geometrical transformation leading to a 
flat-folded origami, we preserve the color when reflecting off a right 
triangle with respect to its height and change the color when reflecting 
the triangle with respect to its hypotenuse identified as a fold. A 
flat-folded origami is thus obtained by applying, alternately, these 
two transformations until reaching a given number of folds n. When 
180°/ is odd, these transformations result in a regular flat-folded 
origami where the triangle bases are the edges of a regular polygon 
with p vertices (Fig. 6A). This polygon is also the convex envelope 
of a star-shaped polygon composed by the hypotenuses (dashed 
black line) connecting vertices separated by q consecutive triangle 
bases (solid orange line). These origami can be identified by the 
so-called Schläfli symbols {p/q} (39), and thus, we call them Schläfli 
origami. By geometric construction, we have p = ⟦180/⟧ and q = 
(p − 1)/2, where ⟦·⟧ stands for the closest odd integer. When 180/ 
is not odd, the calculated symbols should be understood as the ones 
yielding the closest Schläfli origami for a given . Varying the Schläfli 
symbols (or equivalently reducing the tip angle and increasing the 
triangle numbers), one can obtain triangle-, pentagon-, heptagon-, 
and nonagon-shaped envelopes. The thickness of the overlapped 
regions at the center is given by t′ = (n + 1)t and decreases in integer 
multiples of t toward the edges.

In Fig. 6B, we show, in the first column, the flat-folded Schläfli 
origami of higher symmetry (in lighter shade) as backgrounds of 
their incomplete counterparts (in gray) obtained by restricting the 
number of folds to n = 2 W/p, keeping p the same. The examples in 
the first, third, and fourth rows are symmetric, and the one in the 
second row is asymmetric. Thus, a Schläfli origami with either sym-
metry can be generated according to our algorithm, by starting with 
a right angle triangle reflecting about the hypotenuse and height 
equal to the calculated number of folds. Partial Schläfli origami have 
been denoted with a gray scale proportional to the number of over-
lapping domains at the particular location. They can be compared 
with radiograms of spiral folded elastic sheets that have the same 
L/W and n (Fig. 6B, second column). The gray scale in the radio-
gram is linearly proportional to the absorption encountered along 
the linear path of the x-rays and thus can be observed to be consistent 
with those generated by origami.

This correspondence is further quantified by measuring, from the 
radiograms, the fold angle  and  after a 180° twist (Fig. 6, C to E). 
Notably,  does not vary significantly between the triangles of a given 
twisted sheet, in accordance with the predictions of the Schläfli 
origami (Fig. 6E). We find an excellent agreement without any fit 
parameters for all three measures. Thus, the orientation of the folds 
is given by our model although it neglects the elastic stretching of 
the sheet, demonstrating that origami kinematics underpin tensional 
twist-folding.

Secondary instabilities and yarn formation
We now examine the transformation of the folded sheets into yarns 
by plotting transects at mid-distance between the clamps for  = 180°, 
360°, and 720° in Fig. 7A. The same left and right edges of the sheet 
are denoted with red and blue markers, respectively. The central 
helical yarn section undergoes strong compaction by  = 360° and 
then folds recursively when a secondary instability occurs at s ≈ 
400°. Encapsulated regions are highlighted by the magenta shade. 
The  normalized by its minimum value m is plotted as a function 
of  in Fig. 7B. We observe that the ratio decreases from 2 to 1 after 

β

α

CBA

ED

Fig. 5. Half-twisted sheets fold similar to an origami away from the clamp. 
(A) Flat sheet with triangular up and down fold lines. Horizontal black solid lines 
are drawn to indicate the relative displacement. (B) Corresponding origami with 
six flat folds. (C) Elastic sheet twisted by  = 180° shows similar fold structure away 
from the clamped edges. (D) The segment angle  as a function of distance across 
sheet width for elastic sheet and origami. The solid red line indicates the expected 
segment slope value  = 31.8° for an origami with the same tip angle . (E) The angle 
 of the stretched triangle as a function of applied strain L/L. A line of slope −1 
(dashed line) is shown as a guide to the eye.
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the secondary instability (denoted by the dashed vertical line), 
showing a recursive folding of the sheet.

Then, we represent the features by which the multilayer yarns 
form by idealized straight cross-sectional segments connected by 
curved joints making right (R) or left (L) turns going from one edge 
of the sheet to the other by the black arrow in Fig. 7A. We take the 
cross section shown in Fig. 7A as an example. With this convention, 
the configuration of the cross section before and after secondary 
instability is encoded as LRLR (accordion) and LLRRLLRRL (folded 
accordion), respectively. The schematics highlight a period doubling 
by recursive folding in a way that is qualitatively different from 
twistless compressed sheets, where the sequence of turns LRLR trans-
forms into LRLRLRLR after period doubling (45, 46).

Figure 7C shows the radiograms at the corresponding , where 
the tracked edges of the sheet are marked in red and blue. While the 
folding and helical wrapping yield complex internal structures, 
the stretched edges are found to wind around each other, similar 
to the twisting of two filaments into a rope (47). The crossings be-
tween the two edges in the projected plane occur in the yarn-like 
compact region, which starts to develop along the longitudinal axis. To 
quantify the yarn region, we use the orientation of the segment joining 
the end points in the yz plane to obtain a cross-sectional orientation 
angle x (Fig. 7D, inset, and fig. S10). We plot x in Fig. 7D after the 
sheet is twisted twice and find that the twist is localized in a central 

E

D

C

{19,9}

α = 9.5°

α  = 60°

1 2

q = 1α/2

α

36°

25.7°

20°

13.8°, {13/6}

12.0°, {15/7}

16.4°, {11/5} 

9.5°, {19/9}

p = 3

t' (mm)
0

2

4

{p,q} = {3/1}

{5/2}

{7/3}

{9/4} 

A p B

Fig. 6. Partial Schläfli origami explains layered architectures at half-twist. (A) Geometrical forms obtained by increasing the Schläfli symbols and number of facets. 
(B) Comparison of the experimental radiogram and Schläfli fold origami. Good correspondence is observed in all four cases. (C) The angle i of the ith fold as a function 
of the calculated angle i  using the geometric model is in excellent agreement. (D) Comparison of the apex angle  as a function calculated  using various sheets and 
loading. (E) The apex angle as a function of triangle number is essentially constant.

−0.2

360°

180° 720°

360°

180°

720°

θ

θ

A

B

C

D

Fig. 7. Secondary instability and yarn formation. (A) Cross sections at x/L = 0.5 
for twist angles 180°, 360°, and 720° highlighting edges (red and blue disks) and 
encapsulated regions (magenta shades). Corresponding schematics illustrating 
accordion folding and period doubling at the secondary instability. (B) Compaction 
parameter shows a sharp decrease at the secondary instability. (C) Fluoroscopy 
images corresponding to  = 180 ° ,360°, and 720° with superposed edges winding 
around each other. (D) The orientation angle of the edge x versus x/L. Inset: x is 
the angle of the segment joining the two ends of the cross section.
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section LY, where the local twisting rate x/LY is approximately 
four times greater than /L. We use these observations to introduce 
a geometric model of yarn formation from the accordion folded sheet.

Geometric yarn model
To model the growth of the yarns, we assume that the sheet can be 
divided into three sections with a yarn-like structure of length LY 
and two fan-like structures near the clamped edges characterized by 
fan angle , as shown schematically in Fig. 8A. This simplification 
enables us to retain the fundamental role of the twisted sheet edge 
in the elastogeometric torque model, while circumventing the diffi-
culty in calculating strains.

We measure the evolution of LY and  with twist over various 
L/W and find that LY and  increase with  [see fig. S11 (B and C)]. 
The LY increases quasi-linearly with twist rate depending on the 
aspect ratio, with the onset of yarn formation observed to begin after 
the secondary instability occurs at  = s. Using trigonometry, we 
can express the fan angle as a function of the sheet aspect ratio W/L, 
scaled yarn width D/W, and scaled yarn length LY/L, yielding

   tan  =  (     W ─ L   )     1 − D / W ─ 1 −  L  Y   / L     (7)

Before yarn formation LY = 0, D = 0, and we note from Eq. 7 that 
tan (s) = W/L, where (s) can be interpreted as the angle that the 
diagonal makes with the longitudinal axis. This form predicts an 
overall decrease of  with the sheet aspect ratio L/W. We compare  
obtained using various sheets with Eq. 7 in Fig. 8B and find very 
good agreement.

Then, the evolution of the yarn length can be understood from 
the helical wrapping of the fan edges around a cylindrical core of 
diameter D that encompasses the cross section of the compacted 
material in the yarn region. The fan edges are assumed to be in direct 
contact with the core with an angle  (see section S11 and fig. S11A), 
thus forming a helix with a local twist rate tan /(D/2). We further 
impose the yarn growth rate with twist, dLY/d to be set by the local 
twist rate, yielding dLY/d = tan /(D/2). Using Eq. 7, we find that 
LY is modeled by a linear first-order Ordinary Differential Equation 
whose solution is

     L  Y   ─ L   = 1 − exp (−  / 2)  (8)

where  =  ( − s)/(1 − ). Considering that there are no ad-
justable parameters, this growth model is in very good agreement 
with experimental data shown in Fig. 8C.

DISCUSSION
Thus, we explain our observation of a remarkably ordered transfor-
mation of flat sheets to scrolled multilayered yarns by introducing a 
series of simplified elastogeometric models that form our tensional 
twist-folding framework as summarized in Fig. 2. In the postwrinkling 
regime, the oscillating torque profile and associated accordion folding 
into a multilayered sheet are explained quantitatively by our com-
bined elastogeometric torque model and Schläfli origami kinematics. 
In the elastogeometric torque model, the bending energy carried by 
the folds is negligible compared to the longitudinal stretching energy. 
Consequently, the accordion shape is approximated by a piecewise 
ruled surface with straight cross sections. This backbone shape keeps 
track of the rotation of the cross section from one clamp to the other 
and the lateral compaction that is parametrized by , measuring the 
change in the (projected) mid–cross-sectional length relative to the 
sheet width. To calculate the elastic strain energy over the regime of 
large shape transformation, we use the Green-Lagrange strain in-
corporating geometric nonlinearities arising from large displacements 
in 3D space. These are fundamental differences from the FvK 
models used to explain initial wrinkling instability with twist (20). 
We find that the finite rotation in the yz plane is responsible for the 
torque sawtooth profile shown in Fig. 4D, while the precise peak 
location is modulated by the fold-induced transverse stiffness of 
the sheet captured by Eq. 6. Important yet nonessential to capture 
the oscillation torque profile, we introduce a weakly nonlinear 
elasticity to include strain softening at larger strain. Notably, the 
assumption of negligible bending energy is validated experimentally 
by the excellent agreement between the calculated and measured 
elastic energy in Fig. 4E.

To explain the flat multilayered structure observed after a 180° 
twist, we then introduced a Schläfli origami model, where we con-
sider the inextensible sheet limit (represented as in a sheet of paper) 
in alternating mountain and valley creases. The resulting folds form 
a sequence of vertically oriented triangles with complementary ori-
entations. Thus, the observed transformed sheet shape is parame-
trized by the number of creases and the angle of the triangle apex in 
our model. In the flat-folded state, we show that the origami, when 
twisted by a half-turn, can form regular star-shaped polygons char-
acterized by Schläfli symbols. These flat-folded Schläfli origami 
accurately predict the observed folded structure when the Schläfli 
symbols and the vertex numbers are set using sheet L, W, and p. 
Thus, we find that the imprint of the primary wrinkling instability 
persists far beyond onset. Deviation of the shape from our prediction 
is observed only near the two clamps, where significant stretching is 
needed to satisfy the clamped boundary conditions. Nonetheless, it 
is remarkable that the kinematics obtained by an inextensible origami 
model is preserved when significant tension is applied, as in the 
elastic sheets used in our experiments. The key role of sheet stretch-
ability and applied tension in selecting the number of folds and in 
organizing the folding into tightly scrolled yarns is thus uncovered 
by our analysis.

M
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Eq. 7

Yarn
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A B
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Fig. 8. Yarn model and comparison. (A) Schematics illustrating the geometric 
yarn model. (B) Measured angle subtended by the fan versus the prediction  = 
(W − D)/(L − LY). (C) The fraction of the yarn length LY/L versus .
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Furthermore, we developed a geometric yarn model to explain the 
evolution of the folded sheet after a secondary instability. On the 
basis of x-ray tomography analysis, we postulate that the structure 
can be considered as being composed of a highly twisted yarn region 
at the center and weakly twisted fan-like regions connected to the 
two clamps. Our model is based on simplified kinematics where the 
edges are straight and coplanar in the fan region but form two helices 
winding around each other and a compact cylindrical core idealizing 
the multilayered yarn. Our model explains the decrease in size of 
two fan-like regions upon twist and the linear growth of the yarn 
length initially, with an exponential slowdown as the yarn-ends 
approach the clamps given by Eq. 8. Thus, our investigations docu-
ment the main stages of the transformation of a flat sheet into multi-
layered yarns and provide a framework for their analysis.

Our framework enables multifunctional yarns that have been 
proposed using ultrathin polyethylene sheets, carbon nanotubes, 
and graphene sheets (2, 4) toward applications in medical materials 
and flexible electronics (3, 7, 48) to be generated with programmed 
structure using remote loading. These multilayered architectures 
and yarns are otherwise difficult to achieve using in-plane compression 
or shear alone without further direct manipulations. The PDMS 
and PVS sheets in our study were used repeatedly because of their 
hyperelastic nature. This enabled the sheets to be unfolded and 
reconfigured multiple times during the course of the trials while 
recording their shapes and torques under different loading condi-
tions. Thus, our tensional twist-folding strategy can be used to create 
redeployable functional structures from simple elements with the 
appropriate choice of materials, an important goal for advanced 
manufacturing with soft materials (1, 2, 7).

MATERIALS AND METHODS
The material properties of the sheets used in the study can be found 
in section S1. The shape measurement methods are discussed in 
sections S2 and S3, respectively. The data in the analysis corre-
sponding to the measured sheets, twist, and scans can be found in 
the Results section and in (49).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi8818
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