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Abstract

Motivation: Accurate detection, genotyping and downstream analysis of genomic variants from

high-throughput sequencing data are fundamental features in modern production pipelines for

genetic-based diagnosis in medicine or genomic selection in plant and animal breeding. Our re-

search group maintains the Next-Generation Sequencing Experience Platform (NGSEP) as a pre-

cise, efficient and easy-to-use software solution for these features.

Results: Understanding that incorrect alignments around short tandem repeats are an important

source of genotyping errors, we implemented in NGSEP new algorithms for realignment and

haplotype clustering of reads spanning indels and short tandem repeats. We performed extensive

benchmark experiments comparing NGSEP to state-of-the-art software using real data from three

sequencing protocols and four species with different distributions of repetitive elements. NGSEP

consistently shows comparative accuracy and better efficiency compared to the existing solutions.

We expect that this work will contribute to the continuous improvement of quality in variant calling

needed for modern applications in medicine and agriculture.

Availability and implementation: NGSEP is available as open source software at http://ngsep.sf.net.

Contact: ja.duitama@uniandes.edu.co

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput sequencing (HTS) technologies arguably represent the

biggest biotechnology breakthrough in this century (Goodwin et al.,

2016). After their commercial introduction in 2007 their use quickly

expanded from basic and applied genetics research to practice in medi-

cine, food and energy production and preservation of biodiversity.

Nowadays, both the sequencing technologies and the bioinformatic pipe-

lines required to analyze the datasets generated by HTS technologies are

well known among both researchers and practitioners in different fields.

For species having an available reference genome, common pipe-

lines to analyze HTS reads include three main steps: (i) reads are

aligned to the reference genome, (ii) variation against the reference

genome is identified and (iii) the genotype of each sequenced sample

is predicted for each variant identified in the second step. Steps (ii)

and (iii) are often called discovery and genotyping, respectively.

Discovery and genotyping may be combined in cases such as genetic

testing in clinical settings in which only one individual is analyzed at

a time. Conversely, discovery and genotyping are considered as two

separate processes in cases in which complete populations are ana-

lyzed at a time. For example, a typical pipeline for genomic selection

in plant breeding includes an initial discovery step over the base

population followed by subsequent genotyping steps, first for the
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same base population, and later for the advanced populations devel-

oped at each step of the breeding cycle (Crossa et al., 2013).

Accurate genotyping is at least as important as accurate variants dis-

covery. For genetic-based diagnosis, the effect of a potentially dam-

aging variant will probably be very different if the related genotype

is homozygous or heterozygous (Goldfeder et al., 2016). For

genome-wide association studies, widely performed in both human

and plant genetics, accurate genotyping is critical because errors in

the genotype of even a small fraction of the population can mislead

true correlations between variants and phenotypes.

Widely used tools to perform variant discovery and genotyping

from aligned reads include the genome analysis toolkit (GATK)

(McKenna et al., 2010; Poplin et al., 2017), Bcftools (Li, 2011),

Freebayes (Garrison and Marth, 2012), Platypus (Rimmer et al.,

2014), Varscan2 (Koboldt et al., 2012), Strelka2 (Kim et al., 2018),

among others. Our research group maintains the Next-Generation

Sequencing Experience Platform (NGSEP), which was originally cre-

ated to perform variants discovery and genotyping, combining differ-

ent algorithms to detect not only single nucleotide variants (SNVs) but

also small and large indels, copy-number variants and inversions

(Duitama et al., 2014). The core process in all these tools, called

pileup, traverses the aligned reads over the genome to identify poten-

tial variation sites and collect candidate alleles per site (Li, 2011). For

each potentially variant site, NGSEP, Bcftools, Freebayes and the ori-

ginal implementation of GATK called the Unified Genotyper

(McKenna et al., 2010) implement Bayesian approaches with different

likelihood functions to find the most likely genotype, taking into ac-

count the base quality scores provided by the sequencing instrument.

The GATK Haplotype caller (Poplin et al., 2017), Platypus and

Strelka2 implement a local de-novo assembly and haplotype recon-

struction, with the goal of improving indel discovery and genotyping.

Several other works try to devise combinations of subsets of these

tools to improve the overall accuracy beyond that of each individual

tool (Supplementary Table S1). A recent approach called DeepVariant

tries to improve accuracy by training a convolutional neural network

from pileup images of candidate variant sites (Poplin et al., 2018).

Previous studies show that detection and genotyping of small

indels through the pileup process is more difficult than SNV discov-

ery and genotyping (Fang et al., 2014; Jiang et al., 2015; Li and

Wren, 2014). First, possible alleles of indel events are not known be-

forehand but must be discovered along the process. And second,

base calling errors not only can produce differences between reads

sequenced from the same indel allele, but also can produce misalign-

ments of reads around indel sites (Tran et al., 2016). These misalign-

ments can create false indel calls, incorrect genotypes and even false

SNVs in the surrounding regions. This problem is particularly evi-

dent around short tandem repeats (STRs) and especially large homo-

polymers (Supplementary Fig. S1). Overall this has been identified

as one of the major sources of false positives for both discovery and

genotyping of SNVs, indels and STRs. Other issues arise in specific

protocols such as whole exome sequencing (WES) in which frag-

ments spanning mutant alleles of sufficiently large indels may not be

identified by the capture process (Fang et al., 2014).

NGSEP was conceived and released as open source software in

2013 as an accurate, efficient and easy-to-use software for general

variants detection (Duitama et al., 2014). For version 2, we added

different functionalities to facilitate downstream analysis of geno-

typing-by-sequencing (GBS) data from populations of hundreds of

individuals including read demultiplexing, genotype imputation, al-

lele sharing statistics and detection of haplotype introgressions

(Perea et al., 2016). Here we present the new algorithms imple-

mented in NGSEP version 3, performing realignment around

potential indels and known STRs to improve the accuracy of SNV

and small indel detection and, at the same time, achieving accurate

genotyping of the STRs themselves. This work is complemented by

other functionalities released in this version including distributions

of k-mer abundances, estimation of general and per chromosome

ploidy levels, detection of haplotype introgressions, calculation of

distance matrices from VCF files as well as utilities for benchmark

experiments, such as simulation of single individuals from reference

genomes and validation of genotype calls against a gold standard

VCF file. Extensive validation experiments on both simulations and

real benchmark datasets of yeast, rice, cassava and humans follow-

ing widely used sequencing protocols, such as whole genome

sequencing (WGS), WES and GBS, show that NGSEP has compara-

tive accuracy and better efficiency for both discovery and genotyp-

ing of SNVs, indels and STRs in a wide variety of scenarios.

2 Materials and methods

2.1 Algorithm for STR-aware realignment and indel

calling
The original process implemented in NGSEP to traverse a sorted set

of alignments against the reference genome and extract allele calls for

each reference site (usually called pileup) completely relied on the

quality of the alignments produced by the read alignment tools. To

improve the accuracy of variant discovery, we implemented in

NGSEP the following algorithm to realign reads spanning potential

indels and STRs. After all alignments spanning one particular refer-

ence position i have been collected, if an indel is identified in at least

one alignment starting from position i, the algorithm collects add-

itional indel calls starting from the next x positions where x is the

length of the largest indel event starting at position i þ 1. The variant

discovery algorithm then runs a voting procedure to choose the pos-

ition j with the largest number of indel starts within the collected

indel calls. Once this position is chosen, alignments supporting indel

starts in positions different than j are modified to start at position j.

To make this process efficient, a full realignment is not recalculated

but only the description of the alignment (CIGAR) is modified in

memory. If i 6¼ j, the pileup process finishes collecting allele calls only

for SNV discovery, and the indel discovery is deferred to the moment

when the pileup process reaches position j. If i ¼ j, then alleles are

collected for indel discovery. If known STRs are provided as input of

the discovery process, instead of a voting mechanism to pick the

most likely start of an indel event, the start position of the STR is

chosen to modify alignments having indel events within the STR. The

same procedure is followed for known indels and STRs during the

genotyping step. Figure 1 shows a schematic of the entire procedure.

Unlike SNV discovery in which calls can only be made to at most

four possible basepairs, the indel discovery procedure needs to figure

out possible alleles directly from the data. Once reads are consistent-

ly aligned, the position k is calculated as the final position of the

largest deletion call plus 1 (i þ 1 if only insertion calls are present),

and the interval ½i; k� is treated as a single locus to collect candidate

haplotypes for indel discovery. To prevent false allele calls produced

by dangling ends, reads that do not completely cover the interval

½i� 5; kþ 5� are soft-clipped to remove the end partially spanning

the interval. For each read r completely covering the interval

½i� 5; kþ 5�, the segment of each read aligning to the interval ½i;k�
is extracted and collected as a candidate haplotype supported by r.

A first alternative to infer the real haplotypes corresponding to the

analyzed interval is to treat directly the candidate haplotypes as pos-

sible alleles and select the most likely genotype following the same
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Bayesian model used for SNV discovery. However, as the indel event

becomes larger, reads that were originally sequenced from one single

haplotype can become different within the region spanning the indel

due to sequencing errors. To overcome this issue, we implemented a

two level clustering on these initial candidate haplotypes. First, hap-

lotypes are clustered by length. Then, for each cluster with at least 10

elements an ungapped alignment is built, variable positions are calcu-

lated, and second level clusters are built based on Hamming distance.

The Hamming consensus of each cluster is calculated and nominated

as a representative haplotype. The Bayesian model is then executed

using as possible alleles these representative haplotypes. The condi-

tional probability of an allele call with the same length of a given rep-

resentative haplotype is the product of success probabilities for

matching basepairs and error probabilities for non-matching base-

pairs in an ungapped alignment between the call and the haplotype.

Conversely, the conditional probability of an allele call given a repre-

sentative haplotype of different length is assigned to a fixed low value

representing the indel error probability (0.0001 by default).

Similar to the behavior of other tools, we implemented a new

command that considers the complete set of population reads

through the pileup process, including the realignment steps

described above. In contrast with the traditional sample-by-sample

analysis (Duitama et al., 2014) this new functionality discovers var-

iants and genotypes each individual of the population within a single

step. This makes the process more efficient in running time and po-

tentially increases the quality of the population variants (especially

novel indels) because the voting procedure to realign reads is per-

formed across reads from the entire population.

2.2 Real data gathering and construction of gold

standard datasets
Benchmark experiments were performed using different publicly

available sequencing datasets of yeast, rice, cassava and human sam-

ples. Accession IDs, sequencing protocols and URLs for download-

ing of the datasets and their corresponding reference genomes are

available in the Supplementary Table S2. Yeast samples correspond

to two haploid parental strains (CBS4C and ER7A) with contrasting

glycerol/ethanol production ratio, and a pool of 20 randomly

selected haploid F1 segregants from the cross of the two parental

strains (Hubmann et al., 2013). For humans, we downloaded pub-

licly available read alignments from the Hapmap human individual

NA12878 and from the synthetic diploid individual, for which gold

standard genotype calls and confident regions were previously

obtained and termed respectively the Platinum Genomes (PlatGen)

dataset (Eberle et al., 2017) and the SynDip dataset (Li et al., 2018).

We also downloaded WES data from two different capture experi-

ments for NA12878, using respectively the SeqCap EZ human

exome library v3.0 (also known as Nimblegen) and the Illumina

TruSeq Exome Capture library. Finally, we analyzed public GBS

data from two plant biparental populations: A cassava full-sib F1

segregating population, termed the K-family, consisting of 132 indi-

viduals derived from the cross between cultivars TMS30573 and

CM2177-2 (Fregene et al., 1997), which had been previously

sequenced and used to generate a dense SNP-based genetic map

(Soto et al., 2015), and the Azucena x IR64 rice biparental popula-

tion, including the two parental lines plus 171 F6 siblings (Spindel

et al., 2013). Both populations were sequenced using the GBS proto-

col, which has been widely used in plant population genetics as a

cost-effective alternative to WGS (Elshire et al., 2011).

Gold standard variant calls and confidence regions were already

determined for the PlatGen and SynDip samples. For the yeast unse-

lected pool, a procedure similar to that described in Duitama et al.

(2014) but including the tools compared in this manuscript was fol-

lowed to build a gold standard from variant calls predicted by the dif-

ferent tools from the reads of the two parental strains aligned to the

reference genome using bwa (Li and Durbin, 2009) and bowtie2

(Langmead and Salzberg, 2012). In brief, a heterozygous call for the

pool is predicted if at least 10 of the 12 possible combinations of

alignment tool and variant caller predict a homozygous variant for

one parent and at most two of them predict a variant at the same site

for the other parent. A homozygous call for the pool is predicted if at

least 10 of the 12 possible combinations of alignment tool and variant

caller predict the same homozygous variant for both parental strains.

The exact procedure is implemented as a script available with the dis-

tribution of NGSEP (class ngsep.benchmark.BiparentalHaploidGold

StandardBuilder).

2.3 Comparison with gold standards
Six different software tools were executed on each dataset

(see Supplementary Text for execution details). To compare gold

standard genotype calls with those predicted by each tool, a custom

script was built and made available with NGSEP v3.3.1

(VCFGoldStandardComparator command). Similar to the approach

implemented in the VarMatch software tool (Sun and Medvedev,

2017), gold standard calls are clustered based on proximity to each

other or to an STR. However, instead of trying to predict STRs from

the reference genome, we provide to the script STRs predicted from

tandem repeats finder (Benson, 1999). Test calls within or close

(<5 bp) to each cluster are collected and matched with gold stand-

ard calls. Given that variants are phased in the gold standard VCF

files, true haplotypes are built for each cluster. Then, possible haplo-

types are built from test calls following an exhaustive procedure for

clusters with <9 heterozygous test calls and a greedy procedure for

other clusters. A cluster is called true positive if a pair of possible

test haplotypes matches the gold standard haplotypes, or a genotyp-

ing error if none of the test haplotype pairs can match the gold

Fig. 1. Schematic procedure for indel realignment and haplotype clustering.

(A) Flowchart with the overview of the process. (B) Voting mechanism to se-

lect the most likely start of a given indel. Blue bars represent aligned reads.

The numbers on top represent the reads supporting each possible start pos-

ition. (C) Realignment of reads supporting indel events according to the

results of the voting procedure and clustering of candidate haplotypes to dis-

cover and genotype small indels. Reads that do not span across the indel

(marked with X) are soft-clipped
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standard haplotypes. Test calls within confidence regions and out-

side clusters are treated as false positives. Clusters without matched

test calls are treated as false negatives.

For the cassava GBS population, patterns of Mendelian inherit-

ance and population statistics are used to categorize variants and to

identify genotyping errors (Perea et al., 2016). Sensitivity is calcu-

lated as the number of genotype calls in variants that can be used to

build a genetic map. Genotype errors are identified as calls that are

inconsistent with the category assigned to each variant. A custom

script to calculate datapoints and errors for each possible filter of

minimum genotype quality is available with the NGSEP distribution

(class ngsep.benchmark.QualityStatisticsOutbredF1Families). A

similar procedure was implemented for the rice biparental family

but taking into account that the population should have low hetero-

zygosity due to inbreeding. Sensitivity is calculated as the number of

genotype calls in variants in which the two parents are homozygous

for different alleles, have a minor allele frequency >0.1, and an

expected heterozygosity <0.1. Genotype errors are identified as

genotype calls having the minor allele [homozygous or heterozy-

gous] in variants with minor allele frequency <0.1 or heterozygous

calls within the variants considered for sensitivity. The exact proced-

ure is available with the NGSEP distribution (class ngsep.bench-

mark.QualityStatisticsInbredBiparentalFamilies).

3 Benchmark experiments

3.1 Yeast unselected pool
As a first step to assess the performance of NGSEP using real data-

sets, we updated the benchmark experiment with a yeast F1 unse-

lected pool described in Duitama et al. (2014). NGSEP was

compared with the GATK haplotype caller (Poplin et al., 2017),

Bcftools (Li, 2011), Freebayes (Garrison and Marth, 2012),

Platypus (Rimmer et al., 2014), Strelka2 (Kim et al., 2018) and

DeepVariant (Poplin et al., 2018). In brief, in this experiment two

yeast haploid parentals were sequenced at high read depth (> 80�).

Hence, accurate homozygous and heterozygous sites in a pool of

unselected F1 segregants can be accurately predicted from consensus

of haploid parental genotype calls. True and false positives and neg-

atives are calculated separately for homozygous and heterozygous

sites, and for SNVs, indels and STRs. As recently suggested (Li et al.,

2018), we used the false positives per million basepair (FPPM) as a

measure of specificity. Instead of applying commonly used filters on

read depth or strand bias, we examined the effect of relying on the

quality score reported by each tool (GQ field in the VCF files) as the

main predictor of quality for each genotype call. Figure 2 and

Supplementary Figure S2 show the overall results of this experiment

as receiving operator characteristic like curves obtained varying the

minimum GQ value (exact values of sensitivity and FPPM are avail-

able in Supplementary Table S3). Increasing stringency by raising

the minimum GQ value produces an important reduction of FPPM

values for all tools and variant types. For example, FPPM values

reported by NGSEP and GATK for homozygous SNVs can be

reduced up to 50 points with <2% loss of sensitivity. A similar trend

is observed in heterozygous SNVs reported by Strelka2. Filtering

using GQ values reduces sensitivity in more than 10% for all variant

types reported by DeepVariant and Strelka2 and for homozygous

variants reported by NGSEP, GATK and Platypus. Freebayes has

the smallest reduction of sensitivity (about 5% for homozygous var-

iants and <18% for heterozygous variants). Comparing accuracy

between tools, the most noticeable differences are a much lower ac-

curacy of Bcftools for indels (Supplementary Fig. S2) and of

Platypus for STRs. GATK and Strelka2 show higher accuracy than

NGSEP for STRs but NGSEP is more accurate for SNVs and indels.

DeepVariant shows the best accuracy for heterozygous SNVs and

homozygous indels before genotype quality filters. The accuracy of

Freebayes is similar to that of NGSEP for SNVs and indels but the

FPPM values of Freebayes are larger than those of NGSEP for STRs.

We checked, comparing with version 2.1.3 of NGSEP, that the re-

alignment and allele clustering algorithms presented in this work ef-

fectively improve accuracy for all variant types (Supplementary Fig.

S2). Comparing accuracy between variant types, the sensitivity to

detect indels and STRs is between 5 and 20% lower than that of

SNVs. The FPPM values of homozygous SNVs were similar to those

of heterozygous SNVs. This trend (not observed in the other experi-

ments) is produced by about 1000 heterozygous variants called

homozygous for the alternative allele. The cause of these calls is an

unequal representation of alleles within the pool due to genetic drift,

which produces a larger variance between allele read counts com-

pared to a single heterozygous individual [see Duitama et al. (2014)

for details].

This dataset also allowed us to test the behavior of different

parameters of NGSEP (Supplementary Fig. S3). The largest effect

was observed changing the minimum mapping quality score (MQ).

A more stringent filtering of MQ values allowed to progressively re-

duce the FPPM of heterozygous SNVs without loss of sensitivity.

The recent work of Langmead (2017) shows more elaborate experi-

ments to assess how MQ values can affect variant calling. We also

compared the variant calls predicted from bwa alignments (Li and

Durbin, 2009) with those predicted from bowtie2 alignments

(Langmead and Salzberg, 2012). In this case, variants called from

bowtie2 alignments showed lower FPPM values without loss of sen-

sitivity. Finally, allowing larger upper limits on the base quality

score increased sensitivity for heterozygous variants at the cost of

increased FPPM values. The opposite trend was observed for homo-

zygous variants.

Fig. 2. Comparison of different tools for variants discovery from reads taken

from an F1 pool of segregants derived from two yeast haploid strains. Results

are discriminated by variant type (SNVs, Indels and STRs) and gold standard

genotype (homozygous variant or heterozygous). The proportion of FPPM is

used as a measure of specificity. Curves are obtained varying the filter of min-

imum genotype quality (GQ field in the VCF file) from 0 to 90
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3.2 Human benchmark datasets
We analyzed whole genome sequencing reads from the Hapmap in-

dividual NA12878 for which the genome in a bottle (Zook et al.,

2014), and PlatGen (Eberle et al., 2017) gold standards have been

recently developed. The current version of PlatGen includes 1.5 mil-

lion homozygous alternative variants and 2.5 million heterozygous

variants. Figure 3A shows the sensitivity and FPPM achieved by

each tool discriminated by variant type, gold standard genotype, re-

petitive context and minimum GQ filter. With the exception of

Platypus for STRs and Bcftools for heterozygous indels and STRs, in

this experiment all tools can achieve FPPM values below 7 for het-

erozygous SNVs and below 1 for homozygous variants and hetero-

zygous indels and STRs after filtering by minimum GQ values larger

than 40 (exact numbers available in the Supplementary Table S4).

Before filtering, NGSEP reports FPPM values up to 25, which are

produced by variant calls with one or two reads. However, these

calls are effectively discarded by the minimum GQ filter with only a

0.5% loss of sensitivity. Regarding sensitivity, all tools except

Platypus could call over 99% of the SNVs. For comparable FPPM

values, NGSEP calls about 4000 (0.4%) less heterozygous SNVs and

1000 (0.1%) more homozygous SNVs in non-repetitive regions,

compared to GATK and Bcftools. This is a good result taking into

account that this benchmark has been built from combinations of

genotype calls obtained using these tools. Regarding indels,

Strelka2, GATK and Platypus show the best sensitivity reaching up

to 98%. This sensitivity is also achieved by NGSEP for heterozygous

indels but for homozygous indels it reduces to 97% due to about

1200 missing indels. Consistent with the benchmark experiment

with the yeast dataset, the accuracy of Bcftools for indels and STRs

and of Platypus for STRs was much lower than that of the other

tools. GATK again reports larger FPPM values than NGSEP and

Strelka2 for heterozygous indels. FPPM values of NGSEP are larger

than those of GATK and Strelka2 for STRs. In contrast, Freebayes

shows a reduction of about 5% to call indels compared to other

tools and with the results obtained with the yeast dataset.

Interestingly, comparable sensitivity and FPPM values are observed

between non-repetitive and repetitive regions. An increase in FPPM

values is only observed for heterozygous SNVs. This outcome is also

observed in experiments with the SynDip benchmark dataset (see

below) and with simulated reads from the rice reference genome

(Supplementary Text) and suggests that misalignments within or

close to STRs are more important as a source of errors than incor-

rect mapping produced by large repetitive structures.

We also re-analyzed WES data from two different capture experi-

ments from DNA of NA12878 (termed WES1 and WES2), available

at the sequence read archive database (Supplementary Table S2). For

WES1, sequenced using the SeqCap capture technology, sensitivity

decreases about 5% for SNVs, 10% for indels and up to 30% for

STRs, compared to that obtained from WGS data within the same

regions (Supplementary Fig. S4). This outcome can be explained by

the capture efficiency (about 82%). FPPM values were at least two

times larger than those obtained from WGS data in non-repetitive

regions. The most extreme case is observed for heterozygous SNVs

called by Strelka2 with an increase of FPPM up to 200. FPPM values

of NGSEP only increase more than two times for low quality homo-

zygous SNVs and for heterozygous STRs (Supplementary Table S4).

This makes NGSEP outperform Strelka2, Platypus and GATK for

heterozygous indels in this experiment. Regarding WES2, the reduc-

tion in sensitivity and increase of FPPM values is much larger than

that observed with WES1 (Supplementary Fig. S5), presumably due

to a shorter read length (76 versus 100 bp), lower sequencing effort

(8.88 versus 12.69 gbp), and lower capture efficiency (52 versus

82%). Intersecting TruSeq capture regions with exons fully covered

by reads taken from this experiment the sensitivity is restored but

FPPM values of heterozygous variants remain larger than those cal-

culated from WGS genotype calls within the same regions.

We further analyzed reads from the recently developed synthetic

diploid genome (Li et al., 2018). The main difference observed in

Fig. 3. (A) Comparison of different tools for variants discovery from reads taken from real WGS data of the Hapmap human individual NA12878. Results are discri-

minated by region type (single copy or repetitive), variant type (SNVs, Indels and STRs) and genotype in the PlatGen gold standard (homozygous or heterozy-

gous). The proportion of FPPM is used as a measure of specificity. Curves are obtained varying the filter of minimum genotype quality (GQ field in the VCF file)

from 0 to 90. (B) Runtime in minutes taken by the six tools to analyze the evaluated human samples. WGS, WES1 and WES2 correspond to one WGS and two

WES datasets taken from the human Hapmap individual NA12878. SynDip corresponds to the synthetic diploid individual developed by Li et al. (2018)

4720 D.Tello et al.



this benchmark compared to the PlatGen benchmark dataset was an

important increase in FPPM for all methods in heterozygous var-

iants (Supplementary Fig. S6) despite of the higher average read

depth of this dataset (48 versus 32�). This reflects the possible

biases introduced in the construction of the PlatGen benchmark and

the fact that the PlatGen benchmark has been used for quality im-

provement in the development of most of the tools. Sensitivity is

also reduced by 5% for indels and by 20% for STRs, especially in re-

petitive regions (Supplementary Table S5). Strelka2 and GATK are

more accurate than NGSEP for indels and STRs in this comparison,

probably because this dataset was used as reference to improve qual-

ity in the latest versions of these tools. NGSEP is more accurate than

Strelka2 for homozygous SNVs and more accurate than GATK for

heterozygous SNVs in non-repetitive regions.

Finally, Figure 3B shows the comparison of runtimes to analyze

the different datasets of human WGS and WES. Platypus was con-

sistently the most efficient tool followed by NGSEP. GATK and

Freebayes were the least efficient being between 2 and 4 times

slower than NGSEP. This trend was consistent over species and

sequencing protocols (Supplementary Table S6).

3.3 Biparental populations of rice and cassava
To validate the efficiency and accuracy of the different variant call-

ers on populations, we re-analyzed GBS data for two biparental

breeding populations of cassava and rice for which the distribution

of allele and genotype frequencies can be predicted by structure and

inheritance rules. Whereas the cassava K-family is an F1 population

(Soto et al., 2015), the rice population is an F6 with low expected

levels of heterozygosity due to inbreeding (Spindel et al., 2013).

Because both populations have more than 100 individuals, accurate

predictions of both allele and genotype frequencies could be derived

regardless of individual genotype errors and inconsistent genotype

calls can be identified. Figure 4 shows the number of genotype calls

that could be obtained using the different tools on both populations

as a function of the number of genotyping errors. NGSEP and

Freebayes consistently produce better results than GATK, Bcftools

and Platypus on SNVs, indels and STRs. Platypus and GATK show

less sensitivity for similar numbers of errors compared to the other

tools, probably due to the ineffectiveness of the local assembly algo-

rithm for GBS data. Freebayes outperforms NGSEP for indels but

NGSEP is more accurate for SNVs. The lower performance of

GATK is not consistent with our previous benchmark in which

GATK 3 had a similar accuracy than NGSEP (Perea et al., 2016).

Recent changes in the algorithm and software parameters imple-

mented in GATK 4 to increase accuracy in human datasets could ex-

plain this outcome. For the case of the rice population NGSEP more

clearly outperforms other software tools, including Freebayes. Our

previous benchmark experiment with an also inbred bean popula-

tion (Perea et al., 2016) produced similar results. The rice popula-

tion analyzed in this work was chosen over the bean population

because the number of individuals is larger, the population is bipar-

ental and the parents are included. However, the effort to sequence

this population was much lower than that of the cassava population

and this impacted the distribution of quality scores (GQ) for all tools

(Supplementary Fig. S7). Only NGSEP could achieve close to one

million SNV genotype calls with less than seven thousand errors

using 35 as minimum GQ value. We speculate that this outcome is

produced by the assumption of Hardy–Weinberg equilibrium that is

assumed by other models (Li, 2011), but is clearly violated by

advanced populations of autogamous species such as rice. In con-

trast, the accuracy of Freebayes becomes similar to that of NGSEP

for the cassava population because cassava is an allogamous species

and hence most of the variants in an F1 should be in Hardy–

Weinberg equilibrium.

4 Discussion

Accurate variant genotyping is a building block of current pipelines

for genetics based medicine. It is also a critical procedure for

genome-wide association studies and genomic prediction pipelines

in plant breeding. Hence, continuous quality assurance and sustain-

ability is critical for tools performing variants detection and geno-

typing. Here we report the new algorithms implemented in NGSEP

and provide an updated comparison with the tools currently used by

different research groups in a wide range of experimental designs

and species. Comparisons performed on both the human PlatGen

dataset (Eberle et al., 2017) and the SynDip dataset (Li et al., 2018)

show that NGSEP is competitive in accuracy compared to

approaches based on mini-assembly (Kim et al., 2018; Poplin et al.,

2017; Rimmer et al., 2014) within both repetitive and non-repetitive

regions. NGSEP also shows better accuracy for analysis of GBS data

from populations of two different plant species. It has been already

noted that approaches based on mini-assembly are not effective to

increase accuracy on amplicon sequencing (Yang et al., 2015). Our

results indicate that this would also be the case for GBS data because

the reads in this case are not randomly taken from different overlap-

ping regions but are stacked in discrete loci. Regarding efficiency,

only Platypus was consistently faster than NGSEP but this comes at

the cost of reduced accuracy, even in the comparisons with human

gold standard datasets. Using the yeast benchmark dataset we also

assessed the performance of DeepVariant, which is a recently pub-

lished solution based on a convolutional neural network (Poplin

et al., 2018). The outcome of this assessment was a consistent reduc-

tion of FPPM values compared to previous solutions, however at the

cost of reduced sensitivity for SNVs and STRs. The runtime of this

Fig. 4. Comparison of different tools for population variants discovery and

genotyping using reads taken from real GBS experiments on two different

biparental populations of cassava (left panels) and rice (right panels). In ab-

sence of a gold standard, the total number of genotype calls is used as a

measure of sensitivity and the number of errors inferred from the population

structure is used as a measure of specificity. Curves are obtained varying the

filter of minimum genotype quality (GQ field in the VCF file) according to the

observed distribution of GQ values for each tool
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tool was two times larger than that of GATK and it took close to

four times the RAM needed by other tools to analyze the yeast unse-

lected pool. Regardless of the particular ranking achieved by each

tool on each benchmark dataset, the comparisons presented in this

manuscript are only a snapshot in the evolution of each software

package across time. During the development of this work we have

witnessed quality improvements performed by the developers of

each tool. The improvement achieved by the development of the

algorithms described in this manuscript is evidenced by the lower

performance of a previous version of NGSEP in the comparison

using the yeast benchmark dataset. Based on our experience with

NGSEP users, we believe that the accuracy and efficiency achieved

by NGSEP, plus the implemented usability features including a rich

graphical interface and integration with web-based frameworks,

substantially increases the number of research groups that are able

to carry on experiments involving HTS, thus contributing to the

democratization of this technology.

The confounding effect of misplaced reads within repetitive

structures has been considered a major issue for variants detection

from short reads (Li and Wren, 2014). Although comparisons with

the human benchmark datasets show up to two times larger FPPM

in repetitive regions compared to single copy regions, these differ-

ences are much smaller than our initial expectations. A possible ex-

planation for this outcome could be that current paired-end reads

span enough mutations between copies of most repetitive struc-

tures, increasing the likelihood of correct read alignment.

Conversely, read misalignment around STRs remains a major

source of errors for variants detection and genotyping. In contrast

with approaches based on mini-assembly, our solution performs a

single realignment and haplotype clustering for each complete STR

structure. This informed approach leads to comparable accuracy

and higher efficiency than that of methods based on mini-assembly,

taking into account that assembly based on deBruijn graphs tends

to be cumbersome in repetitive regions. Our approach also leads to

a more informative annotation of the genomic context of each vari-

ant. The cost of this approach is a reduction of sensitivity for geno-

typing of the STRs themselves because NGSEP explicitly excludes

from the analysis STRs having a total length longer than the read

length.

The importance of variants detection and genotyping in differ-

ent fields can be demonstrated by the large number of benchmark

studies recently reported by different groups (Supplementary Table

S1). Some of these works report surprisingly low values of accur-

acy, even for widely used analysis pipelines (Sandmann et al.,

2017). To understand this issue, we performed a qualitative assess-

ment of these studies evaluating if and how they discuss different

aspects of variant detection and genotyping. We found different

issues including lack of a gold standard set of genotypes (Ghoneim

et al., 2014), lack of information about parameters used for each

tool and comparison procedures (Bao et al., 2014), overlooking of

predicted and gold standard genotype calls beyond variants discov-

ery (Hasan et al., 2015; Ribeiro et al., 2015), and validation limited

to a small number of variants genotyped by Sanger sequencing, usu-

ally avoiding difficult regions (Kim et al., 2017). Some benchmarks

also fail to use appropriate parameters for the evaluated use cases

such as variants discovery in pooled exome sequencing data (Hasan

et al., 2015; Sandmann et al., 2017). Other benchmark experiments

were well conducted but limited to a particular type of variant

(Fang et al., 2014; Korneliussen et al., 2014) or genomic region.

The review performed in Tian et al. (2016) focuses on variants dis-

covery from WES data in regions of high diversity within the

human genome such as the major histocompatibility complex.

Other reviews focus on the detection of somatic and cancer muta-

tions from WES data (Hofmann et al., 2017; Xu, 2018). As

expected, most of the studies focus on human samples. As an excep-

tion, in Ribeiro et al. (2015) the authors perform simulation experi-

ments from the arabidopsis genome. However, the simulations only

include negative cases and hence only false positive rates are esti-

mated. The benchmark experiments presented in this manuscript

aim to provide updated accuracy information on methods able to

detect SNVs, indels and STRs from reads aligned to a reference gen-

ome. We also take into account the, usually overlooked, genotype

quality scores reported by the different tools according to their

underlying models for variant calling. Understanding that accurate

genotyping is as important as variant detection for different appli-

cations, the comparisons presented in this work also evaluate the

capacity of the different tools to perform accurate genotyping dis-

criminating gold standard homozygous and heterozygous geno-

types. To the best of our knowledge, this work is the most complete

assessment of accuracy of variant detection and genotyping tools in

the widest range of species, sequencing protocols and experimental

settings.

Regarding indels and STRs, important differences are observed

in previous evaluations, sometimes due to methodological issues but

also because it is not straightforward to assess if a predicted indel

call matches a gold standard call (Sun and Medvedev, 2017).

Depending on the strategy for local alignment, a correct indel call

can be counted as a false positive because the initial position does

not match. Only a small fraction of previous works discuss this issue

and provide details on how the comparisons are performed (Fang

et al., 2014; Li and Wren, 2014). Moreover, it has been shown that

STRs have a much higher mutation rate compared to SNVs and that

variation in STRs is causative for different traits and diseases in dif-

ferent species (Gemayel et al., 2010). Unfortunately, most bench-

mark datasets overlook this type of variation or just use STR

annotations as a filtering procedure (Eberle et al., 2017; Li et al.,

2018). This complicates the exact quantification of sensitivity and

specificity of the different tools within these regions. Taking into ac-

count this scenario, the recent work of Sun and Medvedev (2017)

shows that gold standard and test variant matching can be in itself

an interesting bioinformatics problem and presents the software tool

VarMatch, which tries to address this problem predicting at the

same time locations of STRs. We developed and integrated in

NGSEP our own evaluation procedure which follows a strategy

similar to VarMatch but uses predictions of STR locations from

tools such as tandem repeats finder (Benson, 1999) and takes into

account that current gold standard datasets are already phased. Our

validation procedure reconstructs the benchmark haplotypes for

each STR based on the phased gold standard variants and then

matches together the variants called within the region to check if the

correct haplotypes could be inferred from the called variants.

Although in principle this solves the issue of not having STR annota-

tions in the human benchmark datasets, we believe that future con-

struction of gold standard genomes should include a clear

annotation, genotyping and phasing of STRs to facilitate variant

calling evaluation in these regions.

Different versions of NGSEP have been used already by several

different research groups working in a wide range of species includ-

ing yeast, leishmania, rice, common bean, lima bean, cassava and

other species. We plan to keep evolving NGSEP looking for

improved algorithms for variants detection and also adding new

functionalities for variants interpretation, samples clustering and

other downstream analyses of genomic variation datasets. We ex-

pect that the results presented in this work will contribute to the
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continuous improvement of accuracy and efficiency in variant call-

ing needed to achieve the quality required for personalized medicine

and for genomic selection in plant and animal breeding.
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