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The quantum stochastic differential equation derived from the Lindblad form quantummaster equation is investigated.The general
formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation
algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior
is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the
computational cost in comparison with the classical Runge-Kutta algorithm.

1. Introduction

Since Nelson successfully described the kinematics law of
the quantum fluctuations by the Itô equation [1] and the
Schrödinger equation was derived from Newtonian mechan-
ics; the stochastic interpretation of quantum mechanics was
established, in which a diffusion process was used to analyze
the quantum fluctuation instead of the wave function. Then,
the stochasticmechanics has gradually drawnmuch attention
with research fields ranging from atomic and optical physics
to condensed matter physics and quantum information
science [2]. It becomes clear that a deep understanding
of the effects of environments on a quantum system such
as the mechanisms of decoherence and the dynamics of
entanglement in the framework of quantum open systems
is both of fundamental interest in quantum foundation
issues and of practical importance in quantum information
sciences. Many scholars have made thorough research on
the quantum diffusion movement based on the basic theory
and achieved fruitful results. For example, the normative
structure of the dynamics equation of the particle fluctuation
and its stability analysis methods were determined, followed
by the unified interpretation of the Brown motion and
the basic equation of the quantum mechanics [3–5]. The
quantum stochastic dynamics elaborated the organic link
between themicroscopic behavior andmacroevolution of the

system, by which the details of the system evolution from
any initial state to the final state can be analyzed. It has
been successfully applied to the proliferation of microscopic
particles, the molecular motors, the quantum chaos, and so
forth [6].

Though the deterministic differential equations of quan-
tum stochastic mechanics are relatively complex, it can be
seen that with the development of the computer technology
[7], the evolution of a microsystem can be analyzed using
the numerical simulation method [8–10]. The quantum
trajectory method is a typical one. It can be used for a
wide range of open quantum systems to solve the master
equation by unraveling the density operator evolution into
individual stochastic trajectories in Hilbert space [11]. Over
the last twenty years the theory of quantum trajectories
has been developed by many researchers for a variety of
purposes, including modeling continuously monitored open
systems, improving numerical calculation and investigating
the problem of quantum measurement [12, 13].

In this paper, based on the quantum stochastic dynamics,
the master equation describing the time evolution law of
the quantum state and its reduced density operator are
investigated, and the effect of nonunitary operators on the
evolution of the system is analyzed. Then the quantum
stochastic differential equation is established to describe the
microkinetic characteristics of the system, and a numerical
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iterative algorithm for the simulation of the system evolution
is proposed.The practicality and advantages of the algorithm
are verified by comparison with the classical Runge-Kutta
numerical iterative algorithm, which is followed by further
discussions on the convergence of the algorithm.

2. Methods

Thequantum state diffusion theory replaces the deterministic
evolution of the density operator 𝜌 representing an ensemble
of open systems [14]
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by a unique stochastic diffusion of a quantum state, represent-
ing an individual system of the ensemble in interaction with
its environment. 𝐻 is the Hamiltonian, and 𝐿𝑗 are a set of
environment operators which represent the collective effects
of interaction with the environment.

However, for some complicated systems, it can be very
difficult to get either the analytical or the numerical solution
of (1). In that case, it is often advantageous to take alternative
ways considering an unraveling of the master equation into
individual quantum trajectories. Quantum state diffusion
(QSD) is one of these unraveling techniques.The correspond-
ing quantum state diffusion equation is a stochastic differen-
tial equation for the normalized state vector |𝜓⟩ representing
the pure state of the system that evolves according to the QSD
equation. The differerential Itô form is [15]
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where ⟨𝐿𝑗⟩ are defined by

⟨𝐿𝑗⟩ = ⟨𝜓
󵄨󵄨󵄨󵄨 𝐿𝑗

󵄨󵄨󵄨󵄨𝜓⟩ . (3)

In the QSD equation, the standard normalized terms d𝜉𝑗
represent independent complexWiener processes and satisfy
the relations

Ed𝜉𝑗 = 0, E (d𝜉𝑗d𝜉𝑗󸀠) = 0,

E (d𝜉∗𝑗 d𝜉𝑗󸀠) = 𝛿𝑗𝑗󸀠d𝑡,
(4)

where E(⋅) denotes an ensemble average of the noise. QSD
reproduces the master equation in the mean

E (
󵄨󵄨󵄨󵄨𝜓⟩⟨𝜓

󵄨󵄨󵄨󵄨 ) = 𝜌. (5)

That is to say, the reduced state of the system, 𝜌, is obtained
as an ensemble average. And this is what is meant by an

unraveling of the master equation. Expectation values for
operators obey a similar relationship:

⟨𝑂⟩
𝜌
= Tr {𝑂𝜌} = E (⟨𝑂⟩

𝜓
) . (6)

The use of QSD as a practical algorithm to solve master
equations has been widely investigated [16, 17]. This includes
calculations of output spectra in quantum optics [18]. As a
practical method of computation, QSD gains over the direct
solution of themaster equation, because of a basis of𝑁 states,
QSDneeds a computer store with𝑁 elements, and the time of
computation is also proportional to𝑁. For the direct solution
these are proportional to𝑁

2.
In this paper, we take advantage of the system simulation

method to simulate the evolutionary behavior of the open
quantum systems and thus calculate and analyze various
physical properties of the ensemble of open quantum systems.
However, noting that we cannot usually get the analytical
solution of (2), an alternative way is to find the numerical
solution of the system evolution and investigate various
control algorithms and control strategies based on the sim-
ulation method, which is a powerful tool built on the systems
science, system identification, control theory, and computer
technology for the analysis and synthesis of complex systems,
especially large-scale systems [19].

In the system simulation, we should pay attention to
the problem that the physical description of the stochastic
process is relied on the master equation in the Lindblad
operator form. If we want to get the numerical solution,
the Lindblad operator must be explicitly quantified. Fortu-
nately, existing results have summarized various forms of
decoherence Lindblad operator in open quantum systems for
reference; a general form of (2) can be written as [20]

d𝜓 (𝑡) = 𝐷1 (𝜓 (𝑡)) d𝑡 + 𝐷2 (𝜓 (𝑡)) d𝑊(𝑡) (7)

in which d𝑊(𝑡) is a Wiener incremental process and the
random items characterizing the system decoherence are
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𝐷2 = (𝐿 − ⟨𝐿⟩)
󵄨󵄨󵄨󵄨𝜓⟩ . (9)

According to the above system model, in the given
interval [0, 𝑡𝑓], a sample of realization can be generated by
the following algorithm [20].

(1) At the initial time 𝑡 = 0, the initial state of the process
𝜓
𝑟
(0) is determined by the initial distribution.

(2) It is assumed that at time 𝑡, the normalized state
𝜓
𝑟
(𝑡) is reached through a quantum jump; then we set
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(3) Determine a randomwaiting time 𝜏.This can be done,
for example, by drawing a random number 𝜂which is
uniformly distributed over the interval [0, 1] and by
determining 𝜏 from the equation:
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First we define the defect of the waiting time distribu-
tion 𝑞 by the identity

𝑞 ≡ lim
𝜏→∞
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󵄩󵄩󵄩󵄩󵄩

2
. (11)

For 𝜂 > 𝑞, a unique solution can be obtained. If 𝜂 ≤ 𝑞,
we set 𝜏 = ∞ in which case there will be no further
jumps.Within the time interval [𝑡, 𝑡+𝜏] the realization
follows the deterministic time evolution:
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, 0 ≤ 𝑠 ≤ 𝜏. (12)

(4) At time 𝑡 + 𝜏 (if 𝜏 is finite and 𝑡 + 𝜏 < 𝑡𝑓), one of the
possible jumps labeled by the index 𝑖 occurs according
to
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Then we select a specific jump of type 𝑖with probabil-
ity
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And then we update the state of system as
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(5) Repeat steps (1) to (4) until the desired final time 𝑡𝑓

is reached, which yields the realization 𝜓
𝑟
(𝑡) over the

whole time interval [0, 𝑡𝑓]. Once a sample of real-
izations 𝜓

𝑟
(𝑡), 𝑟 = 1, 2, 3, . . . , 𝑅, has been generated

according to this algorithm, any statistical quantity
can be estimated through an appropriate ensemble
average.

According to the above framework, an iterative algorithm is
described as follows:
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where

𝜓̃𝑘 = 𝜓𝑘 + 𝐷1 (𝜓𝑘) Δ𝑡 + 𝐷2 (𝜓𝑘) Δ𝑊𝑘,
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3. Results and Discussion

We consider the process describing the direct photodetection
of a driven two-level system, and the piecewise deterministic
process is given by the following equation [21, 22]:
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The corresponding stochastic Schrodinger equation takes
the form
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where

𝐻𝐿 = −
Ω

2
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In the numerical simulations, it is assumed that the atom
is in its ground state |𝑔⟩ and the probability of finding the
atom in the excited state |𝑒⟩ can be calculated as follows:

𝜌11 (𝑡) = ⟨𝑒
󵄨󵄨󵄨󵄨𝜌 (𝑡)
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From a sample of realizations this probability is estimated
by determining the average
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An appropriate estimator for the corresponding statistical
errors in the determination of 𝑀̂𝑡 from a finite sample of size
𝑅 is given by
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According [21, 22], the analytical solution of the process
is

𝜌11 (𝑡) =
Ω
2

𝛾20 + 2Ω2
[1 − 𝑒

−3𝛾
0
𝑡/4

{cos 𝜇𝑡 +
3𝛾0

4𝜇
sin 𝜇𝑡}] ,

(25)



4 The Scientific World Journal

Table 1:The estimatedmeans of |⟨𝑒|𝜓𝑟(𝑇)⟩|2minus the exact values obtained by the analytical solution of 𝜌11(𝑡), that is, (|⟨𝑒|𝜓
𝑟
(𝑇)⟩|
2
−𝜌11(𝑡)),

for different step sizes Δ𝑡 and methods.

0.01 0.02 0.05 0.10 0.15 0.20 0.25
The proposed algorithm 0.00012 0.00018 0.00015 0.00025 0.00021 0.00017 0.00021
Runge-Kutta 0.00026 0.00049 0.00070 0.00121 0.00142 0.00220 0.00311

Table 2: The normalized CPU time for different step sizes Δ𝑡 and
methods.

0.01 0.02 0.05 0.10 0.15 0.20 0.25
The proposed
algorithm 0.153 0.108 0.081 0.061 0.050 0.038 0.007

Runge-Kutta 1 0.162 0.100 0.083 0.072 0.065 0.030

where

𝜇 = √Ω2 − (
𝛾

4
)

2

. (26)

Hence, it is possible to compare the numerical results with
the analytical results.

3.1. Simulation Results. A sample of realizations for 𝜌11

calculated from (20) is as the dashed line shows in Figure 1
with the following parameters: step size Δ𝑡 = 0.01, Ω =

0.45, and 𝛾 = 0.3, while the smooth line gives the analytical
solution.

In order to discuss the performance of the algorithm,
we introduced the classic Runge-Kutta iterative algorithm for
generating the sample of realizations as follows [23]:

𝜓𝑘+1 = 𝜓𝑘 +
1
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2
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4
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where
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Δ𝑡𝜓
1
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𝜓
3
𝑘 = 𝐷1 (𝜓𝑘 +

1

2
Δ𝑡𝜓
2
𝑘) ,

𝜓
4
𝑘 = 𝐷1 (𝜓𝑘 + Δ𝑡𝜓

3
𝑘) .

(28)

In this paper, the computer simulation platform is the
Intel(R) Core (TM)2 Duo CPU E7500 @ 2.93GHz under
the Windows XP operating system with the numerical cal-
culation software Matlab7. By selecting different simulation
step sizes Δ𝑡, we can get set of results according to the
corresponding Δ𝑡 with different algorithms:

(1) the estimated means of |⟨𝑒|𝜓𝑟(𝑇)⟩|2 minus the exact
values obtained by the analytical solution of 𝜌11(𝑡)

for different step sizes and methods, (|⟨𝑒|𝜓𝑟(𝑇)⟩|2 −
𝜌11(𝑡)), as Table 1 shows,

(2) the normalizedCPU time versus the absolute error for
the data points, as Table 2 shows.

0 20
0

1

The analytical solution
The numerical solution

𝜌
1
1

𝛾𝑡

Figure 1:The comparison between the numerical solution of 𝜌11 and
the analytical solution direct photodetection of a driven two-level
system with the parameters: Δ𝑡 = 0.01, Ω = 0.45, and 𝛾 = 0.3.

As can be seen from Table 1, when the simulation step
size is increased, there is little change in the errors in the
proposed algorithm, while the errors using the Runge-Kutta
method increase linearly. That is, in a certain step length
range, the proposed iterative algorithm can generate more
accurate approximation numerical solution than the Runge-
Kutta algorithm in comparison to the analytical solution.

At the same time, we can draw a conclusion from Table 2:
when obtaining amore accurate numerical solution using the
proposed algorithm, the computational time is on the same
order of magnitude as the Runge-Kutta method consumes.
And it is not difficult to find that, when the step length is
gradually reduced, accompanied by improving the accuracy,
the computational time of the Runge-Kutta algorithm grows
faster.

Taking the above two advantages comparing to the
classical Runge-Kutta algorithm, the proposed algorithm can
generate a more accurate sample of realizations while paying
lower computational costs, which reflects the superiority and
practicality of the proposed algorithm.

3.2. Convergence Analysis. Generally speaking, the smaller
the step size Δ𝑡 is, the closer the numerical solution matches
the true solution, and consequently the convergence seems
to take place. We denote 𝑋(𝑡𝑘) as the true analytical solution
and 𝑋𝑘 as the numerical approximation. Noting that 𝑋(𝑡𝑘)

and 𝑋𝑘 are random variables, we can measure the difference
usingE(𝑋𝑘−𝑋(𝑡𝑘)), whereE(⋅) represents the expected value.
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Then a method is said to have strong order of convergence
equal to 𝛽 if there exists a constant𝑀 such that

E 󵄨󵄨󵄨󵄨𝑋𝑘 − 𝑋 (𝑡𝑘)
󵄨󵄨󵄨󵄨 ≤ 𝑀Δ𝑡

𝛽 (29)

for any fixed 𝑡𝑘 ≡ 𝑡0 + 𝑘Δ 𝑡 ∈ [0, 𝑡𝑓] and Δ𝑡 sufficiently small.
The strong order of convergence (29) measures the rate

at which the “mean of the error” decays as Δ𝑡 → 0. A
less demanding alternative is to measure the rate of decay
of the “error of the means.” This leads to the concept of
weak convergence. A method is said to have weak order of
convergence equal to 𝛽 if there exists a constant𝑀 such that
for all functions 𝑝 in some class

󵄨󵄨󵄨󵄨󵄨
E𝑝 (𝑋𝑘) − E𝑝𝑋(𝑡𝑘)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑀Δ𝑡

𝛽 (30)

for any fixed 𝑡𝑘 ≡ 𝑡0 + 𝑘Δ 𝑡 ∈ [0, 𝑡𝑓] and Δ𝑡 sufficiently small
[24].

According the above theory, we consider a numerical
algorithm to integrate (7) in the time period [𝑡0, 𝑡0 + 𝑇].
Such an algorithm will generate a discrete time approximate
realizations 𝜓𝑘 for the exact process 𝜓(𝑡𝑘) at the given time
𝑡𝑘 ≡ 𝑡0 + 𝑘Δ 𝑡, where 𝑘 = 0, 1, . . . , 𝑛 = 𝑇/Δ𝑡. Before our
discussion, several conventions should be made as follows.

(1) In this section, 𝜓𝑘 always represents a numerical
approximation, while 𝜓(𝑡𝑘) stands for the exact pro-
cess described by (7).

(2) Similarly, we define the discrete time approximation
of the density matrix as 𝜌𝑘 = E[|𝜓𝑘⟩⟨𝜓𝑘|], whereas
𝜌(𝑡) = E[|𝜓(𝑡)⟩⟨𝜓(𝑡)|] is the exact density matrix
satisfying the Lindblad equation (9).

(3) We always set a deterministic initial state 𝜓0 ≡ 𝜓(𝑡0).

In order to illustrate the numerical convergence of the
algorithm, we will compare the Taylor expansion of the exact
density matrix 𝜌(𝑡) which is given by (31) with the generated
approximation 𝜌𝑘:

𝜌 (𝑡 + Δ𝑡) = 𝜌 (𝑡) + L𝜌 (𝑡) Δ𝑡 +
1

2
L2𝜌 (𝑡) Δ𝑡

2
+ 𝑂 (Δ𝑡

3
) .

(31)

We compare the numerical simulation approximate
obtained by the proposed algorithm to the true evolution𝜌(𝑡).
The single-step error of a certain numerical schememay then
be expressed through the difference

𝜌1 − 𝜌 (𝑡1) = 𝑂 (Δ𝑡
𝛾
) (32)

which means that the strategy reproduces the Taylor expan-
sion of 𝜌(𝑡) including terms of order 𝛾 − 1 in Δ𝑡.

Thus, it is direct to prove that the integration over a finite
time period [𝑡0, 𝑡0+𝑇]decreases the convergence order by one
since 𝑛 = 𝑇/Δ𝑡 time steps are needed to compute the density
at time 𝑡𝑛 = 𝑡0 + 𝑇, that is,

𝜌𝑛 − 𝜌 (𝑡𝑛) = 𝑂 (Δ𝑡
𝛽
) (33)

with 𝛽 = 𝛾 − 1. If (33) can be satisfied, the numerical strategy
is defined to be a strategy of order 𝛽 [15]. It should be noted

that (33) is a special case of weak convergence of order 𝛽

describing the degree of proximity of the probability distri-
butions of 𝜓𝑛 and 𝜓(𝑡𝑛) which is a much weaker criterion
comparing to strong convergence defined in (29). In actual
applications, one tends to care about this weaker form of
convergence especially when considering the approximation
of functionals of the stochastic variable.

When investigating the stochastic differential equations
and numerical simulation solution process, if the issues are
related to the numerical simulation of the stochastic process,
the evaluation criteria of the solutions convergence are usu-
ally defined as the numerical approximation curve. It must
be sufficiently close to the real trace of the evolution. That
is to say, the higher the convergence order is, the closer the
distribution of the numerical solution is with the analytical
solution of the distribution. So it requires that the probability
distribution𝜓𝑛 obtained by the simulation iterative algorithm
is close enough to the probability distribution determined by
the quantum master equation [24].

Performing the error analysis according to (16) one can
find it converging with order 𝛽 = 2 in contrast to the classical
Runge-Kutta method with 𝛽 = 1. Thus, it is really a higher-
order strategy in the weaker convergence sense.

4. Conclusions

The decoherence of open quantum systems usually makes
the system evolve from the initial pure state to mixed states
(in some cases, may also be mixed state into a pure state).
Being a powerful tool for investigating the open quantum
systems, the quantummaster equation can give a quantitative
description of the transition, dissipation, and decoherence
caused by the interaction between the closed system and the
environment. Taking this as the starting point of our research,
in order to obtain the evolution of the open quantum systems
according to its dynamic characteristics, we used the system
simulation method to get the numerical solution to the
reduced density operator of a typical open quantum system.
And its effectiveness and superiority were verified in compar-
ison with the classical algorithm. Further research includes
the control scheme [25, 26] for quantummanipulation based
on the characteristics of quantum dynamics.
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