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Objective: Progressive conditions characterized by cognitive decline,

including mild cognitive impairment (MCI) and subjective cognitive decline

(SCD) are clinical conditions representing a major risk factor to develop

dementia, however, the diagnosis of these pre-dementia conditions remains

a challenge given the heterogeneity in clinical trajectories. Earlier diagnosis

requires data-driven approaches for improved and targeted treatment

modalities.

Methods: Neuropsychological tests, baseline anatomical T1 magnetic

resonance imaging (MRI), resting-state functional MRI (rsfMRI), and diffusion

weighted scans were obtained from 35 patients with SCD, 19 with MCI,

and 36 age-matched healthy controls (HC). A recently developed machine

learning technique, Hollow Tree Super (HoTS) was utilized to classify subjects

into diagnostic categories based on their FC, and derive network and

parcel-based FC features contributing to each model. The same approach

was used to identify features associated with performance in a range

of neuropsychological tests. We concluded our analysis by looking at

changes in PageRank centrality (a measure of node hubness) between the

diagnostic groups.

Results: Subjects were classified into diagnostic categories with a high

area under the receiver operating characteristic curve (AUC-ROC), ranging

from 0.73 to 0.84. The language networks were most notably associated

with classification. Several central networks and sensory brain regions were

predictors of poor performance in neuropsychological tests, suggesting
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maladaptive compensation. PageRank analysis highlighted that basal and

limbic deep brain region, along with the frontal operculum demonstrated a

reduction in centrality in both SCD and MCI patients compared to controls.

Conclusion: Our methods highlight the potential to explore the underlying

neural networks contributing to the cognitive changes and neuroplastic

responses in prodromal dementia.
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Introduction

Alzheimer’s disease (AD) is the most common form
of dementia, characterized by progressive neurodegeneration
with resulting memory decline and cognitive impairment that
interferes with activities of independent living (Ballard et al.,
2011; McKhann et al., 2011). Mild cognitive impairment (MCI)
is a prodromal stage of impairment where patients have a
higher risk of progressing to AD (Vega and Newhouse, 2014),
with an estimated progression at a rate of approximately
10–15% per year (Michaud et al., 2017). Additionally,
patients with MCI may remain stable, or rarely return
to a cognitively unimpaired state (Giorgio et al., 2020).
Recently, the earliest stage of noticeable symptoms of dementia,
subjective cognitive decline (SCD), has been explored as a
prodromal risk factor for AD, providing additional insights
and obfuscation in disease trajectory. AD neuropathology,
which includes aggregation and deposition of amyloid- β

peptide (Aβ) and tau protein, also begins around 10–20 years
prior to the onset of symptoms (Villemagne et al., 2013),
further complicating the uncertainty in individual patient
trajectory. Given this uncertainty, it is necessary to examine the
neurological basis of higher cognitive functioning differentiating
pre-dementia status (SCD and MCI) from normal aging,
in order to develop accurate and clinically reliable tools
identifying individuals who may develop MCI and AD early
in the disease course. Reliable biomarkers and predictors
of AD trajectory may enable therapeutic interventions to
delay progression or even modify disease at a pre-dementia
stage.

While the utility of several imaging and fluid biomarkers
in AD diagnosis have been investigated, resting state functional
magnetic resonance imaging (rsfMRI) remains a popular choice
due to its non-invasive nature and spatial resolution. rsfMRI
enables the examination of changes in functional connectivity
(FC) across large-scale brain networks, providing information
on early changes in the disease course, which have been
identified up to 4 years prior to the symptomatic onset of
AD (Chiesa et al., 2019; Wisch et al., 2020; Song et al.,

2022; Wang et al., 2022). Previously, Shi and Liu extracted
features from rsfMRI to classify several stages of MCI with high
accuracy (Shi and Liu, 2020); Wee et al. (2012) utilized support
vector machines on multimodal data combining functional
and structural connectivity to further improve the accuracy
of MCI classification; and Zhu et al. (2022) classified AD,
MCI and healthy controls (HC) using hippocampus seed based
FC. So far, these machine learning techniques have mainly
been used for diagnostic classification of rsfMRI based on
predefined regions of interest with known FC changes. This
is fundamentally due to the difficulty in attaining feature
importance in machine learning models with a large number
of features, as in the whole brain (Doyen et al., 2021b). As a
result, the power of machine learning has not been harnessed
to directly study and identify the underlying whole network-
based FC changes contributing to the model’s classification
of diagnosis. This is crucial given that AD is defined as a
disconnection syndrome across multiple networks (Seeley et al.,
2009; Wang et al., 2013). Additionally, there has been little focus
on examining these changes in the earliest stages of pathology,
particularly SCD, the earliest stage of noticeable symptoms of
dementia.

In this study, we applied a recently described machine
learning technique to FC-based analysis to build binarized
classification models differentiating cohort of health controls,
SCD, and MCI. Extracting the feature importance from
these models, we performed further analysis to identify
anatomical and network-based patterns among the cohorts
to examine whether the models could identify similar FC
changes demonstrated in the literature from the raw data
without biased feature selection. In the second part of
our analysis, we applied the same technique to several
neuropsychological assessments commonly used in AD
in an attempt to identify patterns of neuroanatomical
deficit which may be associated with performance in each
test. Finally, we applied a graph theory metric, PageRank
centrality, in order to examine changes in the importance
of brain regions in pre-dementia status compared to
healthy controls. We hope that validation of our methods
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will provide a basis to improve our understanding and
diagnosis of MCI and AD.

Materials and methods

Patient cohort

The study was conducted in the rehabilitation medicine
department of the Jiangsu Shengze Hospital, affiliated with the
Nanjing Medical University in the Suzhou Jiangsu Province.
The study was approved by the hospital’s Human Research
Ethics Committee and registered with the Chinese Clinical
Trials Registry (ChiCTR2100046131). In accordance with the
Helsinki Declaration, the written consent of the participants
was obtained. MCI and SCD participants were from the
Department of Rehabilitation Medicine’s memory disorder
outpatient clinic. Healthy controls were recruited through
advertisements in the hospital, newspapers and through public
recruitment methods.

A total of 90 eligible participants were eventually included
based on inclusion and exclusion criteria from May to
September 2021. This research included three types of elderly
subjects (55–80 years old) with varying cognitive levels,
including MCI, SCD, and HC. All participants were clinically
examined by a neurologist for neuropsychological test batteries
as well as a fMRI brain scan prior to participation.

The following were the exclusion criteria for all three
groups: (1) a clinical diagnosis of vascular dementia or
dementia based on the NINDS-AIREN criteria; (2) Modified
Hachinski Ischemic Scores > 4; (3) MMSE scores < 24;
(4) drug or alcohol abuse for at least 6 months; (5) could
not undergo MRI examinations or neuropsychological tests;
(6) Severe cardiovascular or cerebrovascular disease, as well
as psychological illness; (7) treatment with cholinesterase
inhibitors or NMDA antagonists within 2 weeks before
assessments; (8) individuals over the age of 80 and under the
age of 55; (9) geriatric depression scale scores ≥ 6; (10) MRI
contraindications such as presence of known claustrophobia,
ferromagnetic implants, cardiac pacemakers, joint replacement
(e.g., hip, knee, etc.), or hearing aids.

Participants were assigned to the MCI group if any one of
the three following criteria were met (Bondi et al., 2014; Zhong
et al., 2021): (1) had an impaired score (> 1 SD below the age-
corrected normative mean) on both assessments in at least one
cognitive domain (memory, language, or executive function);
(2) had one impaired score (> 1 SD below the age-corrected
normative mean), in each of the three cognitive domains
(memory, language, or executive function); or (3) Functional
Assessment Questionnaire (FAD) scores ≥ 9. The standard
deviation (SD)-based cut-offs utilized in our investigation were
based on published studies in the Chinese population that had
been adjusted for education and age (Li et al., 2019).

Participants were assigned to the SCD group if they met
the inclusion criteria as follows (Jessen et al., 2014, 2020):
(1) normal performance on the above-mentioned standard
neuropsychological assessment used to diagnose MCI; (2) self-
experienced persistent memory decline for at least 6 months,
compared to a previous normal condition, which is not related
to an acute incident; (3) Self-reported concerns about memory
decline. The second and third criteria were derived from a semi-
structured clinical interview, and were based on whether the
participant expressed persistent memory decline and concerns
about this memory decline. The interview involved an initial
open-ended question, “Have you noticed any changes in your
mental abilities? Could you provide an example?” This was
followed by specific questions about each cognitive domain
(memory, language, planning, attention, any other cognitive
decline).

The following were the inclusion criteria for the HC group:
(1) had no self-reported memory issues and no self-reported
chronic memory deterioration; (2) MMSE score > 26 and
MoCA score > 26; (3) clinical dementia rating score = 0.

Neuropsychological testing

The neuropsychological evaluations included global
cognitive function and language function. Global cognitive
function was evaluated by Montreal Cognitive Assessment Test
(MoCA) and Mini-Mental State Examination (MMSE). The
language function was measured by the Boston Naming
Test China version (BNT-C) and Animal Fluency test
(AFT). Learning was assessed using the Rey Auditory Verbal
Learning Test (AVLT).

Statistical analysis

Group differences in the continuous variables were analyzed
using a non-parametric Kruskal-Wallis one-way analysis of
variance. If an instance was rejected, post hoc Dunn’s test with
Bonferroni correction for multiple comparisons was performed
for pairwise comparisons of a given variable between each
of the three diagnostic groups. The only categorical variable,
sex, was compared between groups using a Chi-squared test
of independence. All statistical analysis was performed in
R version 4.1.0.

Imaging protocol

All subjects underwent an MRI scan on a 3.0T GE Discovery
MR750w (SIGNA) scanner 24 channel head coil (Head 24)
10 min A gradient-echo echo-planar imaging T2∗ sensitive
pulse sequence was used to acquire resting-state fMRI data
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(interleaved sequence, slices = 41, thickness = 3.5 mm, pixel
spacing = 3 × 3 mm, repetition time (TR) = 2,500 ms, echo
time (TE) = 30 ms, field of view (FOV) = 192 × 192 mm,
flip angle = 90◦, and acquisition matrix = 64 × 64, percent
sampling = 100%, percent Phase Field of View = 100%).

A three-dimensional 5 min spoiled-gradient recalled T1-
weighted sequence (axial 3D T1 BRAVO) was used to acquire
whole-brain structural data with an acquisition time of 301 s
(slices = 188, thickness = 1 mm, pixel spacing = 1∗1 mm,
TR = 8.5 ms, TE = 3.2 ms, Inversion Time = 450 ms,
Spacing Between Slice = 1, skip = 0 mm, flip angle = 12◦,
FOV = 256 × 256 mm, and acquisition matrix = 256 × 256,
percent sampling = 100%, percent Phase Field of View = 100%).

Diffusion-weighted volumes parameters were
used: 65 contiguous slices, slice thickness = 2.1 mm,
FOV = 256 × 256 mm, matrix = 128 × 128 mm, TR = 17,000
ms, TE = 95.9 ms, voxel size = 2 mm isotropic, acquisition
NEX = 1 partial Fourier, 64 diffusion directions with
b-value = 1,000 s/mm2, and 1 image with no diffusion weighting
(b = 0 s/mm2), bandwidth = 250 Hz/pixel. Acquisition time was
19.16 min per DTI scan.

Diffusion weighted imaging
preprocessing

The diffusion weighted imaging (DWI) images were
processed using the Infinitome software (Omniscient
Neurotechnology, 2020), which employs standard processing
steps in the Python language. The processing pipeline includes
the following: (1) the diffusion image is resliced to ensure
isotropic voxels, (2) motion correction is performed using a
rigid body registration algorithm to a baseline scan, (3) slices
with excess movement (defined as DVARS > 2 sigma from the
mean slice) are eliminated, (4) the T1 image is skull stripped
using the HD-BET software (Isensee et al., 2019), which is
inverted and aligned to the DWI image using a rigid alignment,
and used as a mask to skull strip the aligned DWI image,
(5) gradient distortion correction is performed by applying a
diffeomorphic warping registration method between the DWI
and T1 images, (6) The fiber response function is estimated and
the diffusion tensors are calculated using constrained spherical
deconvolution, (7) deterministic tractography is performed with
uniform random seeding, 4 seeds per voxel, usually creating
about 300,000 streamlines per brain.

Structural connectivity based
parcellation

Identifying FC changes at a granular anatomical level
requires the application of a parcellation scheme to the brain.
While several atlases are available to define brain regions, many

methods rely on healthy cortices for parcellation. Furthermore,
most of the available atlases parcellate a given scan based on
the group average of these healthy cohorts, risking inaccurate
parcellation due to gyral variation or morphological differences
brought on by pathology. In order to minimize this, we
adopted a machine-learning based method to create subject-
specific versions of the Human Connectome Project Multimodal
Parcellation (HCP-MMP1) atlas (Glasser et al., 2016). While
this method is described in detail elsewhere (Doyen et al.,
2021a), briefly, a machine learning model was trained using
tractography data from 178 healthy controls obtained from
the SchizConnect database, preprocessed as above, in order for
it to learn the structural connectivity pattern between voxels
included within the 379 parcels of the HCP-MMP1 atlas. The
same unaltered atlas was then warped onto each brain in the
study sample and the trained machine learning model was
applied to each subject to re-appoint voxels located at the
endpoint of tractography streamlines to their most likely warped
parcellation based on the structural connectivity feature vectors.
This resulted in reparcellation of voxels, creating a version of
the HCP-MMP1 atlas with 180 cortical parcels and 9 subcortical
structures per hemisphere, along with the brainstem as one
parcel.

The network affiliation of each HCP parcel was based on
the automatic mapping provided by the Infinitome software,
which itself is based on previous meta-analyses exploring each
large-scale network. The networks included in this template
were the core networks described by Yeo et al. (2011), Central
Executive Network (CEN), Default Mode Network (DMN),
Dorsal Attention Network (DAN), Limbic Network (LN),
Salience Network (SN), Sensorimotor Network (SMN), and
the Visual Network (VN), along with several networks which
are either part of the extended versions of the core networks,
or additional networks described in the literature, including
the Accessory Language and Language Networks (part of the
extended DMN), Auditory System (part of the SMN), Multiple
demand network, and the Ventral Attention Network (VAN).

rsfMRI preprocessing steps

The rsfMRI images were processed using standard
processing steps including: (1) motion correction on the T1 and
BOLD images using a rigid body alignment, (2) elimination
of slices with excess movement (defined as DVARS > 2 sigma
from the mean slice), (3) skull stripping of the T1 image using a
convolutional neural net (CNN), which is inverted and aligned
to the resting state bold image using a rigid alignment, and
used as a mask to skull strip the rsfMRI image, (4) slice timing
correction, (5) Global intensity normalization, (6) gradient
distortion correction using a diffeomorphic warping method to
register the rsfMRI and T1 images, (7) High variance confounds
are calculated using the CompCor method (Behzadi et al., 2007);
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these confounds as well as motion confounds are regressed out
of the rsfMRI image, and the linear and quadratic signals are
detrended. Note this method does not perform global signal
regression, (8) spatial smoothing is performed using a 4 mm
FWHM Gaussian kernel. The personalized atlas created in
previous steps is registered to the T1 image, and gray matter
atlas regions are aligned with the gray matter regions in each
subject’s scans. Thus, it is ideally positioned for extracting a
BOLD time series, averaged over all voxels within a region,
from all 379 regions (180 parcels from two hemispheres, plus
19 subcortical structures). The Pearson correlation coefficient is
calculated between the BOLD signals of each unique area pair
(self to self-inclusive), which yields 143,641 correlations.

Machine learning classification and
feature extraction using the
hollow-tree super method

Machine learning was used to model the diagnostic group
and neuropsychological test performance of each participant
based on the pairwise functional correlation between the 379
regions of each individual’s brain atlas. In each instance, XGB
Classifier, a boosted trees approach was used to fit the model.
This approach provides a superior prediction ability than single
trees. All models included age and sex as nuisance predictors.
For the diagnostic group modeling, four models were trained
to classify SCD from HC, MCI from HC, a combined SCD and
MCI cohort (herein referred to as pre-dementia status) from
HC, and SCD from MCI. For the test performance models, the
four models trained were for the MMSE, MoCA, BNT, and AFT.

The black box problem in machine learning generally limits
the ability to utilize machine learning techniques in clinical
practice, as there is a need-to-know which parts of the brain
are associated with pathology. However, extracting features
from machine learning models is limited when working with
large datasets, especially when investigating the magnitude
and directionality of features on classification. In order to
circumvent this, we used a technique described recently
elsewhere, Hollow Tree Super (HoTS) (Doyen et al., 2021b).
HoTS linearizes decision trees in order to provide directional
feature importance coefficients. Consequently, for each model,
we can obtain a list of FC features, corresponding to pairwise
HCP parcels, along with an indication of their impact on the
overall model. We used fivefold cross-validation, and evaluated
each model with the mean area under the receiver operating
characteristic curve (AUC-ROC) ± standard deviation. In order
to mitigate the effects of class imbalances in the models, we
employ three methodological approaches: (1) we do stratified
fivefold cross validation to make sure each fold has an equal ratio
of both classes, (2) we implement a stopping criteria, whereby we
stop training if performance doesn’t improve over consecutive
iterations of hyper-parameter tuning, to prevent overfitting (e.g.,

to the larger class for example). These guardrails therefore
ensures that our modeling approach therefore approximates a
balanced class AUC even in instances of class imbalance. Finally,
our feature importance calculation only draws inferences on
the correctly predicted cases; so it matters less than one class
might be predicted slightly better than the other. In this way,
our predominant aim is isolating what drives the classifications.
Therefore, while AUC is inherently sensitive to class imbalances,
we can assume that our corrections and significantly higher than
chance performance make nuances in AUC bias irrelevant to the
purpose of our analysis.

In some instances where the model achieved a lower AUC,
we used random forest-based feature reduction to threshold
a higher AUC. It is shown that a random forest algorithm is
suitable when there are more features than observations, as
in the current study, and is based on an embedded feature
selection which incorporates interactions between features. For
each model, we produced a representation of the importance
of each network in the output of the model, and a SHAP plot
of the top 20 features contributing to the model. The SHAP
method calculates feature importance by deriving Shapley values
for each feature, a technique derived from cooperative game
theory. Shapley values consider feature importance based on
estimating the marginal contribution of each feature to the
outcome of models with every possible permutation of features
(Lundberg and Lee, 2017). Each SHAP plot provides a list of
features in descending order of importance, along with their
impact on the model along the x-axis, with the color of each
point. representing a single observation, indicating whether a
high (red), or low (blue) value of that feature is associated with
the model.

For the models classifying subjects into neuropsychological
test performance based on their FC, each test outcome was
binarized into poor and good performance. In order to reflect
their clinical use, all neuropsychological scores were binarized
according to accepted cutoff scores. For the MMSE, we used
an aggressive cutoff of ≤ 28, aligning with a recent study
demonstrating a high sensitivity of this cutoff in MCI (De
Marchis et al., 2010); for the MoCA, a score greater than 25
was considered normal (Milani et al., 2018); for the BNT, a score
greater than 23 was considered normal (Li et al., 2022); and for
the AFT, a score ≤ 15 was considered abnormal (Canning et al.,
2004).

Results

Subject characteristics

Subject demographics are presented in Table 1. There was
no significant difference in sex distributions, age, or education
between groups. There was however, a significant difference in
the MMSE [H (2) = 31.10, p < 0.001], MoCA [H (2) = 48.83,

Frontiers in Aging Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2022.962319
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-962319 August 26, 2022 Time: 15:25 # 6

Shen et al. 10.3389/fnagi.2022.962319

p < 0.001], BNT [H (2) = 22.08, p < 0.001], and AFT [H
(2) = 13.47, p = 0.001] scores between groups. Post hoc Dunn’s
test was used to compare all pairs of groups. The MMSE was
significantly different between MCI and HC (p < 0.001), and
SCD and MCI (p = 0.002). The MoCA showed a significant
difference between all groups (p < 0.001). The BNT was
significantly different between MCI and HC (p < 0.001),
and SCD and MCI (p = 0.002). Finally, the AFT was only
significantly different between MCI and HC (p < 0.001).

Functional connectivity changes in
language networks may arise early in
Alzheimer’s disease

Our model classifying cases into either SCD or HC attained
a mean test AUC of 0.74 ± 0.095. At the network level,
the language network was the strongest predictor of group
membership (Figure 1A). At the parcel level, a low level
of the correlation between area left 2 and area left STSvp,
area left POS2 and left 7 m, area right V2 and left 33 pr
had a positive impact on the group prediction (Figure 1B).
There was, however, a high level of variance in parcel-wise
connections, making it difficult to identify a single most
influential connection. Anatomically, out of the top 20 features
in the model, most of the parcels were in the perisylvian and
occipital regions (Figure 1C).

Next, the classification of MCI and HC yielded a mean test
AUC of 0.77 ± 0.11. The mean AUC increased to 0.84 following
feature reduction to 350 features. The VAN, followed by the
DAN were the top two strongest predictors of group differences
(Figure 1D). A higher correlation between the left SCEF and
right PFm had a high positive impact on group prediction
(Figure 1E). Out of the top 20 features, a majority of parcels
were located in the right prefrontal and temporal regions. The
left primary (left V1), and secondary visual areas bilaterally (V2),
were also included, among other occipital regions (Figure 1F).

Classification of SCD + MCI (combined pre-dementia)
from HC attained a mean test AUC of 0.73 ± 0.11. Reducing
the number of features using random forest feature selection
increased mean AUC to 0.82 with 678 features. Regions in
the accessory language network were the best predictors of
SCD + MCI and HC classification (Figure 1G). A high positive
correlation of the left STSda and left PH had a positive impact
on group prediction, while a negative correlation between right
VMV3 and left ProS was associated with prediction (Figure 1H).
Among the top 20 features, a majority of parcels were in the
temporal lobe bilaterally (Figure 1I).

Finally, classification of SCD and MCI attained a mean
test AUC of 0.84 ± 0.13. Feature reduction worsened model
performance, lowering mean test AUC to 0.77 ± 0.12. Both
the DMN and CEN demonstrated differences in connectivity
between SCD and MCI patients (Figure 1J). A low level of

correlation between the left p32 and right MT was associated
with a positive impact on patient group prediction (Figure 1K).
The top 20 features were found across several anatomical
regions, including the left posterior cingulate and right temporal
regions (Figure 1L).

Patterns in model features may provide
diagnostic markers to differentiate
disease states

In an attempt to identify potentially important anatomical
regions which were included among the top 20 features of
each binary classification model, we analyzed the amount
of crossover between model features. Figure 2 represents a
Venn diagram comparing each model. The greatest amount
of crossover among the top 20 features was between regions
differentiating SCD and controls, and SCD + MCI and controls.
This comprised nine regions, including two insular regions
(left area FOP1 and left area OP1), the left angular gyrus
(area left PGi), area 7 m in the precuneus, areas of the
parietooccipital sulcus bilaterally (left POS2 and right POS1),
and two temporooccipital regions (right TE2a and right PH).

Nociferous compensation by executive
networks may be responsible for
cognitive deficits in Alzheimer’s disease

Overall, the CEN was the strongest predictor of performance
in the MMSE and MoCA, though both of these network
analyses were based on a reduced number of features, and thus
must be interpreted cautiously (Figures 3A,D). The MMSE
model with the entire connectome as its input achieved a
mean AUC of 0.53 ± 0.16, which rose to 0.74 ± 0.07 after
feature reduction to 698 features. Following feature reduction,
a positive correlation between the right 8 Ad and the right
temporoparietooccipital junction 1 (right TPOJ1), both DMN
parcels, and a negative correlation between the right d32, a CEN
parcel, and right lateral area 7P (right 7PL), a DAN parcel,
were most associated with the model’s classification (Figure 3B).
Anatomically, the left parietooccipital and right frontotemporal
regions were overrepresented among the top 20 features of the
model (Figure 3C).

The model predicting MoCA performance initially achieved
a mean AUC of 0.45 ± 0.14, and 0.78 ± 0.08 following
feature reduction. The latter model demonstrated that a high
correlation between the right 8 Ad and left 10 pp, right area
4 and left 9 m, left area 46 and right STSva, and right SCEF
and right IFSP had a strong positive influence on classification
(Figure 3E). The rest of the anatomical regions among the top
20 features were generally from the right insular, cingulate and
occipital regions (Figure 3F).
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TABLE 1 Subject demographics.

Variable Healthy controls
(n = 36)

Subject cognitive
decline (n = 35)

Mild cognitive
impairment (n = 19)

P-value

Sex F/M (%) 25/11 (69.4/30.6) 24/11 (68.6/31.4) 16/3 (84.2/15.8) 0.421

Median age (IQR) years 67.0 (7.3) 64.0 (8.5) 70.0 (6.0) 0.086

Median years of education (IQR) 9.0 (3.0) 9.0 (3.0) 9.0 (3.0) 0.935

Median MMSE score (IQR) 30 (0) 29 (2) 28 (2) <0.001

Median MoCA score (IQR) 28 (2.0) 26 (3.0) 22 (4.5) <0.001

Median BNT score (IQR) 24.5 (4.0) 24.0 (4.0) 20.0 (4.5) <0.001

Median AFT score (IQR) 16 (4.5) 15 (5.0) 13 (2.0) 0.001

MMSE, Mini Mental State Exam; MoCA, Montreal Cognitive Assessment; BNT, Boston Naming Test; AFT, Animal Fluency Test.

The BNT and AFT were the only two language tests we
could model, as there was too great a class imbalance to
model AVLT performance. The mean AUC of the BNT was
0.48 ± 0.16 with the full connectome, which was able to rise
to 0.82 ± 0.16 with feature reduction. The auditory system was
the strongest predictor of performance, followed by the DMN
(Figure 3G). A positive correlation between the right STSdp, a
DMN parcel, and left 23d, a CEN parcel, along with the right
8Ad and right TPOJ1, both DMN parcels were the top two
features contributing to the model’s output (Figure 3H). The
rest of the top 20 features were generally right parietal and
temporooccipital parcels (Figure 3I).

Finally, the AFT achieved a mean AUC of 0.56 ± 0.10
with the full connectome, and 0.77 ± 0.08 following feature
reduction. A number of canonical networks showed high
importance in AFT performance, including the DMN, DAN,
medial temporal region, VAN, and VN (Figure 3J). There was
a large amount of overlap between the features in the SHAP
plot, making it difficult to identify a single salient feature,
however, the top 20 features included a large number of occipital
and insular parcels bilaterally, along with left cingulate regions
(Figures 3K,L).

In order to explore further patterns within the top
20 features identified by the machine learning models, we
identified parcels which were associated with at least two
neuropsychological tests, which comprised 19 individual parcels
(Figure 4A). Right area 8Ad, a DMN parcel, and right posterior
inferotemporal area (right PIT) were each associated with three
tests. Right 8Ad was associated with the BNT, MoCA and
MMSE, whereas right PIT was associated with the BNT, AFT
and MoCA. At a network level, six of the identified parcels were
associated with the DMN, five with the CEN, five with the VN,
and two with the SMN. The right putamen was also identified,
showing an association with the AFT and MoCA. Anatomically,
most of the parcels were in the parietal and occipitotemporal
regions Figure 4B).

N.b. because the full sample was included in the analysis,
we reran all of the analyses of neuropsychological performance
including diagnosis as a covariate, however, these results
are not affected by the inclusion of diagnostic category,

suggesting that diagnostic category is not accounting for a
substantial portion of performance difference, when compared
to connectivity differences.

Discussion

In this study, we investigated whether functional
connectivity, coupled with sophisticated machine learning
techniques could differentiate SCD, MCI and HC, and
reveal key features contributing to the functional deficits.
Notably, our models achieved a high performance when
differentiating between the diagnostic groups and demonstrated
that the language and accessory language networks are
impacted early in dementia related pathology, even in the
context of normative cognitive function. We also examined
the networks and regions underlying cognitive deficits as
identified by two general cognitive, and two language tests,
demonstrating the recruitment of several central networks,
and possibly suggesting nociferous effects of attempted
compensation. Finally, a centrality-based examination of our
data revealed a hubopathy within deep brain regions, including
the basal ganglia and limbic regions, along with the frontal
operculum. Together, our findings demonstrate the utility of
our methodology in exploring the neural networks underlying
functional deficits in pre-dementia status, along with the
cognitive and neuroplastic responses to pathology. These
findings should be considered exploratory and interpreted
with caution as they need to be validated outside of our
clinical cohort.

Using machine learning for dementia
diagnosis

Several studies have proposed machine learning approaches
for the classification of MCI and AD (Gray et al., 2012; Wee
et al., 2012; Nozadi et al., 2018; Billeci et al., 2020; Shi and Liu,
2020; Syaifullah et al., 2020; Sheng et al., 2022). These have
utilized either one or combination of neuropsychological test
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FIGURE 1

Features associated with each machine learning model classifying subjects into diagnostic groups. (A) A graph ranking network level features,
and (B) a SHAP plot ranking the top 20 parcel-based features when classifying SCD from controls, along with, (C) an anatomical representation
of the parcels comprising the top 20 features. (D) Network level graph, (E) SHAP plot, and (F) anatomical representation for the model classifying
MCI and controls. (G) Network level graph, (H) SHAP plot, and (I) anatomical representation for the model classifying the combined SCD and
MCI cohort, and controls. (J) Network level graph, (K) SHAP plot, and (L) anatomical representation for the model classifying SCD and MCI.

scores, neuroimaging, and biofluids. A large proportion of these
studies have however, relied on feature selection in order to
extract salient features from a modality prior to the application
of machine learning techniques. This in turn simplifies feature
importance extraction. In our sample, while feature reduction
improved the AUC of some models, presumably by removing
potentially redundant parts of the data, it was less reliable for

network-based analysis. We therefore based our conclusions on
the models utilizing the entire connectome. Nevertheless, the
AUC of our models, even when relying on the full set of features,
was comparable to previous studies relying on fMRI, which
tend to range from 0.75 to 0.90 (Drane et al., 2008; Goryawala
et al., 2015; Jie et al., 2018; Nozadi et al., 2018; Zhang et al.,
2019; Shi and Liu, 2020). A more complete evaluation of the
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FIGURE 2

Common parcels associated with at least two classification models. The color of the circular bands represents the associated model, with SCD
vs. Control in red, MCI vs. control in blue, pre-dementia status (SCD + MCI) in green, and SCD vs. MCI in orange. The color of the arrows
labeling each anatomical region also represents the network affiliated with each region, with a legend provided at the bottom of the figure. The
Venn diagram in the middle signifies the number of parcels which are common to at least two models.

discriminatory capacity of our techniques would however, need
to be conducted using a larger dataset.

Language networks in pre-dementia
status

Our findings demonstrated that functional connectivity
of the accessory language network was most associated with

models classifying the early stages of cognitive decline from
healthy controls. The specific regions that the software labels
as accessory language are left area TGv in the temporal pole,
and areas STSda, STSva and TE1a in the anterior temporal
lobe. These regions are part of the extended DMN and have
been associated with semantic memory, which is an impaired
function in SCD and MCI.

Evidence of the impact of damage to these regions comes
predominantly from temporal lobe epilepsy surgery. Patients
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FIGURE 3

Features associated with each machine learning model classifying subjects into neuropsychological performance. (A) A graph ranking network
level features, and (B) a SHAP plot ranking the top 20 parcel-based features when classifying MMSE performance, along with, (C) an anatomical
representation of the parcels comprising the top 20 features. (D) Network level graph, (E) SHAP plot, and (F) anatomical representation for the
model classifying MoCA performance. (G) Network level graph, (H) SHAP plot, and (I) anatomical representation for the model classifying BNT
performance. (J) Network level graph, (K) SHAP plot, and (L) anatomical representation for the model classifying AFT performance.

undergoing left anterior temporal lobectomy were less efficient
in language-dependent tasks, with difficulty in visual naming
and verbal memory (Ivnik et al., 1987; Saykin et al., 1995;
Drane et al., 2008). This pattern of focal temporal degeneration
has also been classically associated with semantic dementia
(SD), also known as the temporal variant of frontotemporal

dementia (Hodges and Patterson, 2007; Patterson et al., 2007).
Patients with SD exhibit onset of gray matter atrophy in the
anterior temporal lobes, with predominant left lateralization,
which extends with disease progression to the temporal pole,
along with the medial and lateral temporal regions (Schwab
et al., 2020). This is associated with deficits in semantic memory,
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FIGURE 4

(A) A schematic demonstrating the 19 parcels which were within the top 20 features of at least two models classifying neuropsychological test
performance. Each arrow goes from a neuropsychological test label to a brain parcel. The color of each arrow indicates the network affiliation
of the parcel with which it is associated. The parcels have been placed in rough anatomical space. (B) The same parcels, with the exception of
the subcortical right Putamen represented on a brain for anatomical reference.

with usually intact episodic memory (Bozeat et al., 2000). In
contrast, AD has classically been associated with FC changes
in the hippocampus and the DMN (Allen et al., 2007; Wang
et al., 2007). Although atrophy and cortical thinning has been
described in the rest of the temporal lobe in AD, these changes
are generally less symmetrized (Galton et al., 2001; Domoto-
Reilly et al., 2012; Schwab et al., 2020); though interestingly,
it has been demonstrated that TDP-43 pathology, one of the
pathological inclusions in AD, appears at a very early stage in
the anterior temporal pole in AD (Nag et al., 2018). It is therefore
interesting that the accessory language network was highlighted
in our dataset. Although it is possible that our subjects may
have an overrepresentation of individuals who may convert to
semantic dementia, given the relative rarity of this condition, it
is more likely that semantic dysfunction is a common deficit in
pre-dementia status.

Interestingly, the model specifically classifying SCD
from HC highlighted the language network, as opposed
to the accessory language network. Previous reports have
suggested that pre-dementia status is associated with increased
connectivity within the language network (Pistono et al.,
2021b), while AD has been demonstrated to have lower FC
in the language network compared to controls (Weiler et al.,
2014; Montembeault et al., 2019). In healthy aging, the language
network also shows an increased FC, and interacts with the
CEN and DAN to maintain language performance (Muller
et al., 2016; Hoffman and Morcom, 2018; Pistono et al., 2021a).
Together, this pattern may be indicating that the prominence of
the language networks in our sample is indicative of a protective
mechanism differentiating HC from pre-dementia status, where
this compensation is lost early in AD. However, further studies
specifically examining language networks in the context of
AD are necessary. Furthermore, longitudinal studies should
examine the conversion of individuals with language network
dysfunction to AD and other types of dementia.

In contrast, the networks most associated with the model
differentiating SCD and MCI highlighted the DMN and CEN,
suggesting that MCI is characterized by extension of network
dysfunction to executive networks. This finding is in line with
neuropsychological studies examining the temporal course of
cognitive decline in AD, suggesting that semantic memory
deficits occur earlier than episodic memory decline (Amieva
et al., 2008; Howieson et al., 2008), arising as early as 4 years
prior to MCI diagnosis in one study (Mistridis et al., 2015).
Consequently, techniques such as ours may be able to integrate
a structural pathological model of dementia with functional
changes along the spectrum of dementia.

Parcel to neuropsychological test
mapping

Mapping parcels to specific neuropsychological tests
demonstrated that neurocognitive deficits in pre-dementia
status are associated with FC changes in multiple bi-
hemispheric neural networks. However, a key consideration
in the application of this technique is whether it provides
any justifiable utility beyond the use of neuropsychological
testing, which is significantly easier to implement in a clinical
environment. In our sample, the relationship between raw
language test scores and diagnostic groups was only statistically
significant between the MCI and HC groups. Our methods
may therefore have the potential to identify FC changes prior
to the onset of functional deficits. Our findings also provide
further insight into the anatomical basis of these deficits. For
example, while regions associated with semantic memory
contributed to the pre-dementia status model, our model of
the BNT highlighted the auditory system as the key network
associated with this model. It is important to note that since
we did not utilize task-based fMRI, these network changes are
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only an indication of the differences between poor performers
and those with preserved function. They therefore have the
potential to demonstrate changes indirectly associated with a
given function and may potentially be reflecting maladaptive
compensation. The goal of this type of analysis is therefore to
identify possible neuroimaging markers of disease progression
or targets of treatment, though longitudinal data are required to
necessitate this.

In line with these potential neuroplastic changes, our
model classifying SCD and HC had a large number of
sensory regions within its top features compared to the model
classifying MCI and HC. There was also an overrepresentation
of the visual system’s contribution to the SCD vs. HC
model, along with the common regions contributing to
neuropsychological test performance. This may either be
highlighting early damage to sensory regions in SCD and
MCI, or indicating nociferous compensation by sensory regions
following damage to associative networks in later stages of
the disease. This is congruent to a recent study exploring
FC changes in a small cohort of SCD, MCI and AD
subjects, where the authors demonstrated a decreased centrality
within the SMN and VN in SCD, and increased centrality
in these networks in AD, proposing possible compensation
of these networks following damage to the DMN, CEN
and DAN (Wang et al., 2019). While further longitudinal
studies are required to explore this hypothesis, it is evident
that a FC-based approach to functional performance may
reveal key insights about the anatomical basis of pathological
function.

Limitations

Our study is limited by a small sample size, and
therefore our findings require larger scale prospective studies
for validation. Additionally, while we employ effective class
imbalance mitigation methodologies, we cannot assume that
class imbalances do not bias our results, thus we suggest
that future research requires larger and balanced samples.
AUC as a metric is somewhat sensitive to class imbalance.
Nevertheless, our methodology employs approaches to mitigate
this risk, including fivefold cross-validation and early stopping
criteria. Furthermore, our analysis focuses mainly on feature
importance, and therefore we can assume that our protective
measures and significantly higher than chance performance
make nuances in AUC bias less relevant to the purpose of
our analysis. In addition, future studies should investigate
longitudinal connectivity changes in MCI and AD to ascertain
pathological and compensatory changes. Therefore, while our
study highlighted early changes in dementia in a clinical cohort,
future studies should aim to replicate these findings and explore
whether these techniques may be used to establish diagnostic
trajectories or therapeutic targets.
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