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A B S T R A C T

Nannochloropsis spp. are promising industrial microalgae for scalable oil production and the lipid production can
be boosted by nutrient starvation and high irradiance. However, these stimuli halt growth, thereby decreasing
overall productivity. In this study, we created transgenic N. oceanica where AtDXS gene encoding 1-deoxy-D-xylu-
lose 5-phosphate synthase (DXS) derived from Arabidopsis thaliana was overexpressed in vivo. Compared with the
wild type (WT), engineered Nannochloropsis showed a higher CO2 absorption capacity and produced more
biomass, lipids, and carbohydrates with more robust growth in either preferred conditions or various stressed
conditions (low light, high light, nitrogen starvation, and trace element depletion). Specifically, relative to the
WT, lipid production increased by ~68.6% in nitrogen depletion (~1.08 g L�1) and ~110.6% in high light
(~1.15 g L�1) in the transgenic strains. As for neutral lipid (triacylglycerol, TAG), the engineered strains produced
~93.2% more in nitrogen depletion (~0.77 g L�1) and ~148.6% more in high light (~0.80 g L�1) than the WT.
These values exceed available records in engineered industrial microalgae. Therefore, engineering control-knob
genes could modify multiple biological processes simultaneously and enable efficient carbon partitioning to
lipid biosynthesis with elevated biomass productivity. It could be further exploited for simultaneous enhancement
of growth property and oil productivity in more industrial microalgae.
1. Introduction

Environmental challenges such as global warming, air pollution and
resource depletion have increased the need for a shift away from fossil fuels
towards renewable energy. Microalga-based biochemical factories are
regarded as an ideal way of sequestering carbon dioxide and producing
versatile molecules ranging from therapeutic proteins to biofuels (Hu et al.,
2008). CO2 is captured and incorporated into biomass through microalgal
photosynthesis, at an efficiency much higher than that of land plants
(Wobbe et al., 2016). However, few natural strains exhibit the traits
required in feedstock for sustainable and scalable biofuel production (Scott
et al., 2010).Genetic engineeringofmicroalgal species offers a viablemeans
ofoptimizingcrucial processes (Gimpel etal., 2013);however, conventional
genetic engineering strategies for enhancing the production of specific
metabolites relyonmodifying individual genes that encodecomponentsof a
metabolic pathway. These studies have achieved mixed success in
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microalgae; in some cases, the abundance or composition of the targeted
metabolite can remain largely unchanged. An alternative strategy is engi-
neering metabolic or regulatory nodes, which could modify multiple com-
ponentsof ametabolic pathway simultaneously, for instancebyengineering
regulators such as transcription factors (Bajhaiya et al., 2017).

In higher plants, isoprenoids are derived via either the methylerythritol
phosphate (MEP) or mevalonate (MVA) pathways. Most algae (e.g., Nan-
nochloropsis spp.) lack the MVA pathway and rely solely on the MEP
pathway localized in chloroplasts for isoprenoid production (Lu et al.,
2014a). Enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS) catalyzes
the rate-limiting step of the MEP pathway, catalyzing the formation of
1-deoxy-D-xylulose 5-phosphate (DXP) via condensation of D-glyceralde-
hyde 3-phosphate (D-GAP) and pyruvate (Brammer et al., 2011). DXP is
then converted into isopentenyl diphosphate (IPP) and dimethylallyl
diphosphate (DMAPP) (Withers and Keasling, 2007). IPP and DMAPP are
universal precursors for the biosynthesis of a wide range of isoprenoid
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metabolites, such as chlorophylls (Chls), sterols, carotenoids, and a number
of phytohormones, which determine cellular properties critical for growth
or the production of valuable chemicals (Cazzonelli and Pogson, 2010;
Paetzold et al., 2010; Wright et al., 2014). Members of these diverse group
participate in a wide variety of biological processes such as photosynthesis,
respiration, growth, cell cycle control, and stress tolerance (Estevez et al.,
2001),whichare relevant to lipidproductivity.For example,photosynthesis
determines efficiency of CO2fixation, thereby the carbonprecursor for lipid
biosynthesis while growth capacity and stress adaptation determine the
overall biomass production under lipid-biosynthesizing-favored conditions
(e.g., nitrogen depletion and high light). Therefore, DXS could serve as a
control-knob gene of which the manipulation would lead to an increased
biosynthesis of valuable chemicals (e.g., lipid, carotenoids, terpenoids) and
more robust growth or stress tolerance. DXS genes have been isolated in
various organisms (e.g., Arabidopsis thaliana (Wright et al., 2014),Aquilaria
(Xu et al., 2014) and microalga Botryococcus braunii (Matsushima et al.,
2012)) and engineered to enhance stress resistance in poplars (Wei et al.,
2019a), improve the production of terpenoids inArabidopsis (Estevez et al.,
2001;Wrightetal., 2014), tobacco (Wuetal., 2006),bacteriaEscherichia coli
(Martin et al., 2003), and Bacillus subtilis (Xue and Ahring, 2011), and per-
turb life cycle inpotato (Morrisetal., 2006).ManipulationofDXS thusoffers
great opportunities to improve the overall stress tolerance and productivity
of value-added chemicals (Chang and Keasling, 2006; Roberts, 2007).
However, DXS engineering has been very rarely reported so far in micro-
algae (Eilers et al., 2016), particularly the perturbation on stress tolerance
and lipid productivity in industrial microalgae.

Nannochloropsis spp. are a genus of unicellular photosynthetic micro-
algae belonging to the heterokonts. These algae are of industrial interest
because they grow rapidly and can synthesize large amounts of tri-
acylglycerol (TAG) and high-value polyunsaturated fatty acids (FAs; for
example, eicosapentaenoic acid) (Xin et al., 2017). Moreover, they are
excellent researchmodels formicroalgal systems and synthetic biology, due
to their small genome size, simple gene structure (Carpinelli et al., 2014;
Vieler et al., 2012), and demonstrated genetic tools, such as gene over-
expression (Eric et al., 2018; Kang et al., 2015a; Kaye et al., 2015; Koh et al.,
2018), random insertional mutagenesis (Perin et al., 2015), chloroplast
genome engineering (Gan et al., 2017), RNAi-based targeted gene knock-
down (Ma et al., 2017; Wei et al., 2017), and CRISPR/Cas9-mediated
genome editing (Ajjawi et al., 2017; Poliner et al., 2018; Wang et al.,
2016). Investigations are accumulatingonNannochloropsis spp. regarding to
cellular mechanisms of stress-induced TAG synthesis (Li et al., 2014), car-
bon partitioning (Alboresi et al., 2016;Wei et al., 2019b), sterolmetabolism
(Lu et al., 2014b), phytohormone function (Lu et al., 2014a; Lu and Xu,
2015) and transcriptional-factor regulation (Kang et al., 2015b; Kwon et al.,
2018). Therefore, Nannochloropsis spp. can be a premium chassis for sus-
tainable supply of various bioresources for human beings.

Assuming, as indicated by the preceding evidence, that DXS plays
gateway role which could bypass a trade-off between production and
growth, targeting the industrial oleaginous microalga Nannochloropsis oce-
anica, we create transgenic N. oceanica where AtDXS gene encoding 1-
deoxy-D-xylulose 5-phosphate synthase derived from A. thaliana is inte-
grated into the algal genome. The results demonstrate that engineering a
single gateway gene enables efficient carbon partitioning to lipid biosyn-
thesis with boosted environmental tolerance and biomass productivity,
which could be further exploited for simultaneous enhancement of growth
property and oil productivity in more industrial microalgae.

2. Materials and methods

2.1. Growth conditions

N. oceanica was maintained in the dim light on solid modified f/2
medium and inoculated into fresh medium and cultivated in the organ-
ism’s preferred physiological conditions (enriched f/2, 25 �C, and 50
μmol⋅photons⋅m�2⋅s�1 light) (Lu et al., 2014a). In otherwise environ-
mental conditions, light intensity and medium recipe were set as
2

indicated. Nitrogen deprivation was imposed as previously described (Li
et al., 2014).

2.2. Transformation

The AtDXS expression vector was designed as described in the Results
section. A codon-optimized version of the AtDXS was inserted into the
overexpression vector pMEM01. Vectors were constructed as previous
described (Xin et al., 2017). Transformation was conducted by using
electroporation as described in our early publications (Wang et al.,
2016). Transformants were selected on f/2 agar plate containing 2.5 μg
ml�1 zeosin.

2.3. Screening and identification of AtDXS expression microalgae

Colonies appeared after approximately three weeks and were typi-
cally transferred after 25 days. Individually picked colonies were trans-
ferred into liquid culture containing 2.5 μg mL�1 zeosin until the culture
turned into green color. Total RNA isolation and reverse transcriptional
PCR analysis were carried out as previously described (Cui et al., 2018).
The Pvcp-AtDXS fragments were amplified by a pair of gene-specific
primers VCP-F and AtDXS-R (Table S1). The plasmid pMEM01-AtDXS
was used as positive template.

2.4. Phenotyping

Microalgae were cultured routinely in 50 mL conical flasks with 20
mL fresh medium. Growth was monitored by measuring cell number,
turbidity (OD750), or dry weight (DW) at indicated intervals as earlier
description (Gan et al., 2017). Log-phase cells were collected for oxygen
evolution rate measurement using a Clark-type Liquid-Phase Oxygen
Measurement System (Chlorolab-2, Hansatech Ltd, UK) (Dall’Osto et al.,
2019).

2.5. Metabolic analysis

Microalgae were cultured in column photobioreactor in 100 mL fresh
medium bubbling with ambient air. Cells were harvested at the indicated
time via centrifugation at 4 �C and 5000 g min�1 for 5 min, freeze-dried,
and used for lipid analysis. Lipid extraction and TLC analysis of the
neutral lipids were performed as described by Yoon (Cui et al., 2018; Xin
et al., 2017). For TLC analysis, a mixture of normal hexane/diethyl
ether/acetic acid (70/30/1 by volume) was used as the mobile phase for
TAG analysis. TAG was detected by iodine vapor and 50% sulfuric acid.
The carbohydrate content was measured using the phenol-sulfuric acid
method (Dubois et al., 1956). Chl contents were analyzed according to a
previous study (Li et al., 2019). In brief, 1 mL algal culture was centri-
fuged (12,000 g for 3 min) and the supernatant was disposed. Cell pellets
were resuspended in 1 mLmethanol, bead beat with glass beads for 1 min
twice, and left in the dark at 60 �C for 15 min. Then the mixture was
centrifuged at 12,000 g for 15 min to remove cellular debris and the
supernatant was used to determine the pigment contents by measuring
absorbance at 440 nm, 644 nm, 662 nm, 665 nm, and 750 nm.

2.6. Transcriptional analysis

Mid-logarithmic phase algal cells were collected and washed three
times with axenic seawater. Equal numbers of cells were re-inoculated:
(i) in nitrogen replete medium (N-replete condition, or Nþ) and
nitrogen-deprived medium (N-depleted condition, or N-) with 50
μmol⋅photons⋅m�2⋅s�1 light intensity; (ii) grown under constant light
intensities 50 and 200 μmol⋅photons⋅m�2⋅s�1. Cell aliquots were
collected for RNA isolation after being transferred to the designated
conditions for 24, 48, and 72 h. Three biological replicates of algal cul-
tures were established under each of the above conditions, respectively.
To isolate total RNA, cells were harvested by centrifugation at 6000 rpm
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for 5 min, frozen in liquid nitrogen, and stored at �80 �C. Total RNA was
extracted using an Eastep® Super Total RNA Extraction Kit (Promega,
Shanghai). The 2�ΔΔCT method was used to quantify relative changes in
transcript levels from the qPCR data. Levels of the transcripts under in-
dividual treatment at each time point were firstly normalized to actin
expression levels. Then the obtained values of each gene were normal-
ized to the values in the control treatments at the corresponding time
point. Values are means and standard errors obtained from three exper-
iments. Primers are listed in Table S1.

2.7. Statistical analysis

To ensure reproducibility, the experiments were all performed with at
least three biological replicates. Each of the values presented corresponds
to a mean � SD. Statistical analyses were performed using the SPSS
statistical package.

3. Results

3.1. Generate transgenic Nannochloropsis oceanica

DXS is the first and committed enzyme of the MEP pathway (Fig. 1a).
AtDXS (AT4G15560) was employed and codon-optimized based on the
codon frequency in N. oceanica (Wang et al., 2014) (Supplementary
Dataset 1). The AtDXS vector harbors a full-length AtDXS gene and a
codon-optimized zeosin resistance (eBle) gene, each of which is driven by
an endogenous promoter and terminator (Fig. 1b). Specifically, the
AtDXS gene is driven by the violaxanthin/chlorophyll a binding protein
promoter (Pvcp) and terminated by the α-tubulin termination (Tα-tub)
region. Expression of the eBle gene is driven by the β-tubulin promoter
(Pβ-tub) and terminated by the violaxanthin/chlorophyll a binding pro-
tein terminator (Tvcp). The proper in vivo functioning of each of these
regulatory elements in the algal cells was validated individually. Tran-
scription and translation of the eBle gene were verified by selecting
Fig. 1. Overexpression of AtDXS gene in N. oceanica. (a) Postulated isoprenoid biosy
Enzyme abbreviations: DXS, 1-deoxy-D-xylulose 5-phosphate synthase. Abbreviations
phosphate; MEP, methyl erythritol phoshphate; HMBPP, hydroxymethylbutenyl4-di
GPP, geranyl diphosphat; GGPP, geranylgeranyl diphosphate. Abbreviations for inhibi
AtDXS. Abbreviations: Pβ-tub, β-tubulin promoter; eBle, codon-optimized zeosin resis
violaxanthin/chlorophyll a binding protein promoter; AtDXS, codon-optimized gene
tub, α-tubulin termination region. Arrows indicate the primers used for validation P
nochloropsis transformants. Arrow indicates the PCR product with expected size of 1
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transformants on f/2 plates supplemented with 2.5 μg mL�1 zeosin. The
transcription and mRNA stability of the AtDXS gene were validated via
reverse transcriptase PCR, which confirmed a significant level of tran-
scription in algal transformants (Fig. 1c). For the transgenic lines, PCR
products with a length of 1612 bp were confirmed by sequencing.

3.2. Growth feature of transgenic microalgae under different conditions

In the organism’s preferred physiological conditions, proliferation of
the transgenic strains was faster thanwild-type cells (Fig. S1a). Among all
the selected transgenic lines, the cell number was approximately 17.8%
more at the maximal than that of the WT at the end of detection
(Fig. S1a). Among the transgenic lines, the ones exhibiting fastest growth
were selected for further investigations and nominated as AtDXSoe1,
AtDXSoe2, and AtDXSoe3 (Fig. 2a). We next examined the growth of the
microalgal cells under stress conditions (low light, high light, nitrogen
depletion, and trace-element depletion). WT and transgenic cells were
cultivated at two different light intensities: low light (LL; 10
μmol⋅photons⋅m�2⋅s�1) and high light (HL; 200 μmol⋅photons⋅m�2⋅s�1).
Regardless of light intensities, transgenic strains grew faster than WT
(Fig. S1b). Specifically, at the end of the measurement period, the
biomass of AtDXSoe3were ~80.7% and~171.0% higher than that ofWT
in LL and HL conditions, respectively (Fig. 2b).

Nitrogen depletion is practically employed to boost lipid accumula-
tion in microalgae. Following nitrogen depletion, compared with theWT,
the growth rate of the three transformants was higher (Fig. S1c), which
eventually produced 5.0%, 3.3%, and 19.7% more biomass, respectively
(Fig. 2b). Trace elements (TEs) starvation occasionally encounters in
outdoor microalgal cultivation. Compared to WT, the growth of the
transgenic strains was slightly faster than WT in TE-depleted conditions
(Fig. S1d). All three transgenic lines (AtDXSoe3 in particular; 36.3%
higher than the WT) produced more biomass than WT at the end of
detection under such conditions (Fig. 2b). The AtDXS overexpression,
particularly AtDXSoe3, therefore appears to grow more robust than WT
nthesis pathway in N. oceanica, and sites of action of inhibitor clomazone (CLO).
for metabolites: GAP, D-glyceraldehyde 3-phosphate; DXP, 1-deoxy-D-xylylose 5-
phosphate; DMAPP, dimethylallyl diphosphate; IPP, isopenenyl pyrophosphate;
tors: CLO, clomazone. (b) The core region of the overexpression vector pMEM01-
tance gene; Tvcp, violaxanthin/chlorophyll a binding protein terminator; Pvcp,
encoding 1-deoxy-D-xylulose 5-phosphate synthase derived from A. thaliana; Tα-
CR (VCP–F and AtDXS-R). (c) PCR amplification of the genomic DNA of Nan-
612 bp. Abbreviations: PC, positive control; T1-T10: transformants.



Fig. 2. Growth behavior of wild-type
N. oceanic (WT) and the AtDXS over-
expression strains (AtDXSoe). (a) Growth
curve of the WT and the AtDXSoes. Algal
cells were cultured in enriched f/2 medium
in 25 �C, and 50 μmol⋅photons⋅m�2⋅s�1 light.
(b) Relative biomass of the WT and the
AtDXSoes. All values were normalized to the
dry weight of WT cultured in the control
conditions (set as 100%). Abbreviations: Ctrl,
preferred physiological conditions (enriched
f/2, 25 �C, and 50 μmol⋅photons⋅m�2⋅s�1

light intensity); LL, 10 μmol⋅photons⋅m�2⋅s�1

light; HL, 200 μmol⋅photons⋅m�2⋅s�1 light;
N-, nitrogen depleted conditions; TE, trace-
element free conditions. Data are presented
as means � SDs (n ¼ 4). Asterisks (*) indi-
cate statistically significant differences be-
tween the WT and the transformants in
designated conditions (P values � 0.05).
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across various environmental and nutritional conditions. Therefore, we
selected AtDXSoe3 for further investigations.

3.3. AtDXS overexpression attenuates clomazone (CLO) inhibition

Pharmaceutical azole drug CLO highly specifically inhibits DXS
(Fig. 1a). Chl contents per cell decreased in both WT and AtDXSoe3
following CLO administration presumably by limiting IPP supplies to Chl
biosynthesis pathway (Fig. 3a). Nevertheless, AtDXSoe3 with CLO inhi-
bition showed higher levels of Chl than WT (Fig. 3a). In particular, after
CLO application for four days, AtDXSoe3 cells produced ~10.9% more
Chl than the WT. While the decrease of Chl led to a concomitant decrease
in growth of both WT and AtDXSoe3, the cell numbers of former
decreased (~42.6%) more dramatically than AtDXSoe3 (~6.3%) at the
end of detection (Fig. 3b).

3.4. AtDXS overexpression strains have a higher CO2 absorption capacity

To probe the physiological mechanisms underpinning the robustness
of growth of AtDXSoe3, the light-saturation curve of photosynthesis was
measured under in vivo conditions (Fig. 4). In general, AtDXSoe3 showed
a higher O2 evolution rates than the WT. Specifically, the photosynthetic
rates at 200 μmol⋅photons⋅m�2 s�1 were 1.6 μmol O2⋅mg�1 Chl⋅min�1 for
AtDXSoe3, which was 60% greater than that of the WT (1.0 μmol
O2⋅mg�1 Chl⋅min�1). Within a light intensity range from 0 to 400
μmol⋅photons⋅m�2⋅s�1, photosynthetic activity increased as a function of
4

irradiance. The increase was linear for AtDXSoe3 and WT, specifically in
the region between 0 and 100 μmol⋅photons⋅m�2⋅s�1 light intensity
(Fig. 4). The slope of these linear regressions was measured to be 0.33
and 0.17 in relative units for AtDXSoe3 and WT, respectively. Photo-
synthetic activity in either WT or AtDXSoe3 saturated at approximately
500 μmol⋅photons⋅m�2⋅s�1. Higher light intensities did not bring about
any further increase in the rate of photosynthesis (Fig. 4). Combined with
the higher Chl contents in the transgenic cells, it would explain their
higher overall CO2 absorption capacity which potentially contributes to
the more robust growth of engineered cells than the WT.
3.5. Production of sugars and their derivatives (SDs) in transgenic
microalgae

SDs includes simple sugars, oligosaccharides, polysaccharides, and
their derivatives, such as the methyl ethers with free or potentially free
reducing groups (Dubois et al., 1956). AtDXSoe3 produced 59.8% more
SDs than WT in 10 μmol⋅photons⋅m�2⋅s�1 (LL in Fig. 5). As the light in-
tensity increased, SDs of WT peaked at 50 μmol⋅photons⋅m�2⋅s�1 (Ctrl in
Fig. 5) while subtle difference was observed between 50 and 200
μmol⋅photons⋅m�2⋅s�1 (HL in Fig. 5). In contrast, the SD contents of
AtDXSoe3 increased as the intensities rose from 50 to 200
μmol⋅photons⋅m�2⋅s�1 (Fig. 5). At the end of the measurement period,
the SD contents of AtDXSoe3 was ~89.2% higher than that of WT in 200
μmol⋅photons⋅m�2⋅s�1 (Fig. 5). In nitrogen-depleted conditions, levels of
SDs in AtDXSoe3 was ~75.0% more than the WT while the difference
Fig. 3. Growth performance of wild-type
N. oceanic (WT) and the AtDXS over-
expression strains (AtDXSoe) following in-
hibitor clomazone (CLO) administration. (a)
Chlorophyll contents of WT and the AtDXSoe
following CLO administration. (b) Growth
curve of the WT and the AtDXSoe following
CLO administration. Algal cells with an
identical starting concentration (4 � 107

cells⋅mL�1) were applied with CLO or equal
amount of DMSO (mock controls) and
cultured in enriched f/2 medium in 25 �C,
and 50 μmol⋅photons⋅m�2⋅s�1 light. Data are
presented as means � SDs (n ¼ 4). Asterisks
(*) indicate statistically significant differ-
ences between the WT and the transformants
in designated conditions (P values � 0.05).



Fig. 4. O2 evolution of wild-type N. oceanic (WT; closed circles) and the AtDXS
overexpression lines (AtDXSoe; open squares). Data are presented as means �
SDs (n ¼ 3).

Fig. 5. Relative carbohydrate levels of wild-type N. oceanic (WT) and the AtDXS
overexpression lines (AtDXSoe) in different conditions. All values were
normalized to the carbohydrate content of WT in control conditions (set as
100%). Abbreviations: Ctrl, preferred physiological conditions (enriched f/2, 25
�C, and 50 μmol⋅photons⋅m�2⋅s�1 light intensity); LL, 10 μmol⋅photons⋅m�2⋅s�1

light; HL, 200 μmol⋅photons⋅m�2⋅s�1 light; N-, nitrogen depleted conditions; TE,
trace-element free conditions. Data are presented as means � SDs (n ¼ 4). As-
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was further increased to ~223.6% when algal cells were cultured in
TE-deprived conditions (Fig. 5).
terisks (*) indicate statistically significant differences between the WT and the
transformants in designated conditions (P values � 0.05).
3.6. Lipid productivity of transgenic microalgae

While stress conditions, such as low light, high light, nitrogen
depletion, and trace-element depletion, are occasionally encountered in
batch culture of microalgae, lipid production in the many microalgae,
including Nannochloropsis sp. are generally maximized by nutrient star-
vation (Ajjawi et al., 2017; Li et al., 2014) or high light (Alboresi et al.,
2016). Thus, nitrogen depletion and high light are practically employed
to boost lipid accumulation in microalgae. To best display the lipid
production capacity of AtDXSoe3, we further investigated the difference
in lipid productivity between WT and AtDXSoe3 in nitrogen-depleted
and high-light conditions. AtDXSoe3 accumulated higher levels of total
lipids (TLs; Fig. 6a) and neutral lipid (TAG, the main source for biodiesel;
Fig. 6b) than the WT in both nitrogen-depleted and high-light conditions.
For example, upon high irradiance, the TLs (79.9 � 3.0% of DW; Fig. 6a)
and TAG (55.6� 1.9% of DW; Fig. 6b) in AtDXSoe3 increased by~65.3%
and ~95.1% relative to the WT. On the other hand, following nitrogen
depletion, the TL (70% of DW; Fig. 6a) and TAG (50.1% of DW; Fig. 6b)
contents in AtDXSoe3 were 42.3% and 62.9% higher than that of the WT,
respectively. Meanwhile, the DW of AtDXSoe3 (1.54 g L�1) was 119%
that of WT in nitrogen depletion conditions, which translated to a total
lipid production of 1.08 g L�1 and a TAG productivity of 0.77 g L�1 in
AtDXSoe3, with 68.8% and 93.2% increases compared with that of WT.
As for high light conditions, the discrepancy increased to 110.6% for TLs
and 148.6% for TAG, where production of 1.15 g L�1 (TLs) and 0.80 g L�1

(TAG) were obtained in AtDXSoe3 (Fig. 6c). These values are competitive
with records in oil production in engineered microalgae, such as Phaeo-
dactylum tricornutum (TLs, 57.8% of DW) (Xue et al., 2015) or N. gaditana
(TLs, 40–55% of DW in mutant in nutrient-replete conditions) (Ajjawi
et al., 2017). Therefore, AtDXSoe3 exhibits considerable advantages as a
feedstock for the production of lipids and TAG which can be exploited as
value-added chemicals for nutrient supplements or biofuels.

4. Discussion and conclusions

Isoprenoids are a group of biologically active molecules number in
the tens of thousands. Members of this diverse group participate in a wide
5

variety of biological processes such as photosynthesis, respiration,
growth, cell cycle control, plant defense, chloroplast biogenesis, and
adaptation to environmental conditions (Estevez et al., 2001). Specific
examples include photosynthetic pigments (Chls and carotenoids),
structural components of membranes (phytosterols), a side chain of the
electron transporter (plastiquinone), and antimicrobial agents (phyto-
alexins in plants) (Lu et al., 2014b).

Here we show that the photosynthetic capacity, growth, stress toler-
ance, and lipid biosynthesis in Nannochloropsis are simultaneously
improved by expressing an exogenous DXS gene. While the rationale
behind remain to be illuminated in details, we saw a down-regulation of
the transcript of endogenous Nannochloropsis DXS gene in high-light
conditions (unpublished data) and nitrogen-depleted (Li et al., 2014).
We speculate that the overexpression of AtDXS compensates the
decreased transcript levels of endogenousDXS gene inN. oceanica at least
under high-light or nitrogen-depleted conditions.

Meanwhile, comparison between transcripts in AtDXSoe3 and WT
showed different abundance of N. oceanica dxs and genes encoding
committed enzymes involved in photosynthesis (ribulose bisphosphate
carboxylase large subunit, RBCL), isoprene biosynthesis (isopentenyl
pyrophosphate, IPP), sterol biosynthesis (squalene synthase, SQS),
carotenoid biosynthesis (phytoene synthase, PSY), neutral lipid (diac-
ylglycerol acyltransferase, DGAT1A and DGAT2A), and phytohormone
biosynthesis (zeaxanthin epoxidase ZEP and 9-cis-epoxycarotenoid
dioxygenase NCED in abscisic acid biosynthesis; isopentenyltransferase
IPT in cytokinin biosynthesis; ent-kaurene oxidase KO and ent-kaurenoic
acid oxidase KAO in gibberellin biosynthesis) . For example, under high-
light conditions, transcripts of RBCL and ZEP were lower whereas IPP,
SQS, PSY, DGAT2A, IPT, KO, KAO were higher in AtDXSoe3 than WT .
Following nitrogen starvation, DXS was moderately downregulated
whereas PSY, HEMA, DGAT1A, NCED, IPT, KO, and KAO were upregu-
lated in AtDXSoe3 relative toWT at least in one time point . IPP and RBCL
showed transient downregulation, with its transcript levels peaking at 48
h or 72 h following the onset of nitrogen depletion . Downregulation of
ZEP occurred rapidly within the 24 h upon nitrogen starvation, returned



Fig. 6. Lipid production of the WT and the AtDXSoes in nitrogen depleted or high-light conditions. (a) Total lipid contents; (c) TAG contents; (c) Lipid productivities.
Abbreviations: HL, 200 μmol⋅photons⋅m�2⋅s�1 light; N-, nitrogen depleted conditions; TLs, total lipids; TAG, triacylglycerol. Data are presented as means � SDs (n ¼
4). Asterisks (*) indicate statistically significant differences between the WT and the transformants in designated conditions (P values � 0.05).
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to a moderately increased level at 48 h and declined thereafter . Photo-
synthesis and the rates of biosynthesis of isoprene, sterol, neutral lipid
TAG, and phytohormones are thus regulated in AtDXSoe3 compared with
WT as part of the response to nitrogen depletion and high light. This
strongly suggests that overexpression of AtDXS perturbs at least photo-
synthesis and the biosynthesis of isoprene, sterols, lipids, and phyto-
hormones in N. oceanica. Meanwhile, we saw increased levels of Chls in
the engineered microalgal cells. It may suggest that AtDXS over-
expression in Nannochloropsis could lead to an elevated activity of the
MEP pathway and increased production of IPP and DMAPP which serve
as common precursors for the biosynthesis of various downstream iso-
prenoid derivatives. A higher activity of the MEP pathway might
contribute to higher Chl contents in AtDXSoe thanWT. This hypothesis is
supported by the observation that the AtDXS overexpression lines, rela-
tive to WT, demonstrate alleviated inhibition in Chl accumulation
following the supplementation of pharmaceutical azole drug CLO, which
inhibits DXS activity. Moreover, isoprenoids are precursors for many
signaling molecules that regulate growth and development in plants,
such as plant hormones (abscisic acid, gibberellins, cytokinins, and
brassinosteroids) (Lu et al., 2014a). These hormones regulate crucial and
economically relevant processes such as development, dormancy,
germination, vegetative growth, and stress responses in flowering plants
and emerging evidence supports an early origin and broad functions of
the hormone systems in microalgae (Lu and Xu, 2015). Therefore, an
elevation of DXS activity may in turn contribute as a switch-on control
regulating biological processes such as photosynthesis (through pigment
biosynthesis), electron transport (perturbing on plastiquinone biosyn-
thesis), or many other processes (e.g., stress tolerance; through the
regulation of hormones). These effects could jointly lead to improved
growth, stress tolerance, and favored carbon allocation towards lipid
biosynthesis.

In summary, a high lipid production strain Nannochloropsis AtDXSoe3
was generated by overexpressing Arabidopsis DXS gene. Assessment of
growth and production performance in different environmental and
nutritional conditions (low light, high light, nitrogen starvation, and
trace element depletion) pinpoints the stable and robust characteristics of
AtDXSoe3. These results have important implications for the viable
development of trait-improved industrial strains with simultaneously
improved lipid biosynthesis and biomass productivity by engineering a
single ‘control knob’ gene.
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