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Abstract: Cassava plays a major role in improving food security and reducing malnutrition. The
purpose of this study was to evaluate the influence of mechanical pressing coupled with ultrafiltration
(UF) on the quality of different fractions of cassava leaves. Cassava leaves harvested from the
greenhouse at the University of Hohenheim were passed through a mechanical screw press to
extract the juice and separate the press cake. The juice was centrifuged and filtered to separate
the sediment and clear supernatant. The clear supernatant was filtered using a 10 kDa UF system.
The nutritional contents of the different fractions were analyzed at each processing step. The total
phenolic content was significantly lower in the press cake that had a higher fiber and ash content.
The juice and sediment fractions had higher crude protein and total phenolic content. Processing did
not negatively affect the concentrations of essential amino acids except for tryptophan in the juice
fraction. Non-protein nitrogen was mainly present in the UF permeate, illustrating the potential of
UF for upgrading soluble protein fractions. The results indicated that the different fractions during
processing could be a possible source of protein for food, feed (juice, sediment, and retentate), or
fiber (press cake) for ruminant feed.

Keywords: cassava leaves; juice; press cake; mechanical pressing; ultrafiltration; mild process-
ing; fractionation

1. Introduction

Most of the global agricultural food production focuses on meeting energy require-
ments but the main cause of malnutrition is a shortage of proteins and vitamins in the
diet [1]. The use of alternative nutritional plant sources like cassava increases access to a
balanced diet by providing good amounts of protein and other essential nutrients without
expanding production areas [2]. Cassava (Manihot esculenta Crantz), mainly cultivated for
its root, is the world’s seventh most important crop in terms of production and it is the
main food crop in many countries within the tropics [3]. Cassava plays a major role in
improving food security and reducing malnutrition with its tolerance to extreme conditions,
efficient energy production, and year-round availability [4–6]. The Cassava root is rich in
carbohydrates but low in protein and vitamins [7]. Conversely, the leaf, a by-product of the
cassava root harvest, is a good source of crude protein (CP) (11.8–38.1 g 100 g−1

DM) and
minerals [5,7–10] in addition to vitamins A, B1, B2, and C. Cassava leaves have the same
yield as the roots in terms of fresh material [11,12]. Several researchers have confirmed the
nutritional potential of cassava leaves as a complementary supplement to starchy diets
if properly detoxified for both human consumption and animal feed [7,9,13,14]. Its nutri-
tional content varies depending on the type of variety, cultivar, age of the plant, harvesting
frequency, and processing methods [8,15].

Foods 2021, 10, 1714. https://doi.org/10.3390/foods10081714 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0001-8144-3695
https://orcid.org/0000-0003-4623-5879
https://doi.org/10.3390/foods10081714
https://doi.org/10.3390/foods10081714
https://doi.org/10.3390/foods10081714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10081714
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods10081714?type=check_update&version=2


Foods 2021, 10, 1714 2 of 13

Despite the huge potential of cassava leaves, they have not been widely incorporated
into the food system as an alternative protein source [9]. The main reason for this is their
high fiber content and the presence of anti-nutritional compounds including polyphenols,
phytates, nitrates, saponins, oxalates, and cyanogenic compounds in the leaves [8,16–18].
To reduce the anti-nutritive properties and increase the nutritional value of the leaves,
various processing techniques have been developed [19–22]. The most widely practiced
processing techniques to use the leaves as food at the household level involves crushing,
boiling, washing, and cooking [13]. However, the application of heat during leaf pro-
cessing results in large losses of protein, thiamin, riboflavin, nicotinic acid, and vitamin
C [21–23]. There is also a huge loss of amino acids, especially methionine and cysteine,
during cassava leaf processing [23]. Protein extraction methods for cassava leaves with
simultaneous detoxification and removal of anti-nutrients could be a good option for the
efficient utilization of protein [7].

Several attempts have been made previously to extract protein from cassava leaves but
the results indicated limitations in essential amino acids and protein recovery [7,15,16,20].
Generally, protein extraction from leaves involves four major steps: tissue disruption by
mechanical treatment and separation of fiber; protein precipitation; protein concentration;
and protein purification [15,17,24]. Screw pressing at both the lab and pilot scale is an
efficient way to separate the fiber and extract the green juice from the leaves [25,26]. The
green juice contains soluble proteins but also chlorophyll, chlorophyll-related proteins,
membrane fragments, and other unwanted compounds [25]. The proteins in this fraction
may be used for food or feed. The remaining cassava press cake produced during pressing
can also be a good source of animal feed but for different applications as a more fiber rich
feed with different types of protein [7]. From the green protein fraction, particulates and
chlorophyll still need to be removed. This broadens the acceptance of the soluble protein
from the plant juice [27]. The white protein, mainly RuBisCO (ribulose-1,5-bisphosphate-
carboxylase/oxygenase), usually amounts to about 50% of the soluble proteins in the leaf.
This value can vary between 40–60% depending on the extraction process and plant source
type [17,25].

White protein can be further purified from the leaf concentrate by combining different
methods such as pH or heat precipitation, organic solvent precipitation, and floccula-
tion [28]. The combination of these steps allows for the removal of green fractions, grassy
smells, green color, and bad tastes from the juice. This improves the functional properties
of the white fraction [25]. The process to obtain a functional white fraction increases the
possible use of existing bio-resources through milder extraction methods that preserves
protein functionality and achieves food-grade products [24]. The white fraction from the
extraction can be further filtered through membranes to obtain a protein product with high
solubility and more concentrated protein isolates [25,29]. Separation through a membrane
is very efficient in improving the sensory and nutritional properties while obtaining natural
fresh-tasting, additive-free, and high-quality products. The separation process does not
require heat or the use of chemical agents [30]. Ultrafiltration (UF) is a pressure-driven
membrane process that can be used to fractionate mixtures based on different molecular
weights [31].

Determination of the proximate composition and protein profiling during the process-
ing of cassava leaves will provide insight into its further use as an alternative food crop [9].
Different methods can be applied to characterize proteins including the determination
of amino acid composition and molecular weight. The commonly engaged technique to
estimate the molecular weight is sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis (SDS-PAGE) [9]. Leaf protein from many plant sources generally possesses a good
amino acid composition but can lack methionine. Methionine and lysine in plant leaves
are also easily destroyed during extraction, drying, and storage, resulting in the inferior
nutritional value of the leaf protein [32]. One previous attempt was made by Castellanos
et al. [33] to concentrate cassava leaf protein by employing UF but the nutritional value
of the fractions during processing was not addressed. Therefore, the potential nutritional
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value indicated by the amino acid composition of different fractions of cassava leaves,
which were gently extracted by mechanical pressing and UF without applying heat, was
evaluated in this study.

2. Materials and Methods
2.1. Leaf Processing

Cassava leaves from six month-old plants grown in a greenhouse at the University
of Hohenheim were harvested and taken to the laboratory. The leaves were ground in
a kitchen chopper for 10 s at a speed of 10,200 rpm to reduce their size (Thermomix
TM31, Vorwerk, Cloyes, France). The juice was extracted through a mechanical screw
press with a 4 mm nozzle diameter and a screw speed of 18 rpm (CA59G, IBG Monforts
Oekotec, Mönchengladbach, Germany) [26]. The leaf press cake was produced as a co-
product. Separation of the supernatant and sediment from the juice fraction was achieved
by centrifuging the juice at 6 ◦C and 13,500 rpm for 30 min (Z 326 K, Hermle Labortechnik
GmbH, Wehingen, Germany). To avoid fouling of the membrane, the supernatant was
filtered twice using 12 µm paper and then vacuum filtered through 1 µm filter paper
(Figure 1).

2.2. Ultrafiltration Unit and Procedures

The molecular weight cut-off for the UF system was selected based on the SDS-PAGE
result of the supernatant and previous reports of the cassava protein molecular weight of
different varieties [9]. UF was run in a lab-scale tangential flow filter system (TFF 29751,
Merck, Bangalore, India) equipped with a 10 kDa pellicone cassette composite regenerated
cellulose membrane with 0.005 m2 filtration surface. To separate the retentate and permeate
fractions, the processed clear cassava supernatant was passed through a membrane with
35 PSI transmembrane pressure (TMP), calculated as

TMP =
Pf + Pr

2
− Pp (1)

where Pf, Pr, and Pp are the feed pressure, retentate pressure, and permeate pressure,
respectively, given in PSI.

For UF, the volume concentration ratio (VCR) that relates to the concentration degree
was calculated as follows [34]:

VCR =
Vf

Vr
(2)

where Vf is the initial feed volume and Vr is the final retentate volume, both in mm.

2.3. Mass Fractions and Dry Matter

The mass fraction MFn of the n = 6 fractions during processing was calculated accord-
ing to Equation (3):

MFn =
mn

mini
·100 (3)

where mn is the mass of fraction n and mini is the initial mass of the sample.
The mass loss of processing methods was calculated by the difference from the initial

weight. MF during processing was reported on a fresh matter (FM) basis.
Additionally, the samples were dried in an oven at 105 ◦C for 12 h [35] to calculate the

dry matter (DM) content.



Foods 2021, 10, 1714 4 of 13

Figure 1. Cassava leaf processing via mechanical pressing and ultrafiltration.

2.4. Crude Protein (CP)

The CPn content of the six processing fractions was measured by the Kjeldahl method
using the Kjeldahl analysis system (Vapodest 500, C. Gerhardt GmbH & Co. KG, Königswin-
ter, Germany) according to the manufacturer’s guidelines. The CPn content was calculated
with a conversion factor of 6.25. The results are expressed in g per 100 g of DM (g
100 g−1

DM).

2.5. Total Phenolic Content

The total phenolic content (TPC) was determined by the Folin-Ciocalteu reagent
method [36]. A sample of 1 g mL−1 was diluted in 3 mL 80% methanol, then mixed,
and placed in a 60 ◦C water bath for 20 min. It was then centrifuged at 13,500 rpm for
10 min (Z 326 K, Hermle Labortechnik GmbH, Wehingen, Germany). The supernatant was
transferred to a 10 mL volumetric flask where the residue was mixed again with 3 mL of
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80% methanol and centrifuged. The supernatant was combined with the previous volume
and was adjusted to 10 mL with 80% methanol. The extracted solution was kept at 4 ◦C
until the analysis. The sample and standard were incubated for 2 h at room temperature in
the dark using 80% methanol as a blank. The absorbance of the standards and the samples
was measured using a UV-spectrophotometer (DR6000, Hach Lange, Düsseldorf, Germany)
at 725 nm. The standard calibration curve was prepared with a gallic acid stock solution
at 0.005 to 0.1 mg mL−1 (Figure A1). The TPC content was expressed as the gallic acid
equivalent (GAE) (mg GAE g−1

DM for solid fractions; mg GAE mL−1 for liquid fractions).

2.6. Amino Acid Profile

The amino acid profile was determined by an amino acid analyzer system (Biochrom
30, Cambridge, England) according to the methods described in the European Commission
regulation, number 152/2009 [37].

2.7. SDS-PAGE Analysis

Proteins from the clarified supernatant, retentate, and permeate were investigated
through sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) [38]. A
supernatant of 5 µL in addition to 1, 5, and 10 µL of retentate and permeate were TCA-
precipitated, boiled in an SDS-loading buffer for 5 min, and loaded on a 12% acrylamide
SDS-gel. A protein standard (NEB Biolabs, England) was also incorporated into the gel to
determine the molecular weight of the bands. After the gel was run at 100 V for 60 min,
proteins were fixed and stained with Coomassie Brilliant Blue in isopropanol–acetic acid.
The gel was photographed after destaining.

2.8. Neutral Detergent Fiber, Acid Detergent Fiber, Acid Detergent Lignin, and Ash Content

The neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent
lignin (ADL) were measured before and after pressing by AOAC [35] using the official
method 973.18 (FibreBag Analysis System FBS6, Gerhardt GmbH & Co. KG, Königswinter,
Germany). The ash content of the different fractions of the samples was determined by
using a muffle furnace as described in AOAC [35] using the official method 923.03. The
results are expressed on a DM basis (g 100 g−1

DM).

2.9. Statistical Analysis

One-way analysis of variance (ANOVA) was conducted for the data obtained from
three independent replicates, except for the amino acid profile (two replicates), using
the SAS statistical software package (version 9.2, SAS Institute Inc., Cary, NC, USA). The
statistically significant difference of the means was defined as p ≤ 0.05 using Tukey’s honest
significant difference test.

3. Results
3.1. Mass Balance

The fresh cassava leaves, press cake, juice, sediment, retentate, and permeate had an
average DM content of 22.6, 11.0, 57.4, 32.7, 7.0, and 5.0%, respectively.

After mechanical pressing, the press cake represented 22.0% of the initial mass on
average and the juice 69.2%. This result was in line with previous results that also obtained
70% green juice from alfalfa leaves [39]. The average weight loss from the process of
pressing and clarifying of the juice via centrifugation was 8.8% and 4.0%, respectively. By
centrifugation and filtration, 6.1% sediment and 59.1% clear supernatant were obtained
from cassava leaves (Figure 2a). After UF, a VCR of 4.1 was achieved with an average of
13.9% retentate and 38.7% permeate. The holdup volume (remaining liquid in the system’s
piping and filter modules) will vary depending on the design of the piping, optimized total
membrane area, and the design of the processing plant [40]. The average holdup volume
from the current UF was 11.7% but this could be lowered by reducing the membrane
area in the cassettes and using smaller UF systems with shorter piping designs [41]. The
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crude protein yield from pressing resulted in a higher amount of protein in the press cake
(47.2%) in comparison with the juice (34.93%). After centrifugation and UF, the higher
crude protein yield was found in the sediment (17.94%) and permeate (7.79%), respectively
(Figure 2b).

Figure 2. (a) Mass balance and (b) protein yield (%) of cassava leaf processing fractions after mechanical pressing,
centrifugation, and ultrafiltration (UF) on a fresh matter basis.

3.2. Crude Protein

The CP content was significantly (p < 0.05) higher in the sediment (45.5 g 100 g−1
DM)

and lower in the permeate (13.9 g 100 g−1
DM) fraction (Figure 3a). The CP content of

the fresh leaves (33.6 g 100 g−1
DM) was high due to the young age of the plants used

in the experiment [10]. After mechanical pressing, the juice (35.0 g 100 g−1
DM) had a

significantly higher CP content than the press cake (28.4 g 100 g−1
DM), which is similar to

alfalfa pressing with a twin-screw extruder [39]. The high CP content in the sediment is in
line with previous findings for sugar beet [24] and alfalfa leaves [39]. After centrifugation,
some of the protein was still linked to the cell walls and/or was insoluble, and resulted in
the higher CP content of the sediment fraction [39]. Teo et al. [42] stated that the protein
content of cassava leaf protein concentrate might vary from 40 g to 70 g 100 g−1

DM based
on the extraction method. Research conducted by Urribarrí et al. [17] on a cassava leaf
protein extraction by enzymatic hydrolysis (cellulase and xylanase) demonstrated a higher
CP content (36.4 g 100 g−1

DM) from the fresh leaves (18.6 g 100 g−1
DM). Another study

by Castellanos et al. [33] also reported that the content of the cassava leaf protein after
thermocoagulation (42.9 g 100 g−1

DM) and UF using 40 kDa membrane (43.9 g 100 g−1
DM)

was high compared to the fresh leaves (22.0 g 100 g−1
DM). In the current study, a CP content

of 34.7 g 100 g−1
DM was concentrated in the retentate fraction. The different compositions

of the individual fractions compared to other studies could be attributed to the different
processing methods such as membrane cut-off or the variety and age of the plant [24,30].
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UF was efficient in concentrating the crude protein that was indicated by the extremely low
content in the permeate fraction. This is similar to reports for tea leaves with 20 kDa [43].

Figure 3. Nutritional content of cassava leaf processing fractions. (a) Crude protein CPn, (b) ash, and
(c) total phenolic content (TPC). Means marked by different letters are statistically different (n = 3;
Tukey test, p ≤ 0.05).

3.3. Ash

The percentage of ash, an indication of the total mineral content of the fractions, varied
from 1.3 g 100 g−1

DM for the permeate to 4.0 g 100 g−1
DM for the press cake fraction during

processing. This result is lower than that which was reported by Oresegun et al. [44]
for different cassava varieties (2.7–5.6 g 100 g−1

DM). The young age of the plant used
in this experiment played a role in the low ash content (2.2 g 100 g−1

DM) of the fresh
leaves [10]. In general, cassava leaves have a lower ash content compared to other plant
leaves used for protein extraction such as sugar beet (20 g 100 g−1

DM) [24], Solanum africana
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(19.4 g 100 g−1
DM), Amaranthus hybridus (22.3 g 100 g−1

DM), Telfaria occidentalis (11.4 g
100 g−1

DM), and Vernonia amygdalina (9.5 g 100 g−1
DM) [45]. During mechanical pressing

and centrifugation, the ash content in the press cake and sediment was significantly higher,
while the reverse was true for the juice, permeate, and retentate fractions (Figure 3b).
Other experiments suggested that the ash content of cassava leaves did not change after
pounding, grinding, and cooking for 30–60 min [46], whereas the juice extraction of sugar
beets with a screw press resulted in a higher ash content in the juice (31.0 g 100 g−1

DM) than
in the sediment (16.8 g 100 g−1

DM) [24]. The low ash content in the permeate and retentate
is an indication of the low mineral content in these fractions. This is in line with reports
for the UF of Atriplex lampa leaves (10 kDa membrane) that resulted in a reduction of the
ash content from 40% to 23% [31]. The current results differed from research conducted by
Castellanos et al. [33] that stated that the ash content of cassava leaves was higher (6.0 g
100 g−1

DM) after UF (40 kDa membrane) than in the fresh leaves (5.7 g 100 g−1
DM). This

deviation might be due to the difference in plant age, variety, and/or processing methods.

3.4. Total Phenolic Content

TPC, known for its ability to bind proteins and essential minerals, was reduced by
55.7% in the press cake fraction (Figure 3c). Research by Nur et al. [47] indicated that
the TPC in cassava leaves could range from 9.1 to 11.5 mg GAE g−1 which is similar to
the current finding for fresh leaves. After pressing and centrifuging, most of the TPC
moved to the juice and sediment fractions (Figure 3c), indicating that TPC is soluble. This
could furthermore be related to the positive correlation of TPC and protein content due to
possible covalent bonds between them [48]. The molecular weight of tannins, a constituent
of most of the TPC in cassava leaves, was greater than 5 kDa [49] and this led to a higher
TPC content in the retentate fraction after UF. This was also true for the UF of Castanea
sativa leaves using a 5 kDa membrane, resulting in a higher amount of TPC in the retentate
fraction [50]. Other processing methods such as boiling cassava leaves can reduce TPC in
the leaves by as much as 32% [51].

3.5. Amino Acid Profile

The amino acid profile showed equal or higher amounts in the solid fractions (press
cake and sediment), while a minimal loss was observed in the liquid fractions (juice and
retentate) (Table 1). The methionine and tryptophan content in the retentate were lower by
42% and 65%, respectively, whereas the lysine content was higher by 21% compared with
the fresh leaves. The amino acid profile of the current retentate fraction was higher than
that which was reported by Castellanos et al. [33] using a 40 kDa membrane. The reasons
for this include differences in variety, age of the plant, and membrane size. Eggum [52]
reported that only 60% of the methionine was biologically available in boiled cassava
leaves. Other authors have also stated that cooking cassava leaves even for a short time
could result in a reduction of essential amino acids [7,21,23]. Both processing methods
resulted in a good amino acid profile except for the permeate [53]. The low total amino
acid content (36 g 100 g−1 protein on DM) in the permeate fraction (Table 1) is an indicator
that not all nitrogen in the fraction is from the protein. Apart from the protein or amino
acids, the nitrogen might derive from nitrogenous compounds such as amines, nucleic
acids, ammonia, urea, nitrites, nitrates, phospholipids, or nitrogenous glycosides [54]. This
indicates the effectiveness of the ultrafiltration system in concentrating the essential amino
acids in the retentate fraction and other nitrogenous compounds in the permeate. The total
amino acid profile of cassava leaves, press cake, juice, sediment, and retentate indicated
that the CP is almost equal to the true protein. The amount of tryptophan, threonine,
valine, methionine, isoleucine, leucine, histidine, lysine, cysteine, and aromatic amino acids
(Phenylalanine + tyrosine) in all the fractions except permeate were similar or higher than
what was recommended by FAO/WHO/UNU [53]. The available literature also suggests
that apart from lower methionine and lysine contents, the essential amino acid profile of
cassava leaves is similar to those of fish, milk, soybeans, eggs, and cheese [9].
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Table 1. Amino acid profile of leaf fractions after mechanical pressing and ultrafiltration (UF).

Amino Acid
Fractions Recommended

Amount *Fresh Leaves Press Cake Juice Sediment Retentate Permeate

Tryptophan 2.0 ± 0.1 a 2.2 ± 0.1 a 0.5 ± 0.0 bc 2.5 ± 0.3 a 0.7 ± 0.1 b 0.0 c 0.6
Threonine 4.5 ± 0.2 a 4.7 ± 0.0 a 4.8 ± 0.3 a 4.8 ± 0.3 a 5.2 ± 0.6 a 1.4 ± 0.0 b 2.3

Valine 5.7 ± 0.3 a 6.1 ± 0.3 a 5.8 ± 0.2 a 6.3 ± 0.0 a 6.5 ± 0.0 a 2.1 ± 0.2 b 3.9
Methionine 1.9 ± 0.1 ab 1.9 ± 0.1 ab 1.4 ± 0.0 bc 2.1 ± 0.0 a 1.1 ± 0.3 c 0.0 d 1.6
Isoleucine 4.7 ± 0.2 a 5.2 ± 0.3 a 4.6 ± 0.2 a 5.3 ± 0.0 a 5.0 ± 0.6 a 1.4 ± 0.0 b 3.0
Leucine 8.9 ± 0.2 ab 9.9 ± 0.3 ab 8.9 ± 0.2 ab 10.3 ± 0.2 a 8.3 ± 1.1 b 1.4 ± 0.0 c 5.9

Phenylalanine 5.8 ± 0.4 bc 6.7 ± 0.1 ab 5.8 ± 0.2 bc 7.1 ± 0.1 a 5.0 ± 0.6 c 1.4 ± 0.0 d N/A
Histidine 2.2 ± 0.1 a 2.2 ± 0.1 a 2.1 ± 0.0 a 2.2 ± 0.0 a 1.8 ± 0.0 b 0.0 c 1.5

Lysine 6.3 ± 0.3 a 6.4 ± 0.3 a 6.5 ± 0.2 a 6.4 ± 0.1 a 7.9 ± 1.0 a 2.8 ± 0.0 b 4.5
Aspartic acid 10.1 ± 0.3 a 9.7 ± 0.3 ab 10.2 ± 0.3 a 10.1 ± 0.5 a 11.4 ± 0.4 a 5.6 ± 2.0 b N/A
Glutamic acid 12.6 ± 0.3 a 11.5 ± 0.4 a 12.6 ± 0.3 a 12.1 ± 0.3 a 14.2 ± 1.6 a 7.1 ± 2.0 b N/A

Alanine 6.6 ± 0.2 a 6.9 ± 0.2 a 7.0 ± 0.2 a 7.1 ± 0.2 a 7.4 ± 1.0 a 3.5 ± 1.0 b N/A
Tyrosine 3.5 ± 0.3 a 3.6 ± 0.1 a 4.3 ± 0.0 a 4.1 ± 0.1 a 4.1 ± 0.6 a 1.4 ± 0.0 b N/A

Serine 4.2 ± 0.0 a 4.4 ± 0.1 a 4.4 ± 0.2 a 4.3 ± 0.3 a 5.4 ± 0.6 a 1.4 ± 0.0 b N/A
Glycine 5.8 ± 0.2 a 6.2 ± 0.2 a 6.1 ± 0.2 a 6.5 ± 0.2 a 5.9 ± 0.6 a 2.1 ± 0.1 b N/A
Cysteine 0.8 ± 0.0 d 0.8 ± 0.0 d 1.2 ± 0.0 c 0.7 ± 0.0 d 1.8 ± 0.0 a 1.4 ± 0.0 b 0.6
Arginine 5.9 ± 0.2 ab 5.7 ± 0.1 ab 6.1 ± 0.2 ab 6.5 ± 0.2 a 5.0 ± 0.2 b 1.4 ± 0.0 c N/A
Proline 5.1 ± 0.1 a 5.7 ± 0.0 a 5.0 ± 0.0 a 5.5 ± 0.1 a 5.0 ± 0.2 a 1.4 ± 0.0 b N/A
AAA 9.2 10.3 10.1 11.2 9.2 2.8 3.8

Total amino acid 96.4 99.6 97.3 103.8 101.5 36.0 N/A

Values are expressed in g 100 g−1 protein of each fraction on a DM basis. Abbreviations: AAA = aromatic amino acids (phenylalanine +
tyrosine) and N/A = data not available. * FAO/WHO/UNU indicate reference values [53]. Means in lines marked by different letters are
statistically different (n = 2; Tukey test, p ≤ 0.05).

3.6. SDS-PAGE Analysis

A large variety of bands ranging from 10–200 kDa that show large (53 kDa) and
small (12 kDa) RuBisCo subunits were generated in the retentate and supernatant fractions
(Figure 4a). The similar patterns indicate that the cassava leaf protein profile of the retentate
was not changed after UF. The molecular weight range on the SDS-PAGE of the current
result was higher than that which was described by Popoola [9] (14–100 kDa). This variation
could be caused by the different protein extraction processes and the variety used in the
experiment [9]. No visible band was seen on the permeate fraction (Figure 4b). This
illustrates that after UF, the protein fraction was concentrated in the retentate.

Figure 4. Protein electrophoretic patterns of the supernatant in comparison with (a) the retentate and (b) the permeate
fraction of cassava leaves. RuBisCo large (LSU) and small (SSU) subunits.
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3.7. Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), and Acid Detergent
Lignin (ADL)

Cassava leaves have been used as a feed supplement in combination with other feed
materials due to its low fiber content [55,56]. NDF (cellulose, hemicellulose, and lignin),
ADF (lignin and cellulose), and ADL (lignin) are the different fiber fractions that define the
quality of the feed product [57]. About 65–75% of the variable costs in animal production
are directly linked to feeding costs [58]. After mechanical pressing, all three attributes were
significantly (p < 0.05) higher in the press cake while the reverse was true for the juice
fraction (Table 2). The NDF and ADF reported for fresh leaves in the current experiment
were fairly similar to the report by Ravindran and Ravindran [10]. Increasing the NDF
and ADF proportion in the press cake will improve the feed quality of cassava leaves for
ruminants [15] but it has a negative effect for humans and monogastric animals [59]. The
low amount of fiber in the juice fraction establishes it a potential feed for monogastric
animals and food due to the separation of the protein from the fiber [55].

Table 2. Neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL)
of cassava leaf fractions during mechanical pressing.

Fractions NDF (g 100 g−1DM) ADF (g 100 g−1DM) ADL (g 100 g−1DM)

Fresh leaves 19.5 ± 3.0 b 13.8 ± 0.3 b 1.4 ±0.1 b

Press cake 28.0 ± 0.5 a 25.3 ± 0.2 a 4.0 ± 0.4 a

Juice 9.3 ± 2.1 c 1.0 ± 0.0 c 0.0 c

Means in columns marked by different letters are statistically different (n = 3; Tukey test, p ≤ 0.05).

4. Conclusions

Avoiding heat application when processing cassava leaves via mechanical pressing
and ultrafiltration (UF) resulted in highly nutritious fractions. UF was effective in concen-
trating cassava leaf protein in the retentate fraction without changing the protein profile
of the leaf, although the total phenolic content (TPC) was high. The results indicated that
cassava leaves, sediment, and the juice fraction could be potentially used as a source of
protein with the limitations of a higher TPC. The press cake co-fraction could be a good
source for ruminant feeds with a good fiber and a low phenolic content. The protein of
the different leaf fractions established them as a possible source for complementing other
conventional foods and feed. The amino acid profile of the different fractions apart from the
permeate suggested the potential benefits of cassava leaves. These findings support the use
of cassava leaves as a food security crop with balanced nutrients. Further studies should
be conducted to address the cyanogenic potential and other anti-nutritional contents of the
fractions. In addition, the optimization of the UF process, considering the transmembrane
pressure, pH, volume concentration ratio, and temperature, will play an important role in
the quality of the protein concentrate obtained from cassava leaves via pressing and UF.
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