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ABSTRACT

We present the Small RNA Expression Atlas (SEA-
web), a web application that allows for the interac-
tive querying, visualization and analysis of known
and novel small RNAs across 10 organisms. It con-
tains sRNA and pathogen expression information
for over 4200 published samples with standardized
search terms and ontologies. In addition, SEAweb al-
lows for the interactive visualization and re-analysis
of 879 differential expression and 514 classification
comparisons. SEAweb’s user model enables sRNA
researchers to compare and re-analyze user-specific
and published datasets, highlighting common and
distinct sRNA expression patterns. We provide evi-
dence for SEAweb’s fidelity by (i) generating a set
of 591 tissue specific miRNAs across 29 tissues, (ii)
finding known and novel bacterial and viral infec-
tions across diseases and (iii) determining a Parkin-
son’s disease-specific blood biomarker signature us-
ing novel data. We believe that SEAweb’s simple se-
mantic search interface, the flexible interactive re-
ports and the user model with rich analysis capabili-
ties will enable researchers to better understand the

potential function and diagnostic value of sRNAs or
pathogens across tissues, diseases and organisms.

INTRODUCTION

Small RNAs (sRNAs) are a class of short, non-coding
RNAs with important biological functions in nearly all
aspects of organismal development in health and disease.
Especially in diagnostic and therapeutic research, SRNAs
such as miRNAs and piRNAs received recent attention (1).
The increasing number of deep sequencing sSRNA studies
(sRNA-seq) is reflecting the importance of sSRNAs in bio-
logical processes as well as disease diagnosis and therapy.
In addition, recent evidence highlights the pivotal roles of
viral and bacterial-derived sSRNAs in the pathogenesis of
infectious diseases, across the animal and plant kingdoms
(2-4). Viral sRNAs play vital roles in the viral replication,
persistence, the immune escape and host cell transformation
(2,3). Many DNA and RNA viruses encode various classes
of small RNAs, which associate with host RNAs and pro-
teins and affect their stability and function. The introduc-
tion of SRNA deep sequencing (SRNA-seq) allowed for the
quantitative analysis of SRNAs of a specific organism, but
its generic nature also enables the simultaneous detection
of microbial and viral reads. SRNA-seq data therefore nat-
urally lends itself for the analysis of host-pathogen inter-
actions, which has been recently exemplified for RNA-seq

“To whom correspondence should be addressed. Tel: +49 40 7410 55082; Email: sbonn@uke.de
fThe authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
#The authors wish it to be known that, in their opinion, the third, fourth and fifth authors should be regarded as Joint Second Authors.

© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.


http://orcid.org/0000-0002-7019-5486
http://orcid.org/0000-0003-4366-5662

data (5). Using the vast amount of publicly available sSRNA-
seq data in repositories such as Sequence Read Archive
(SRA) (6) and Gene Expression Omnibus (7) enables the
unbiased charting of viral and bacterial infections across
tissues, diseases, species, age and sex. This would not only
highlight novel causal or comorbid relationships between
diseases and infections, it could also shed mechanistic in-
sights onto how the infectious agent interacts with and
modifies the host cell. To harvest the true potential of ex-
isting data, it is important to allow for querying, visual-
ization and analysis of sSRNA-seq data across organisms,
tissues, cell types and disease states. This would allow re-
searchers, for example, to search for disease-specific SRNA
or pathogenic biomarker signatures across all disease enti-
ties investigated. Data integration and interoperability re-
quire (i) a streamlined analysis workflow to reduce analysis
bias between experiments (ii) also necessitates standardized
annotation using ontologies to search and retrieve relevant
samples and (iii) flexible and interactive visualization of the
data.

To date, several web-based sSRNA-seq expression profile
databases are available that differ in their level of informa-
tion, portfolio, performance and user-friendliness. Recent
additions to sSRNA web based databases include miRmine
(8), provides expression of a single or multiple miRNAs for
a specific tissue, cell-line or disease. Results are displayed in
multiple interactive, graphical and downloadable formats.
miratlas (9) allows for searching miRNA expression pro-
files as well as sSRNA-seq experiments and provides infor-
mation on the miRNA modification analysis. YMS500v3
(10) provides interactive web reports on sSRNA expression
profiles, novel miRNA expression profiles, miRNA modifi-
cation analysis, SRNA differential expression and miRNA
gene targets. SPAR (11) is a user-friendly web server for the
analysis, annotation and visualization of sSRNA-seq data.
It provides expression profiles of 10 different types of sR-
NAs across different tissues and cell types of human (hgl9,
hg38) and mouse (mm10). Currently, SPAR is the only
tool that allows users to compare their input experimen-
tal data against the reference datasets from ENCODE (12)
and DASHR (13). Moreover, it supports different genome
versions of an organism. DASHR2 (14) supports sSRNA
expression profiles across different genome versions of the
same species across tissues and cell types and supports 10
types of SRNAs. Results are provided in an interactive man-
ner, such as sncRNA locus sorting and filtering by bio-
logical features. All annotation and expression information
are downloadable and accessible as UCSC genome browser
tracks.

Although many good web platforms for the sSRNA-seq
data exist, some important aspects for storing and search-
ing have yet to be integrated. For example, no current web
application allows for the ontology based search of sSRNA-
seq experiments. Current tools lack an important associ-
ation of miRNAs with disease. miRNA disease associa-
tions are provided by HMDD (15), but it does not pro-
vide miRNA expression information. Except for YM500v3,
current tools do not provide miRNAs and gene targets. Of
note YM500v3 is only limited to cancer miRNome stud-
ies. Also, there is currently no web application that allows
for the identification of biomarkers of disease via machine-
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learning. The above mentioned web platforms do not pro-
vide expression of novel miRNAs in known disease state or
tissues, including the structure and probability of the novel
miRNA prediction. To our knowledge no other data repos-
itory provides pathogenic signatures from sRNA-seq data
including their differential expression in healthy and dis-
eased condition. Except for SPAR, current sSRNA-seq web
services do not allow for the user data upload. At last, in
current tools users can only search for the results that are
stored in the database, there is no option for the users to
reanalyze data with the samples of their choice. This fea-
ture would greatly facilitate researchers to perform differen-
tial expression between male and female of an experiment
or to compare old aged patients (samples) with young ones
in the same group. In the end, these functionalities should
be paired with a flexible and interactive visualization of the
sRNA-seq data supporting more species and cross study
comparisons.

In order to address the above mentioned limitations, we
hereby present the small-RNA Expression Atlas (SEAweb),
a web application that allows for querying, visualization
and analysis of over 4200 published sSRNA-seq expression
samples. SEAweb automatically downloads and re-analyzes
published data using Oasis 2 (16), semantically annotates
relevant meta-information using standardized terms (the
annotations are later checked and corrected manually),
synchronizes SRNA information with other databases, al-
lows for the querying of terms across ontological graphs
and presents quality curated sSRNA expression informa-
tion as interactive web reports. In addition, SEAweb stores
sRNA differential expression, SRNA based classification,
pathogenic sSRNA signatures from bacteria and viruses and
pathogen differential expression. Gene targets and disease
associations for miRNAs are also incorporated into SEA-
web.

One of the most useful features of SEAweb is to en-
able users to upload their analysis results of differential ex-
pression and classification from Oasis 2. This allow users
to compare their data to over 4200 experimental samples
across different conditions. Using SEAweb’s interactive vi-
sualizations, users can upload their data into their own
workspace, select the published datasets to compare to,
and define if differential expression or classification results
should be compared. SEAweb also provides users with an
option to perform on the fly analysis such as overlapping
differentially expressed (DE) sRNAs or pathogens across
different studies or the most important features (sSRNAs)
identified with classification. At last, SEAweb enables end
users to re-submit samples from interactive plots for differ-
ential expression or classification, this helps users to choose
samples of their choice from an experiment. It currently
supports 10 organisms (Table 1) and is continuously up-
dated with novel published sRNA-seq datasets and rele-
vant sSRNA information from various online resources. A
detailed comparison of SEAweb to other existing SRNA ex-
pression databases (Table 2) highlights that SEAweb is su-
perior in terms of supported organism, ontological annota-
tions, diseases, tissues, SRNA based classification, pathogen
k-mer DE, known miRNA disease associations, user spe-
cific experimental data upload, cross study comparisons
and re-analysis with selected samples. SEAweb contains
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Table 1. Supported SEAweb organisms and their corresponding genome versions

Organism genome-version genome-date

Bos taurus UMD3.1 2009-11

Caenorhabditis elegans WBcel235 2012-12

Danio rerio GRCz10 2014-09

Drosophila melanogaster BDGP6 2014-07

Mus musculus GRCm38 2012-01

Gallus gallus Galgal4 2011-11

Rattus norvegicus Rnor_6.0 2014-07

Homo sapiens GRCh38 2013-12

Sus scrofa Sscrofal0.2 2011-08

Anopheles gambiae AgamP4 2006-02

Table 2. Comparison of SRNA expression databases

Feature SEAweb miRmine! DASHR?2? miratlas® YMS500v3* SPARS
Organisms 10 1 1 2 1 2
sRNA types S 1 10 1 5 10
Samples >4200 304 802 461 >8000* 365%
Novel miRNAs + +

Ontology search® +

sRNA DE + +

sRNA classification +

Pathogen k-mer expression +

Pathogen k-mer DE +

miRNA targets + +

miRNA disease associations +

User data upload + +
Cross study comparisons + +
Re-analysis with selected samples +

Dataset search + + +
Genome versions + +
Modification analysis + +

Tissue specificity + +

This table includes recent SRNA expression databases and a list of features we deem relevant.

*Supports mainly cancer-related datasets.
#Use of ontological graphs for the annotation and querying of samples.

$Number of datasets based on 2(14) (information about number of samples cannot be obtained).
1(8), 2(14), 3(9), #(10), >(11). For number of samples per organism, see Supplementary Material Table S5.

over 4200 samples in its database, which is considerably less
than YMS500v3, which hosts over 8000 cancer samples. It
is to be noted, however, that the YM500v3 database only
supports cancer datasets and no other disease types (Table
2). Additionally, SEAweb also stores in-house data (for a
month) from the end users to enable comparison with the
data in SEA.

MATERIALS AND METHODS
User data

In case users want to upload their in-house data for com-
paring it to all the available data in SEAweb, they need to
create an account. User-DB, stores their account informa-
tion as well as SRNA-seq data uploaded by the users. More-
over, user uploaded data is shown only from their respective
account and is not available to other users. Users have the
option to include their data in the SEAweb for a limited time
(30 days). We do not provide users to include their data in
the SEAweb permanently or publicly for several reasons: (i)
these data are unpublished and we can run into data protec-
tion issues. (i1) The ontological annotations of these data by
the end users might not be consistent with ours and hence
not comparable. (iii) Users might not want to provide infor-
mation about their experiments such as tissue or disease etc.
(iv) End users might not be able trust the system, if anyone
could add any quality of data. Data that are added by us fol-
lows a manual curation for quality checks. With these mea-

sures, we encourage users to upload their data (temporar-
ily), without any data protection issues.

sRNA tissue specificity

To compute tissue specificity indices (TSI) for human sR-
NAs we calculated median of reads per million (RPM) ex-
pression per dataset and tissue. SRNAs with a median RPM
expression of at least three were considered in all the tis-
sue specificity analysis. Moreover, SRNAs which had no
expression in any tissue and tissues with no sRNAs ex-
pression were excluded from the TSI analysis. Healthy and
diseased samples were mixed for tissues within the same
dataset (Figure 2; Supplementary Figure S3 and Table S1).
To remove potential biases introduced by diseased samples
we also calculated TSI for non-diseased samples only (Sup-
plementary Figures S2-3, Tables S1 and 4). These analy-
ses were performed for two sets of SRNAs, miRNAs (Fig-
ure 2; Supplementary Figure S2 and Table S1) and all non-
miRNA sRNAs including piRNA, snoRNA, snRNA and
rRNA in SEAweb (Supplementary Figures S3-4 and Table
S4). Shannon entropy from BioQC R package was used
to calculate TSI for each miRNA across tissues. In the
end, 1522 miRNAs across 64 datasets were considered for
miRNA tissue specificity in healthy and diseased mixed
samples, 1365 miRNAs across 43 datasets were consid-
ered for miRINA tissue specificity in non-diseased samples,
4300 sSRNAs (piRNA, snoRNA, snRNA and rRNA) across



64 datasets were considered for sSRNA tissue specificity
in healthy and diseased mixed samples, and 1672 sSRNAs
(piRNA, snoRNA, snRNA and rRNA) across 43 datasets
were considered for SRNA tissue specificity in non-diseased
samples (Supplementary Tables S1 and 4).

Novel miRNA gene targets

miRDB (17) was used to obtain targets of the novel miR-
NAs. We restricted the analysis to highly probable gene tar-
gets having a score of 70 or more.

Text mining pipeline

To extract miRNA-gene targets, a dedicated text mining
pipeline that reads unstructured text data and outputs struc-
tured data that includes the detected and normalized genes
and miRNAs as well as the relations between them. Named
entity recognition software ProMiner (18) and MiRNADe-
tector (19) are used to detect and normalize genes and miR-
NAs, respectively. Both detectors are incorporated in the
BELIEF text mining pipeline (20) that contains machine
learning models to detect specific relations from the com-
plete Medline abstracts.

Gene enrichment analysis

Gene enrichment analysis was performed using webgestalt
R package version 0.3.0.

In-house Parkinson’s disease data

Isolation of total RNA from peripheral blood sample. Pe-
ripheral blood samples were collected into PAXgene Blood
RNA tube (PreAnalytiX) from consenting patients and
healthy controls, the tubes were gently inverted for multi-
ple times, incubated for 20-24 h under room temperature
and stored under —80°C until processing. Total RNA was
isolated using the PAXgene Blood RNA kit (PreAnalytiX)
according to the manufacturer’s protocol. The purity and
concentration of isolated RNA were measured with Nan-
oDrop™ 2000 spectrophotometer (Thermo Fisher Scien-
tific). The RNA integrity was determined by Agilent RNA
6000 Nanochip (Agilent Technologies) using the 2100 Bio-
analyzer (Agilent Technologies).

Small RNA library preparation. Small RNA libraries were
prepared using 1 g high-quality RNA following the proto-
col of Illumina TrueSeq small RNA library kit (Illumina).
In brief, 3’adapter was denatured for 2 min under 70°C, and
ligated to the RNA with T4 RNA Ligase 2 deletion mutant
for 1 h at 28°C. Then the reaction was stopped with stop
solution for 15 min under 28°C. Subsequently, 5" adapter
was denatured for 2 min at 70°C, then added to the RNA
with adenosine triphosphate and T4 DNA ligase for 1 h
under 28°C. After adaptors ligation, the RNA was reverse
transcribed to complement DNA (cDNA) by using Super-
Script II Reverse Transcriptase (Thermo Fisher Scientific)
and dNTPs for 1 h at 50°C. Then, the cDNA was indexed
and amplified with polymerase chain reaction (PCR) mix
and primers supplied in the kit for 12 cycles (denaturing

Nucleic Acids Research, 2020, Vol. 48, Database issue D207

at 98°C for 30 s, annealing at 60°C for 30 s, extension at
72°C for 15 s, with a final extension at 72°C for 10 min).
Amplified and indexed cDNAs were then pooled together,
mixed with DNA loading dye and loaded on a 5% Tris-
borate-EDTA (TBE) acrylamide gels (Bio-Rad). After 57
min electrophoresis under 145 V, the gel was stained with
Midori Green for 5 min and viewed under the UV tran-
silluminator, fragments between Illumina’s custom ladder
145 and 160 bp were cut out for library preparation. The
gel was centrifuged at 20 000 x g for 2 min through a Gel
Breaker tube (Bio-Cat). Then cDNA was eluted from the
homogenized gel by adding 300 wl UltraPure water and
shaking under 800 x rpm for 2 h. Then the gel was trans-
ferred on a 5 um filter tube (Bio-Cat) and centrifuged for
10 s under 600 x g and the gel debris was separated. Af-
terward, 2 wl Glycoblue, 30 wl of 3M sodium acetate and
975 w1 100% ethanol (pre-chilled under —20°C) were added
and well mixed to the sample, following an immediate cen-
trifuge at 20 000 x g for 20 min under 4°C. After remove
and discard the supernatant, the pellet was washed with 500
w1 70% pre-chilled ethanol. The supernatant was discarded
after sample being centrifuged at 20 000 x g for 2 min un-
der room temperature, and the pellet was dried in a 37°C
heat block for 10 min with open lid. At last, the pellet was
resuspended in 10 wl 10 mM Tris—-HCL (pH 8.5) and the
sample quality was checked using Agilent High Sensitivity
DNA chip (Agilent Technologies) using the 2100 Bioana-
lyzer (Agilent Technologies). All high quality libraries were
then sequenced on Illumina HiSeq 2000 Sequencer.

Classification feature pruning

We used Oasis 2 to identify Parkinson’s disease (PD)
biomarker using 47 PD and 53 frequency-matched healthy
controls. For classification analysis, we used all small RNAs
(n =49 965) in Oasis 2. The random forest (RF) classifier in
Oasis 2 selected these 18 SRNAs by filtering for informative
features while removing the non-informative ones. In brief,
The RF selects part of the features for the construction of
each tree (mtry parameter, which is by default equal to \/n
where n is total number of features). If there is a big num-
ber of non-informative features (‘noise’), many trees can be
build based on noise only and therefore affect the classifica-
tion quality. The way to avoid trees built of noise is feature
pruning. The idea is to arrange the variables based on their
importance in the full model and then remove less impor-
tant variables one-by-one, calculating model performance
at each step. At the end, the subset of variables with the best
performance are considered as important features. We used
cross-validation-based backward selection, implemented in
the R caret package with 10-fold cross-validation, repeated
10 times at each step for the performance calculation.

SYSTEM DESIGN

SEAweb stores sSRNA expression information, SRNA dif-
ferential expression, SRINA-based classification, pathogenic
sRNA signatures from bacteria and viruses, pathogen dif-
ferential expression, miRNA gene targets and disease as-
sociation as well as deep and standardized metadata on
the samples, analysis workflows and databases used. Meta-
data information is normalized using ontologies to allow
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for standardized search and retrieval across ontological hi-
erarchies (section ‘Semantic data layer’ and Supplementary
Material). The following sections will detail the system de-
sign of SEAweb (Figure 1).

Acquisition and analysis of SRNA datasets

SEAweb acquires raw published sSRNA-seq datasets and
their primary annotation from Gene Expression Omnibus
(GEO) and NCBI’s Sequence Reads Archive (SRA) repos-
itory (Supplementary Material). Novel datasets are down-
loaded and stored in SEAweb’s raw data repository while
corresponding annotations are stored in SEAweb’s anno-
tation database and are manually curated. In order to re-
trieve relevant samples for downloading, we optimized our
search queries to look for the datasets that have, (i) Experi-
ment type as non-coding RNA profiling by high throughput
sequencing, (i) Sequencing platform as Illumina, (iii) Tis-
sue, cell type, disease or cell line information and (iv) is one
of the 10 organisms that SEAweb supports at the moment
(Table 1). Raw data are downloaded and subsequently pro-
cessed automatically by SEAweb’s SRNA analysis workflow
using Oasis 2.0 (http://oasis.ims.bio/) (Supplementary Ma-
terial). Subsequently, SRNA counts of high-quality samples
are stored in the SRINA expression database. For all the ex-
periments with samples from different conditions such as
disease, tissue, cell line or cell type; SRNA differential ex-
pression and classification was performed within the ex-
periment using Oasis 2. All possible comparisons for an
experiment were taken into account such as healthy ver-
sus disease stage 1, healthy versus disecase stage 2, disease
stage 1 versus disease stage 2 as explained in Supplementary
Section 3.4. Additionally, differential expression analysis of
detected pathogens was performed using DESeq2 package
(21). In order to reduce bias that could be introduced into
the data by using different analysis routines, every sample in
SEAweb has been analyzed by identical analysis workflows
using identical databases and genome versions. Moreover,
SEAweb stores analysis workflow parameters used to ana-
lyze the samples such as adapter sequence, genome, num-
ber of mismatches, minimum and maximum read lengths
along with the versioning information about the software
and databases used for the analysis. In case of changes in
databases or analysis routines, we completely re-analyze all
SEAweb’ data for consistency.

Additionally, sample annotations are processed automat-
ically with SEAweb’s annotation workflow. Processed files
and annotations are subsequently semi-automatically cu-
rated (Supplementary Sections 2.3 and 3).

Data storage

Once the raw sequencing data is analyzed, the next step is
to store the analysis results to the database for downstream
analysis and querying. Most metadata is quite different be-
tween experiments. Some experiments may have informa-
tion such as disease, tissue, cell line, gender, age of patient
while others may completely lack this. Due to this sparse
nature of the biological experimental data, we opted to use
NoSQL database management systems such as MongoDB
and Neo4]J for hierarchical (connected) normalized data. A

multi-database management system architecture was used
to store different types of data:

In brief, Expression-DB is created to save SRNA expres-
sion profiles, SRNA differential expression, SRNA based
classification as well as pathogen detection and pathogen
differential expression. This database stores the identifi-
cation and description of the experiment (dataset), infor-
mation about dataset processing (pipeline information and
parameters), information about samples. Association-DB
is used to store genomic coordinates for SRNAs, miRNA
gene targets and miRNA diseases association. It contains
information about sSRNA’s and gene’s chromosomal loca-
tions, miRNA target genes and miRNA disease associa-
tions. Chromosomal coordinates were obtained from miR-
Base version 21 (22), ensemble version 84 (23) and piRNA
bank (24), miRNA gene targets were obtained from mir-
TarBase version 7.0 (25) as well as from BELIEF text
mining pipeline (20) (‘Materials and Methods’ section),
miRNA disease associations were obtained from HMDD
database version 2.0 (15). In order to support the aggrega-
tion and comparison of these different types of data we nor-
malized the identifiers across databases. To enable search
by ontological terms, Annotation-DB is created using the
Neo4J database management system. Neo4J is a graph
database, representing elements as graph nodes or vertices.
Annotation-DB (supplementary Figure S1) stores the fol-
lowing three node types: (i) Experiments (datasets), this
type of node stores information about the experiment such
as description of the experiment, reference to database, ex-
perimental design and any global level information, which
is common among all the samples. (ii)) Sample node type
is used to store information about individual sample, such
as description of a sample, reference to database, sample-
specific processing parameters. (iii) Annotation term node
type stores annotation term information of samples such
as organism, disease, tissue, cell type, cell line, age, gender,
condition (treated\untreated) and extracted molecule for
sequencing etc. We normalize organism with the NCBI tax-
onomy ontology (26), tissue with the BRENDA tissue on-
tology (27), disease with the human disease ontology (28),
cell type with the cell ontology (29) and cell line with the
cell line ontology (30) or experimental factor ontology (31)
(Table 3). If the annotation term is normalized, it stores on-
tology reference (term identifier and preferred level). The
nodes are connected if they have a relation (dataset/sample,
sample/term and term/term) (supplementary Figure SI).
To allow for fast ontological search, all parents of a term
in the ontology are also stored in the database and con-
nected with their corresponding annotation terms (section
‘Semantic data layer’ and Supplementary Material). User-
DB stores in-house sSRNA-seq data (differential expression
and classification from Oasis) uploaded by the users. This
database allows users to compare their own data to the huge
and diverse sSRNA-seq published data. User uploaded data
are deleted after 30 days.

In addition, SEAweb contains information about the
GEO series accession (GSE) and sample accession (GSM)
identifiers along with the sample identifier from the SRA
database (SRR)in the Annotation-DB together with the an-
notations and in the Expression-DB together with expres-
sion profiles, differential expression and classification anal-
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Figure 1. SEAweb system architecture. SEAweb system was developed using the modular system design approach (model-view-controller). The system has
a presentation layer for user interface and visualization of search results. Presentation layer is followed by a business layer which transform complex user
queries and distribute particular requests to the data access layer REST API services. There is a semantic data layer, to store and access primary and derived
data together with annotations and links to secondary data. Annotation-DB stores metadata for experiments, samples, corresponding ontological terms
as well as relations between dataset/sample, sample/term and term/term. Association-DB contains information about sSRNAs and genes chromosomal
locations, miRNA target genes and miRNA disease associations. Expression-DB stores sSRNA expression profiles, sSRNA differential expression; sSRNA
based classification as well as pathogen detection and pathogen differential expression. It also store details about dataset processing pipeline and parameters.
Oasis-DB was used to store novel predicted miRNA information. User DB contains in-house data uploaded by the end users from Oasis 2 pipeline. Semantic
data integration layer integrates primary and secondary data into the mentioned databases. Microservices were implemented in order to achieve strong

encapsulation and well-defined interfaces via REST APIs.

ysis. We optimize search and retrieval times by indexing for
the most common queries and most relevant terms.

Semantic data layer

Given the diversity of the biological data, users of the SEA-
web system are given a possibility to interpret data inde-
pendently using common terminologies. In order to enable
users to browse data autonomously using common well-
structured terminology, a standardized semantic layer for
data retrieval is developed (Figure 1). It includes semantic
annotations of data and semantic search, linking data with

semantic lookup platform (OLS), as well as storing primary
and derived data together with provenance information and
references to secondary data.

One of the most important aspects of semantic layer are
ontology-based data annotations. They enable interoper-
ability of the data, as well as using of standard terminolo-
gies for data retrieval. It is important to standardize anno-
tations using ontologies and semantic mappings (32). On-
tologies define not only standard classes, but also the re-
lations between terms, which enables semantic search by
term hierarchies, for example, by parent terms. In SEA-
web, we connect (normalize) annotations with ontologies in
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Table 3. SEAweb keys and used ontologies (as of June 2019)

Key Ontology(s) # Annotations # Terms

Organism NCBI Taxonomy 4235 126

Tissue BRENDA tissue/enzyme source 3021 190

Disease Human Disease Ontology 1951 287

Cell type Cell Ontology 732 304

Cell line Cell Line Ontology 663 132
Experimental Factor Ontology 134 76

a semi-automatic way, i.e. first automatically extract possi-
ble annotation terms from GEO descriptions and normal-
ize them, and later curate annotations manually (Supple-
mentary Section 3). The Ontologies and the number of nor-
malized terms in SEAweb are listed in Table 3. To enable
the search across ontological hierarchies we integrated data
with the relevant ontologies into the graph database Neo4lJ
(supplementary Figure S1).

Ontology Lookup Service (OLS) is a service which al-
lows to extract relevant terms from ontologies together with
term information. SEAweb uses OLS for annotation nor-
malization and accesses ontologies via the OLS REST inter-
face, which supports complex and compound queries and
query auto-completion (33). Details about annotation crite-
ria, processing and group annotation are described in Sup-
plementary Section 3.2.

Another aspect of the semantic layer is storing of the pri-
mary and the derived data together with provenance infor-
mation. For SEAweb, primary data are FASTQ files, re-
trieved from the NCBI SRR database. This data are not
stored after Oasis analysis, only provenance data about
source and analysis details is saved. So for SEAweb, pri-
mary data are SRNA counts. Based on those counts, DE
and classification results are obtained and are also saved
to allow data interpretation. From derived data, the prove-
nance information allows to retrieve raw counts and check
how those results are obtained.

Querying and visualization

Application programming interfaces (APIs) are developed
to access data in SEAweb databases (Supplementary Sec-
tion 3.5). The APIs help to use the multi-database sys-
tem components independently as well as in combina-
tion. In brief, we extend the SEAweb backend applica-
tion with RESTful web services, such as Annotation-
API, Association-API, Expression-API, User-Expression-
API, Predicted miRNA-API to access Annotation-DB,
Association-DB, Expression-DB, User-Expression-DB and
Oasis-DB, respectively. Additionally the SEAweb busi-
ness logic API is created in order to combine all those
APIs and make necessary data transformations between
frontend and other APIs. As a result, the user can
make queries to answer biological questions like; what is
the expression of hsa-miR-488-5p across all human tis-
sues? Is hsa-miR-488-5p expressed higher in adenocarci-
nomas as compared to other cancer types? Is a particu-
lar sSRNA/pathogen DE in Alzheimer’s disease? What are
common DE sRNAs/pathogens or potential SRNA based
biomarkers in a particular disease or tissue? What is the ex-
pression of a novel miRNA for known disease states? All
API calls are described in Supplementary Section 3.5.

Table 4. SEAweb browser compatibility

Browser Version

Chrome 61.0.3163.100, 62.0.3202.62
Mozilla Firefox 55.0.3, 56.0 (64-bit), 57.0 (64-bit)
Chromium 62.0.3202.75

Safari 11.0.1

Internet explorer 11

Browsers that are used to test SEAweb functionalities.

In addition, users can browse and query all datasets us-
ing the browse link. A three-panel browse function (Supple-
mentary Figure S8) facilitates searching for specific small
RNAs (miRNA, piRNA, snoRNA, snRNA and rRNA),
annotation terms (organism, tissue, cell type, cell line and
disease), and pathogens (bacteria or viruses). By selecting
single or several terms from the three panel browse function
the user can make arbitrarily specific searches in SEAweb.
For example, the user can click on a small RNA and cancer
to see its expression profiles in the cancer datasets.

In brief, the SEAweb system is developed using the modu-
lar system design approach (Figure 1). We build micro ser-
vices to achieve strong encapsulation and well-defined in-
terfaces via REST APIs. An object oriented programming
approach is used to build the SEAweb application using the
spring framework and Java 8. The SEAweb user interface
(UD) is developed in Django framework version 2.0, HTML
version 5, D3 and CSS 3. SEAweb visualizes the results de-
pending on the user query, such as a violin plot for the ex-
pression of sSRNAs or pathogens. Upset plots are shown for
the overlap of SRNAs or pathogens (based on DE or classi-
fication) across experiments. SEAweb enables the download
of search results in the form of CSV files. The functionality
is tested on all major browsers (Table 4).

SEAweb usage

SEAweb is a publicly available data repository and a web
server and users can use it without an account or login. In
case users want to upload and compare their own data to
the data in SEAweb they need to create an account. Users
have an option to sign in with their google account or they
can register in the SEAweb system directly with a valid email
address, choosing a username and password for their ac-
count. We have created User-DB to store their account in-
formation as well as SRNA-seq data uploaded by the users.
Moreover, user-uploaded data are only accessible from the
user’s account. Users have the option to include their data
in SEAweb for 30 days. For the data protection, security,
and storage space reasons, we currently do not allow users
to add data permanently to SEAweb (‘Materials and Meth-
ods’ section).



APPLICATION OF SEA

In this section, we describe a few examples that illustrate
how SEAweb can be employed to answer biological ques-
tions and to uncover unappreciated properties of SRINA
data integration with interactive result visualization. First,
we took advantage of the diverse and massive SRNA-seq
data in SEAweb to present the most comprehensive set of
tissue specific miRNAs till date. Second, we utilized the
pathogenic reads in SRNA-seq to find their association to
diseases. At last, we show a use case of SEAweb by compar-
ing an in-house PD sRNA-ome to other neurodegenerative
diseases SRNA expression profiles available in SEAweb.

sRNA tissue specificity

Several studies have shown tissue specificity for miRNAs.
Recently, Ludwig et al., (34) analyzed several human tis-
sue biopsies of different organs from two individuals to de-
fine the distribution of miRNAs using tissue specificity in-
dex (TSI) and found several groups of miRNAs with tissue-
specific expression. Similarly, Lee et al., (35) provides the
expression of 201 miRNAs across nine human tissues to
find tissue specificity of miRNAs. miRNAs whose expres-
sion is 20-fold or higher in a certain tissue compared with
the mean of all the other tissues were characterized as tissue
specific. According to Lee et al., skeletal muscle, brain, heart
and pancreas are the tissues expressing the most specific
miRNAs. Moreover, Guo et al., (36) manually extracted
116 tissue-specific miRNAs across 12 human tissues. We
used Shannon entropy to calculate TSI for each human
miRNA across all the human tissues available in SEAweb
(‘Materials and Methods’ section). In order to calculate tis-
sue specificity, we mixed healthy and diseased human sam-
ples (where available) within an experiment (Figure 2 and
Supplementary Table S1). We used very stringent criteria:
miRNAs with Shannon entropy score more than 0.8 were
considered as tissue specific and <0.2 were considered as
ubiquitous miRNAs (Figure 2 and Supplementary Table
S1). We were able to provide by far the most comprehen-
sive set of 591 distinct tissue-specific miRNAs across 29 tis-
sues; blood plasma, skin, blood serum, liver, bone marrow,
serum, testis, blood, semen, prefrontal cortex, peripheral
blood, colon, brain, cornea, breast, renal cortex, bladder,
embryo, placenta, lung, tongue, tonsil, skeletal muscle, kid-
ney, lymph node, heart, muscle, thyroid gland and neocortex
(Figure 2 and Supplementary Table S1). In order to com-
pare the TSI for miRNAs in SEAweb with the existing find-
ings, we merged the list of miRNAs from the above studies
and retained all the 12 tissues. Out of 12 tissues, we did not
have sequencing data for four of them: thymus, pancreas,
spleen and bone.

We were able to detect two out of the three heart spe-
cific miRNAs (miR-1 and miR-302d) from Lee et al,
study, and 6 out of 10 heart specific miRNAs (hsa-miR-1-
5p, hsa-miR-208a-3p, hsa-miR-208b-5p, hsa-miR-208b-3p,
hsa-miR-302d-3p, hsa-miR-133b, hsa-miR-302a-3p, hsa-
miR-302a-5p, hsa-miR-302b-3p) from the manually cu-
rated list of Guo et al. miR-208 is obtained from an old
annotation, because the latest release of miRBase has more
specific annotation like miR-208a-3p, miR-208b-3/5p. In-
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terestingly we were able to find the whole family of miR-208
as heart specific. We were not able to detect miR-126, miR-
302¢, miR-367, hsa-miR-133a-5p in heart. Of note, none of
these three is heart specific in the Lee et al., study.

Muscle and brain were the only two tissues covered by
all the three above mentioned studies. In muscle, we were
able to detect two out of the three muscle specific miRNAs
(miR-133b, miR-1-3p) from Ludwig ez al., three out of four
(miR-95 was not found to be muscle specific) from Lee ez al.,
and 4 out of 10 for Guo et al., compilation. We were not able
to detect miR-206, miR-133a, miR-134, miR-193a, miR-95
and miR-128a. Note that from the same study miR-134 is
mentioned as muscle as well as testis specific and miR-128a
as muscle as well as brain specific. Moreover miR-95 is the
only miRNA that is muscle specific in all of the three studies.

Another tissue covered by all of the three studies is the
brain. In total 30 miRNAs were known to be brain specific,
only 1 out of 30 (miR-7) is common among all the three
studies and only three in two studies (miR-124, miR-9, miR-
218) one of which is in the curated list. In our study, we
found 26 miRNAs to be brain specific but none from the
known ones.

Tissue with the most number (n = 43) of known spe-
cific miRNA was placenta provided by Guo et al. Interest-
ingly, miRNAs associated with placenta were mostly evolu-
tionary related. We were able to detect these evolutionary
related miRNAs to be placenta specific as well. In short,
we detected S17a/b/c, 518a/b/c/d/e/f, 519a/b/c/d/e,
520a/d/e/f/g (not detecting 520b/c/h). Moreover we were
also able to detect miR-371, miR-372, miR-512, miR-522,
miR-523, miR-524, miR-525, miR-526b and miR-527. Out
of 43, we detected 35 and did not detected miR-377, miR-
526a, miR-184, miR-154, miR-381, miR-503, miR-450 and
miR-136. We detected only 2 (miR-513c-5p, miR-202-3p)
out of 15 for testes. There were two tissues, lung and liver;
mentioned only in one study Guo et al., we could not de-
tect the only miRNA miR-126 for lung. Interestingly this
miRNA is also mentioned as heart specific in the same
study. We also did not find the four liver specific miR-
NAs miR-122, miR-483, miR-92a, miR-192; two (miR-483,
miR-92a) of which are shown as bone specific in the same
study. In kidney we could not detect any miRNA out of eight
kidney specific in Guo et al. Of note Lee et al., also found
only one miRNA miR-204 to be kidney specific and does
not have any evidence for the rest of the seven miRNAs. In
brief, there is no significant consensus on the tissue specific
miRNAs in the previous studies. However, our work still
aligns reasonably well to their findings.

To understand if disease samples might affect the tissue
specificity calculations we also performed a tissue speci-
ficity analysis using only non-disease samples (Supplemen-
tary Figure S2, 4, Table S1 and 4). Using only non-disease
samples we found three additional tissue specific miRNAs,
hsa-miR-503-3p in placenta, hsa-miR-1-3p and hsa-miR-
133a-5p in muscle and heart. Overall, our miRNA tissue
predictions, mixed as well as non-disease only, were consis-
tent with published information on tissue-specific miRNA
expression (34-36). As Ludwig et al., used only two indi-
vidual’s tissues, Lee et al., also performed own experiments
in a control (same laboratory, same protocols) environment
and used different statistical methods compared to ours, we
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Figure 2. Tissue specific miRNAs. The heatmaps show the scaled expression (0-1) of (A) tissue specific or (B) ubiquitous miRNAs across all the tissues.
(A) Tissue specific miRNAs. miRNA expression across all the tissues with TSI > 0.8 (n = 591). (B) Ubiquitous miRNAs. miRNA expression across all the
tissues with TSI < 0.2 (n = 20). miRNA names are omitted for simplicity. A complete list of tissue specific and ubiquitous miRNAs with their Shannon
entropy score can be found in Supplementary Table S1. These calculations are based on healthy and disease samples within an experiment (‘Materials and

Methods’ section).

were still able to get a reasonable overlap with tissue-specific
miRNAs considering diverse (different laboratories, differ-
ent protocols) and massive data. Therefore, we think that
this work provides the most comprehensive set of tissue-
specific miRNAs till date (n = 591 miRNAs) (Supplemen-
tary Table S1). In order to explore the tissue specificity of
other types of sSRNAs in SEAweb such as piRNA, snoRNA,
snRNA and rRNA, we repeated the above analysis with ex-
actly the same set of samples once for the healthy and dis-
eased mixed and once for the non-diseased samples (Sup-
plementary Figures S3, 4 and Table S4). We found 3445
out of 4300 (filtered for minimum reads, see ‘Materials and
Methods’ section) SRNAs to be tissue specific and only 73
to be ubiquitous in the healthy and disease mixed samples
(Supplementary Figure 3 and Table S4). In the non-diseased
samples, we found 1005 sSRNAs to be specific and 45 to be
ubiquitously expressed across tissues (Supplementary Fig-
ure S3 and Table S4).

Known and novel bacterial or viral infections

We have validated our approach of pathogen detection
in Oasis 2 (16) using SRNA datasets with defined viral
or bacterial infections. Overall, the prediction of bacte-
rial (Mycobacterium abscessus) and viral (HIV, HHV4,
HHYVS, Gallid_herpesvirus_2) infections resulted in high F-

scores, recall and precision, especially when the top five
predicted pathogen species are reported. However, the cur-
rent work additionally involves differential expression anal-
ysis of pathogens and therefore we validated our approach
of pathogen differential regulation using seven datasets
with known infection status. The samples in these datasets
are known to be infected with seven bacterial pathogens
and three viral pathogens. Of note, we focused on within-
dataset comparison in order to avoid technical confounders
(Supplementary Table S2). For each sample, k-mer counts
were calculated for all infectious species present in Kraken
database (4336 viral and 2784 bacterial/archaeal genomes)
and differential abundance analysis was carried out for
those species that have at least three counts (baseMean) in a
particular comparison. As expected, in all comparisons the
known pathogen represented the best hit (i.e. smallest ad-
justed P-value) except Vaccinia virus (Figure 3A). However,
Vaccinia virus has the highest log, fold change as expected
within the dataset (GSE54235) comparison. It is worthy
to note that Chlamydia trachomatis detection is based on
sRNA-seq performed on conjunctival tissue from children
with follicular trachoma and children with healthy conjunc-
tivae, indicating a good performance of our pathogen detec-
tion pipeline from tissues.

Next, we aimed to find novel associations of pathogens
with disease. We took all the comparisons, which has
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Figure 3. Known and Novel bacterial or viral infections. (A) Known associations. Pathogen detection using seven datasets known to be infected with seven
bacterial and three viral pathogens. Bar represents pathogen log,-fold difference between the uninfected and infected state (Supplementary Table S2).
Number on top of the bar denotes rank of the pathogen compared to all the other DE pathogens within the comparison (i.e. smallest adjusted P-value).
(B) Novel associations. Heatmap shows log,-fold difference of pathogens significantly upregulated in disease as compared to healthy (fold change > 1 and
padj < 0.1) (Supplementary Table S2). Comparisons that have less than six pathogens significantly DE are selected for specificity. Details about dataset,
comparison groups, logxfold and padj for both (A and B) are provided in (Supplementary Table S2).

‘healthy’ and at least a disease state annotation (Supplemen-
tary Table S2). In order to achieve more specificity we took
only comparisons that have less than six pathogens signif-
icantly upregulated in disease as compared to healthy (FC
> 1 and padj < 0.1). There were a total of eight compar-
isons but we removed ‘GSE69837’ as this was a known case
(Chlamydia trachomatis already shown in Figure 3A). It
was interesting to find viruses and bacteria significantly up-
regulated in sSRNA-seq data in certain disease compared to
healthy patients (Figure 3B). Some of the most interesting
cases are highlighted in this section below.

Mycobacterium marinum in patients with ileal Crohn’s dis-
ease. In the original study, expression of microRNAs in
mucosae of patients with a normal pouch after colectomy
for intractable ulcerative colitis was compared to several
control cohorts, among them was a cohort of patients with
Crohn’s disease (CD) of the terminal ileum (37). CD pa-
tients were previously not exposed to immunosuppression.
Compared to patients with non-inflamed ileal pouch, pa-
tients with ileal CD showed an increased mucosal expres-
sion of Mycobacterium marinum. The bacterial genus My-
cobacterium causes diverse diseases in humans, of which
Tuberculosis is the most serious with around one-quarter
of the world population latently infected and ~1.6 million
deaths in 2017 on a global scale. M. marinum is a non-
tuberculous (also termed ‘atypical’) Mycobacterium species,

which is ubiquitously abundant in aquatic environments
(38). Infection of humans is well known, but it is consid-
ered a rare event. It typically occurs after exposure to con-
taminated water or infected marine animals, and it is more
common in immunosuppressed individuals. The most com-
monly affected organ is the skin, in more severe cases in-
volvement of muscles, bones or joints is reported (38). Op-
portunistic infection with M. marinum in CD is recognized
in those patients receiving anti-tumor necrosis factor ther-
apy (e.g. infliximab) (39). However, to the best of our knowl-
edge, enteric super-infection with M. marinum has not been
reported in the literature so far. Interestingly, due to the re-
semblance of the granulomatous intestinal inflammation in
CD with enteric infection caused by other Mycobacteria, it
has been hypothesized that Mycobacterial infection is in-
volved in the pathogenesis of CD, with much focus on My-
cobacterium avium paratuberculosis (40). However, the aeti-
ological significance of this pathogen in CD remains uncer-
tain. Hence, the gut mucosal prevalence of M. marinum and
its potential pathophysiologic significance in patients with
CD should be further explored.

Methanosphaera stadtmanae in patients with schizophrenia.
We detected an overabundance of Methanosphaera stadt-
manae in neurons derived from induced pluripotent stem
cells (iPSC) of patients with schizophrenia, compared to
healthy controls. M. stadtmanae is an Archaeal microor-
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ganism which is frequently detected in the healthy human
gut microbiota (41). It is involved in intestinal methano-
genesis and associated fermentative dynamics. M. stadt-
manae is recognized by the innate immune system, therefore
it can induce inflammatory cytokine responses and could
have diverse immunomodulatory functions (42). Interest-
ingly, M. stadtmanae was found with an increased preva-
lence in faecal samples of patients with inflammatory bowel
diseases (IBD) Crohn’s disease (CD) and ulcerative coli-
tis with antigen-specific IgG-responses (43). Immune sys-
tem processes have been proposed to be involved in the
pathogenesis of schizophrenia (44). Regarding the immune-
genetic basis of schizophrenia, genome-wide pleiotropy has
been reported between schizophrenia and CD as well as an
increased prevalence of schizophrenia in patients with IBD
(45). Therefore, the potential immunogenic importance of
M. stadtmanae in schizophrenia should be investigated.

Chimpanzee herpesvirus in Lewy body dementia. We de-
tected an increased abundance of a viral pathogen identi-
fied as chimpanzee herpesvirus (ChHV) in the cerebral cor-
tex of patients with lewy body dementia (LBD) compared to
non-demented controls (46). ChHYV is an alphaherpesvirus
closely related to human herpes simplex virus type 2 (HSV-
2) (47). LBD is a neurodegenerative disorder, which under-
lies 4.2% of all dementia cases, second only to Alzheimer’s
dementia (AD) (48). The aetiology of LBD is obscure, but
growing evidence points toward neuro inflammation as a
key pathophysiologic factor, analogous to the pathogenesis
of AD (49). In AD it is assumed that multiple pathogens
infecting the brain are key triggers of neural dysfunctional
protein accumulation and neuro inflammation in geneti-
cally vulnerable individuals (50). Among the pathogens de-
tected in brains of AD patients, multiple lines of evidence
point at herpes simplex virus type 1 (HSV-1) and HSV-2 as
two of the main drivers of AD neurodegeneration (50,51).
Given the close phylogenetic relationship between ChHV
and HSV-2, ChHV might play a role in inflammatory neu-
rodegenerative processes in LBD similar to the other her-
pesviruses in AD. Therefore, the association detected in the
present study should be further elaborated.

Analyzing in-house data and comparing with SEAweb data

One of the key features available in SEAweb is uploading the
in-house data and comparing it with the already integrated
data. Mostly, researchers use different analysis pipelines
to carry out differential expression or classification, which
makes it very hard to compare the results with the publicly
available data. Therefore, we require a database with inter-
active visualizations that has all the publicly available data
analyzed using the same pipeline with same parameters. For
SEAweb, we have analyzed and integrated all the data us-
ing Oasis 2 pipeline. We expect that comparing the in-house
data with the data in SEAweb will yield disease-specific sig-
natures, in this case a SRNA or group of sSRNAs. Note that
uploading to SEAweb requires the output of Oasis 2 (Sup-
plementary Material).

In order to test this feature, we uploaded in-house SRNA-
seq data from well characterized 47 PD and 53 frequency-
matched healthy controls, which is a baseline data from the

longitudinal de novo Parkinson disease (DeNoPa) cohort
(Supplementary Table S3) and available as ‘demo user data’
in SEAweb. SEAweb gives us a unique opportunity to iden-
tify PD-specific biomarkers associated with early-stage PD
that can eventually help us in early diagnosis, therefore, bet-
ter treatment of the disease. Below we describe the differen-
tial expression and classification results from PD data and
an approach in order to identify PD-specific biomarkers
that do not overlap with other neurodegenerative diseases.

We found four significantly DE miRNAs with adjusted
P-value < 0.1. Out of these, two are upregulated in PD (hsa-
miR-502-3p and hsa-miR-532-5p) and two are downreg-
ulated in PD (hsa-miR-30d-5p and hsa-miR-22-5p) (Sup-
plementary Table S3). Next, we overlapped these four
DE miRNAs with all the neurodegenerative disease-related
datasets integrated in SEAweb. We focused on nine com-
parisons (from five datasets) in which one of the condi-
tions is a healthy state and the other is a diseased condi-
tion (Alzheimer’s disease (AD), LBD, tangle-predominant
dementia, Huntington’s disease (HD), Frontotemporal de-
mentia or Hippocampal sclerosis of aging). Out of the two
upregulated miRNAs in PD, one (hsa-miR-502-3p) is up-
regulated in Alzheimer’s disease and one (hsa-miR-532-5p)
is upregulated in both Alzheimer’s and Huntington’s dis-
ease (Figure 4A). In contrast, none of the downregulated
miRNAs in PD were found to be significantly down in
any of these nine comparisons. Interestingly, it has been
shown that the expression of miR-22 is downregulated in
a 6-hydroxydopamine-induced cell model of PD using RT-
PCR (52). Moreover, Margis et al., found that hsa-miR-
22 has reduced expression in the blood of de novo PD pa-
tients (53). Furthermore, family members of hsa-miR-30d-
Sp are known to be deregulated in PD (54) and putatively
target the PD-related gene, LRRK2 (PARKS) (55). These
results confirms, the potential role of hsa-miR-30d-5p and
hsa-miR-22-5p in PD. To explore the mechanism by which
these two miRNA are involved in PD, we performed gene
ontology (GO) analysis of the validated and predicted tar-
gets using webgestalt (56). The top ten terms ranked accord-
ing to FDR adjusted P-value are shown in the (Figure 4B).
The top significant hit (FDR < 0.1) is axon development.
Recent publications (57-59) have suggested the role of mas-
sive and unmyelinated axonal arbor in PD. In substantia
nigra pars compacta (SNc), the axonal arbor of dopamine
neurons is very large as compared to other neuronal types.
This leads to the hypothesis that these dopamine neurons
have selective and exceptional vulnerability in PD, and have
a higher energy demand that may play a crucial role in cell
death (57).

To obtain a unique PD biomarker we explored the classi-
fication results integrated in SEAweb. PD and healthy were
classified with an AUC of 0.89 (Figure 4D). Interestingly,
the classifier used only 18 sSRNAs (‘Materials and Meth-
ods’ section) to separate the two states (Supplementary Ta-
ble S3 and Figure S5). Moreover, only two SRNAs hsa-miR -
30d-5p (downregulated in PD) and hsa-miR-502-3p (upreg-
ulated in PD) are DE between healthy and PD out of the 18
sRNAs identified by the classifier (Supplementary Figure
S6). We overlapped these 18 SRNAs with the classification
results from other neurodegenerative diseases integrated in
SEAweb (Figure 4C). There are only three SRNA that are
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Figure 4. In-house de novo Parkinson disease (DeNoPa). (A) sSRNA DE Overlap. Overlap of upregulated sSRNAs between in-house denopa (blue), AD
(purple) and HD (orange). Overall nine neurodegenerative disease comparisons were considered and overlap was found with these two datasets. (B) GO
terms. Top 10 GO terms associated with the target genes of the two downregulated sSRNAs. (C) sSRNA classification Overlap. Overlap of classification
features (SRNAs) between in-house denopa (blue), AD (two datasets) (purple) and HD (orange). (D) DeNoPa classification. Receiver-operating char-
acteristic (ROC) curve showing true- and false-positive rates for DeNoPa disease prediction based on sSRNA expression profile using 18 sSRNAs in full
model (blue) and 16 unique (not found in other neurodegenerative diseases) SRNAs (red). (E) PD associated genes. Network of PD associated genes and
13 known miRNAs from the classification. (F) GO terms for novel miRNAs. GO terms associated with the target genes of the three novel miRNAs from
the classification.
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also found in AD or HD but they have opposite change of
expression. This suggests the specificity of these SRNAs to
PD as compared to other neurodegenerative diseases. Fur-
thermore, to filter out SRNAs known to be associated with
other neurodegenerative diseases, we used the association
database of SRNA-disease association available in SEAweb.
The results showed that hsa-miR-342-3p has been associ-
ated with other neurodegenerative diseases (60,61). Next,
we also filtered out SRNAs if the base mean read count is
less than five and also, hsa-miR-502-3p that was found to
be upregulated in AD (Figure 4A). Then we run a random
forest classifier using the normalized counts for the remain-
ing 15 sRNAs and hsa-miR-22-5p that is downregulated in
our data. (Figure 4D) shows that using 16 sSRNAs to classify
PD and controls, yielded 85% area under the curve (AUC)
with 83% recall and 77% of precision. Furthermore, to find
the relevance of the 13 known miRNAs (out of 16 SRNAs)
in PD, we obtained their target genes from SEAweb (only
10 miRNAs out of 13 have targets supported by strong ev-
idence) and overlapped with the targets genes of PD asso-
ciated miRNAs in SEAweb. Interestingly, these 10 known
miRNAs targets 96 genes, which are known to be associ-
ated with PD (Figure 4E and Supplementary Table S3). The
list includes TP53 (62) that contributes to the apoptotic de-
terioration taking place in PD, PTEN (63) that has been
linked to PD via DNA damage and DNA repair machinery,
SMADI1 (64) is an important regulator required for neurite
growth, EZH2 (65) is a lysine methyltransferase component
of polycomb repressive complex 2 that has been associated
with PD and BCL2 (66) is required for proper development
of the dopaminergic system and has been implicated in the
pathogenesis of PD. To gain further insights into the three
novel predicted miRNAs (out of 16 sSRNAs) used to classify
PD and controls, we performed gene enrichment analysis on
their target genes using webgestalt (67). The novel miRNAs
were p-hsa-miR-113, p-hsa-miR-247 and p-hsa-miR-235-
1/2/3 (Supplementary Material). We used miRDB (17) to
get target genes for the mature sequences of these predicted
miRNAs (‘Materials and Methods’ section). Interestingly
the GO terms for these miRNAs were neuron differentia-
tion, generation of neurons, neurogenesis and regulation of
intracellular signal transduction (Figure 4F). All these pro-
cesses are highly related to PD, and hence we think these
novel miRNAs should further be explored and validated in
the laboratory. Predicted structure of these miRINAs can be
found in Supplementary Material.

All together, these results make a strong case in favor of
using SEAweb in order to retrieve disease-specific biomark-
ers.

CONCLUSION

SEAweb is designed for the biological or medical end-user
that is interested to define where and when a sSRNA of in-
terest is expressed. Prototypical questions that can be ad-
dressed with SEAweb are: What is the expression of hsa-
miR-488-5p across all human tissues? Is hsa-miR-488-5p
expressed higher in adenocarcinomas as compared to other
cancer types? Is the tissue-specific expression of hsa-miR-
488-5p conserved in mice? Its unique selling points are the

deep and standardized annotation of meta-information, the
re-analysis of published data with Oasis 2 to reduce analy-
sis bias, a user-friendly search interface that supports com-
plex queries and the fast and interactive visualization of
analysis results across 10 organisms (Table 1) and vari-
ous sSRNA-species. SEAweb also contains information on
the expression of currently 769 high-quality predicted miR-
NAs, across organisms and tissues.

In addition, SEAweb also stores sSRNA differential ex-
pression, sSRNA based classification, pathogenic SRNA sig-
natures from bacteria and viruses and pathogen differential
expression. Furthermore, SEAweb can be used to search
gene targets or diseases associated with a miRNA. More-
over, SEAweb allows end users to upload their analysis re-
sults of differential expression and classification from Oasis
2. This will allow users to compare their data to over 4200
experimental samples across different conditions. SEAweb
also provides users with an option to perform on the
fly analysis such as overlapping DE sRNAs or pathogens
across different studies or the most important features (sR-
NAs) identified with classification. SEAweb enables end
users to re-submit samples from interactive plots for dif-
ferential expression or classification, this will help users to
choose samples of their choice from an experiment (Supple-
mentary Figure S7).

Moreover, SEAweb is continuously growing and aims to
eventually encompass all SRNA-seq datasets across all or-
ganisms deposited in GEO and other repositories. In order
to keep SEAweb up to-date with the current small RNA se-
quencing data or the data that will be published to GEO
in the future, we have written programs that automatically
search GEO and SRA databases every two weeks (consis-
tent with the GEO update cycle). These programs down-
load raw fastq files, submit these to Oasis 2, and assign re-
sponsibility to another program for the semi-automated an-
notation for tissue, cell line, cell type and other meta-data
available. In case the system cannot fully annotate all fields,
automatic annotation is followed by manual curation using
a front-end curation system. Currently manual annotation
QA is the rate-limiting step, which is why we actively de-
velop deep learning-based annotation prediction routines
for future versions of SEAweb (68). Genome versions will
be updated with every major release of SEAweb. SEAweb
will be backward compatible in the future by allowing users
to choose previous genome versions and annotations.

A detailed comparison of SEAweb to other existing
sRNA expression databases highlights that SEAweb is su-
perior in terms of supported organism, annotations, dis-
eases, tissues, SRNA based classification, pathogen k-mer
DE, known miRNA disease associations, user specific ex-
perimental data upload, cross study comparisons and re-
analysis with selected samples (Table 2).

As far as we are aware, SEAweb is the only sSRNA-seq
database that supports ontology-based queries, supporting
single or combined searches for five predefined keys (or-
ganism, tissue, disease, cell type and cell line) across all
datasets. However, the SEAweb database system contains
additional (meta)-information including age, gender, devel-
opmental stage, genotype as well as technical experimen-
tal details such as the sequencing instrument and proto-



col details (e.g. library kit, RNA extraction procedure). We
plan to normalize most of this additional information in fu-
ture versions of SEAweb. This will allow users, for example,
to query and analyze SRNA expression effects that are in-
troduced by library kit or sequencing platform differences
(both of these features can introduce large biases in the de-
tection and expression of sSRNAs). Other future develop-
ments will include information on SRNA editing, modifica-
tions and mutation events.

In summary, SEAweb supports interactive result visual-
ization on all levels, from querying and displaying of SRINA
expression information to the mapping and quality infor-
mation for each of the over 4200 samples. SEAweb is a fast,
flexible, and fully interactive web application for the inves-
tigation of SRNA and pathogen expression across cell lines,
tissues, diseases, organisms and sRNA-species. As such,
SEAweb should be a valuable addition to the landscape of
sRNA expression databases.

Additionally, we presented the most comprehensive set
of tissue specific miRNAs till date. We were able to pro-
vide by far the most complete set of 591 distinct tissue spe-
cific miRNAs across 30 tissues. To our knowledge this is by
far the most comprehensive analysis (set) of tissue-specific
miRNAs.

In the current work, we also found pathogen signatures
from sRNA-seq data. We found signatures of pathogens
in severe diseases like dementia. In brief, we found dif-
ferential regulation of M. marinum in patients with ileal
crohn’s disease, methanosphaera stadtmanae in patients
with schizophrenia and chimpanzee herpesvirus in LBD.

From our in-house PD data, we were able to find poten-
tial biomarkers based on differential expression and classi-
fication for the early detection of PD. The top term for the
GO analysis of the two downregulated miRNAs is axon de-
velopment, suggesting their role in PD. Moreover, gene tar-
gets of the sSRNAs for the top important features (potential
biomarkers) for PD using classification were overlapping
with the targets of the known PD miRNAs. Additionally,
GO analysis for the targets of the three novel miRNAs are
neuron differentiation, generation of neurons, neurogenesis
and regulation of intracellular signal transduction (Figure
4F). We think these novel miRNAs should be further ex-
plored and validated in the laboratory.

At last, researchers have used massive SRNA data from
SEAweb for other tasks, for example, it enables to use deep
learning for data augmentation problem such as predicting
sex and tissue based on SRNA expression profiles (68). As
such, SEAweb should be a valuable addition to the land-
scape of SRNA-seq web applications.
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