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Abstract: The signaling function of the Na/K-ATPase has been established for 20 years and is widely
accepted in the field, with many excellent reports and reviews not cited here. Even though there
is debate about the underlying mechanism, the signaling function is unquestioned. This short
review looks back at the evolution of Na/K-ATPase signaling, from stimulation by cardiotonic
steroids (also known as digitalis-like substances) as specific ligands to stimulation by reactive
oxygen species (ROS) in general. The interplay of cardiotonic steroids and ROS in Na/K-ATPase
signaling forms a positive-feedback oxidant amplification loop that has been implicated in some
pathophysiological conditions.
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1. Introduction

Since J.C. Skou’s discovery in 1957 [1], the energy-transducing Na/K-ATPase has been extensively
studied for its ion-pumping function and, later on, its signaling function. The latter was first
demonstrated about two decades ago and evolved into a much bigger signaling network (and has kept
evolving) that one could not imagine before.

All starts with the possible role of Na/K-ATPase in cardiac hypertrophy. In a classic view, partial
inhibition of Na/K-ATPase ion-exchange activity raises intracellular sodium concentration ([Na+]i),
which in turn increases intracellular calcium concentration ([Ca2+]i) by coupling with Na+/Ca2+

exchanger (NCX) to execute the inotropic effect. This is the basis of the treatment of heart failure with
digitalis-like drugs. Furthermore, partial inhibition of Na/K-ATPase not only causes intracellular
ionic changes but also stimulates transcriptional upregulation of several marker genes including
Na/K-ATPase itself. However, further studies were unable to directly link ouabain-mediated gene
regulation effects to changes in intracellular [Na+]i or [K+]i caused by Na/K-ATPase inhibition.
In cultured cardiac myocytes, treatment with nontoxic concentrations of ouabain not only partially
inhibited Na/K-ATPase activity and increased cardiac contractility but also stimulated cell growth and
protein synthesis through induction of early response proto-oncogenes and activation of transcription
factors [2–8]. These discrepancies started the search for mechanism(s) other than ionic changes.

2. Na/K-ATPase Signaling and Intracellular Ionic Concentration

As mentioned above, changes in [Na+]i, [K+]i, and [Ca2+]i were largely attributed to changes
in Na/K-ATPase activity that can be regulated by specific-ligand cardiotonic steroids. Interestingly,
Na/K-ATPase activity can also be regulated by changes in cellular redox status, induced by either
cardiotonic steroids or other factors. In cardiac myocytes, inhibition of Na/K-ATPase ion-exchange
function leads to a decrease of [K+]i and an increase of [Na+]i. By coupling to NCX, this increase in
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[Na+]i elevates intracellular [Ca2+]i, which is the leading force of the positive inotropic action induced
by digitalis drugs for treatment of heart failure [9,10]. To address the role of these ionic changes,
ouabain-induced reactive oxygen species (ROS) generation (an essential second messenger) and an
increase in [Ca2+]i (a shared secondary messenger) were manipulated to investigate the possible
interplay. Ouabain-induced ROS generation was compared in cardiac myocytes cultured in Ca2+-free
medium (with 0.1 mM egtazic acid (EGTA)) and Ca2+-containing medium, respectively. In neonatal
cardiac myocytes cultured in Ca2+-free medium, in which ouabain did not change [Ca2+]i, ouabain
was still able to stimulate ROS generation as shown in myocytes cultured in Ca2+-containing medium
but was unable to stimulate an increase of [Ca2+]i and contractility in neonatal cardiac myocytes [11].
Furthermore, in neonatal cardiac myocytes cultured in Ca2+-free medium with high Na+ (150 mM),
monensin, a Na+-specific ionophore capable of equilibrating Na+ concentration across cell membrane,
failed to increase ROS generation. Interestingly, inhibition of c-Src or Ras as well as antioxidants
can block ouabain-stimulated ROS generation but not ouabain-induced increases in [Ca2+]i [6,12,13].
These observations suggest that increases in [Ca2+]i are necessary in ouabain-induced increases in
cardiomyocytes contractility and gene regulatory effects but is not necessary in ouabain-stimulated ROS
generation. Moreover, ouabain-stimulated Na/K-ATPase signaling also increases the generation of
ROS, which functions as a second messenger. Pretreatment with antioxidants, such as N-acetylcysteine
(NAC) or vitamin E, neutralized the increases of ROS and therefore prevented ouabain-stimulated
activation of NF-κB and protein synthesis [6,11]. Ouabain-induced increases in ROS production
involves the opening of mitochondrial ATP-sensitive K+ channels (mitoKATP) [11,13].

Notably, ouabain-induced increases in [Ca2+]i are also involved in ouabain-stimulated
Na/K-ATPase signaling. In renal epithelial cells, low doses of ouabain, which only partially inhibit
Na/K-ATPase activity, functioned as an inducer/trigger of regular, low-frequency [Ca2+]i oscillations,
which are involved in the Na/K-ATPase/inositol 1,4,5-trisphosphate receptors (IP3Rs) signaling
microdomain that leads to NF-κB activation [14,15]. This phenomenon does not depend on partial
inhibition of Na/K-ATPase using low extracellular K+ and depolarization of cells but is achieved
by ouabain-stimulated activation of tyrosine kinase c-Src and phospholipase C-γ (PLC-γ), which
transmit the signal to IP3Rs [16,17]. Depletion of intracellular endoplasmic reticulum (ER) Ca2+ by
sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitor, as well as blockage of store-operated
calcium-mediated cytosolic Ca2+ influx and inhibition of IP3Rs-induced Ca2+, release abolished
ouabain-induced Ca2+ oscillations [15]. Truncation of 32 amino acids from the α1 NH2 terminus results
in a functional enzyme but abolishes ouabain-induced Ca2+ oscillations, indicating that the cytoplasmic
α1 NH2 terminus plays a central role in ouabain-induced Ca2+ oscillations [15]. The data from this
study also indicates that increased [Na+]i is not the main cause of ouabain-induced Ca2+ oscillations,
but rather the release of the α1 NH2 terminus during the Na/K-ATPase E1 to E2 conformational
change (ouabain binding favors E2 conformation) serves as a mean of α1/IP3Rs complex formation. It
was further confirmed that the α1 NH2 terminus binds directly, through motif LKK, with the IP3R NH2

terminus [18]. On the other hand, ouabain stimulated the formation of a functional Ca2+-signaling
complex, including the Na/K-ATPase α1/c-Src/PLC-γ/IP3R in LLC-PK1 cells, and knockdown of
the Na/K-ATPase α1 redistributed IP3R [17]. Overexpression of the α1 NH2 terminus (amino acids
1–160) not only disrupted the interaction of the Na/K-ATPase α1 and IP3R, but it also functioned as a
negative regulator of ATP-induced ER Ca2+ release [17]. The p42/44 MAPK-mediated activation of
Ca2+ channels partially contributes to ouabain-induced regulation of [Ca2+]i [19,20].

Because the effects of ouabain on c-Src are independent of changes in intracellular ion
concentrations [11,21–23], it seems that ouabain-induced inhibition of Na/K-ATPase enzymatic
activity (ion exchange) and ouabain-induced c-Src-dependent signaling are, at least partially,
two separated regulatory events under these experimental conditions. In addition to ouabain,
changes in intracellular Na+ or extracellular K+ affect not only the enzyme conformation but also
change other ion-transporter-related activities. For example, lowering of extracellular K+ activates
protein kinases and raises intracellular Ca2+ in cardiac myocytes [23], but it differs from the effects
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of ouabain on smooth muscle and kidney epithelial cells [14,21]. Large bulk changes in [Na+]i or
[K+]i that are not induced by the ouabain–Na/K-ATPase axis also affect other intracellular signal
pathways [24–26]. For example, in cultured porcine aortic endothelial cells, ouabain-mediated
complete inhibition of Na/K-ATPase causes cell necrosis that is independent of ouabain-mediated
ion fluxes and changes of the [Na+]i/[K+]i ratio, but K+-free ([K+]0 = 0) medium-caused inhibition of
Na/K-ATPase, which elevates [Na+]i, does not induce necrosis but protects against apoptosis [27].
The antiapoptosis effect is regulated by a [Na+]i-mediated, Ca2+-independent mechanism [28]. In
cultured cortical neurons, ouabain-induced concentration-dependent neuron death involved apoptosis
and necrosis, which is mediated by intracellular depletion of K+ and accumulation of Ca2+ and
Na+ [29]. These observations suggest that ouabain-Na/K-ATPase-mediated signaling differs from
solely ionic change ([Na+]i/[K+]i)-mediated signaling pathways. The possible interplay and different
mechanism(s) between them are still not totally understood.

In smooth muscle cells of rat arteries, both NCX and ouabain-sensitive Na+/K+-ATPase α2-
and α3-isoforms reside closely in plasma membrane regions adjacent to the sarcoplasmic reticulum,
a subplasmalemmal space called plasmERosome [30–33]. While low doses of ouabain do not increase
bulk cytosolic Na+ levels, it can stimulate a local transient rise of [Na+]i in the plasmERosome, which
can lead to a local transient increase of [Ca2+]i via the NCX and increased muscle contractility [34–36].

In cells without expression of plasma membrane NCX, alteration of the [Na+]i/[K+]i ratio, by high
ouabain concentrations or palytoxin through inhibition of Na+/K+-ATPase, is able to activate some
protein kinase signaling pathways [25–37]. This suggests that, in cells lacking NCX expression, changes
in [Na+]i or [K+]i or both may also stimulate Ca2+-independent Na+/K+-ATPase signaling functions.

These observations indicate a complicated interplay amongst Na/K-ATPase ion-exchange activity,
signaling, and ROS in regulation of different cellular events. The Na/K-ATPase signaling–ROS axis
might play an important role in dissecting these regulations since chronic regulation of ion homeostasis
could be a consequence of Na/K-ATPase signaling and ROS regulation.

3. Na/K-ATPase Signaling and Reactive Oxygen Species (ROS): The Positive Oxidant
Amplification Loop

The interplay amongst Na/K-ATPase signaling, ROS, and oxidative modifications has been a topic
for decades. The effect of ROS on Na/K-ATPase activity has been well documented [6,38–46]. Different
oxidative modification mechanisms and subunits of the Na/K-ATPase showed different outputs.

In rabbit ventricular myocytes, glutathionylation of cysteine residue (Cys-46) of the Na/K-ATPase
β1 subunit inhibits Na/K-ATPase activity by either stabilizing the enzyme in an E2-prone conformation,
a process that could be reversibly regulated by glutaredoxin 1 and FXYD proteins (a family of seven
type I small membrane proteins sharing a 35 amino acid signature domain starting with PFXYD)
that are associated with Na/K-ATPase [40,41,47]. In rat myocardium, S-glutathionylation of cysteine
residues (Cys-454, -458, -459, and-244) of the Na/K-ATPase α1 subunit also inhibits the Na/K-ATPase
activity by blocking the ATP-binding site Na/K-ATPase α1 subunit when the ATP concentration
below 0.5 mM. This S-glutathionylation of the α1 subunit as well as inhibition of Na/K-ATPase
activity can be reversed by deglutathionylation with glutaredoxin or dithiothreitol [42,48]. In various
chronic inflammatory conditions, circulating cardiotonic steroids are elevated that are capable of
stimulating a proinflammatory response in murine and human macrophages. This process involves
ouabain-stimulated activation of NF-κB through a signaling complex of Na/K-ATPase, CD36,
and TLR4, leading to increases in proinflammatory cytokines MCP-1, TNF-α, IL-1β, and IL-6 [49–51].

In rat neonatal myocytes, ouabain-stimulated activation of the Na/K-ATPase signaling function
increases mitochondrial ROS generation that functions as an essential second messenger [6,11].
More importantly, increases in ROS can cause conformational changes in Na/K-ATPase like
ouabain [39–42,44,47]. One question asked was that if ROS is able to stimulate the signaling function
of Na/K-ATPase like ouabain, and if ouabain (or ROS) → Na/K-ATPase signaling → ROS →
Na/K-ATPase signaling could form a positive amplification loop that could amplify Na/K-ATPase
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and subsequent signaling events and functional changes. This is of particular interest since it was
well accepted that ROS play an important role in the pathogenesis of cardiovascular diseases, chronic
kidney diseases, and many others.

In primary cultures of cardiac myocytes, it was demonstrated that partial inhibition of
Na/K-ATPase by ouabain stimulated c-Src- and Ras-dependent signaling which lead to mitochondrial
KATP channel-related ROS generation, and that ouabain-induced cardiac hypertrophic growth
involved ROS-dependent signaling pathways [6]. In Langendorff-perfused rat hearts, pretreatment
with ouabain demonstrated a cardioprotective effects against ischemia-reperfusion injury by an
improved recovery of contractile function and a reduction of infarct size. This ouabain effect is due to
activation of the Na/K-ATPase signaling function that involves Src, the mitochondrial KATP channel,
and ROS [52]. Exogenous ROS (for example, induced by glucose oxidase) acting as ouabain also
caused ROS-dependent cardiac hypertrophic growth. Inhibition of c-Src and ERK1/2 abrogated the
effects of ROS-induced protein synthesis that was not affected by chelating intracellular Ca2+ by
BAPTA-AM [53]. Moreover, ouabain-induced increase in [Ca2+]i was ROS-independent and involved
mainly the inhibition of the Na/K-ATPase ion transport function [11]. These observations indicated
that ROS act like ouabain, and the Na/K-ATPase could be a target for ROS-initiated signaling.

In porcine LLC-PK1 cells (an immobilized renal proximal tubule cell line), exogenous H2O2
activated Na/K-ATPase signaling pathways including phosphorylation of c-Src and ERK1/2 [54].
By using LLC-PK1 cells, it was further demonstrated that a low concentration of ouabain also
stimulated the Na/K-ATPase signaling function, which led to increased ROS generation and
protein carbonylation modification of Na/K-ATPase (direct carbonylation of two amino acid
residues, Pro222 and Thr224, in the actuator domain of the α1 subunit) [45]. Pretreatment
with antioxidant N-acetyl-L-cysteine (NAC) or disruption of the Na/K-ATPase/c-Src signaling
complex attenuated ouabain- and glucose-oxidase-stimulated Na/K-ATPase/c-Src signaling, protein
carbonylation, redistribution of Na/K-ATPase, and inhibition of active transepithelial 22Na+ transport.
This indicated that ROS are critical in initiating ouabain-stimulated Na/K-ATPase/c-Src signaling,
and carbonylation modification of the α1 subunit is involved in a feed-forward mechanism of
regulation of ouabain-mediated Na/K-ATPase signal function and subsequent Na+ transport.
Interestingly, there is an undefined “decarbonylation” mechanism of ouabain-stimulated protein
carbonylation after removal of ouabain, which could be another new regulatory mechanism of
Na/K-ATPase signaling because it was believed that protein carbonylation modification could not
be reversed. Furthermore, stable overexpression of rat α1 mutant Pro224/Ala (Pro224 of rat α1 is
the same as the Pro222 of pig α1) prevented the ouabain-stimulated signal function of Na/K-ATPase,
protein carbonylation, Na/K-ATPase endocytosis, and active transepithelial 22Na+ transport [46].
Taken together, we proposed that, in LLC-PK1 cells, there is a positive-feedback amplification loop
of Na/K-ATPase signaling and ROS generation, in which carbonylation of the Pro222 of the α1
subunit plays a critical role. In this working model, both Na/K-ATPase specific-ligand cardiotonic
steroids (including ouabain) and ROS increases (induced by other stimuli, including exogenous-added
glucose oxidase) could activate Na/K-ATPase signaling. The Na/K-ATPase/c-Src complex functions
as a “receptor” of ROS signaling. This Na/K-ATPase signaling–ROS axis may explain the role of
Na/K-ATPase signaling in the development of different pathophysiological conditions. However, it is
not clear (1) if a decarbonylation process could regulate the carbonylation modification, and (2) to
which point the oxidant amplification loop will be forced to stop.

4. Na/K-ATPase Signaling and pNaKtide: A Specific Antagonist of c-Src Kinase that Breaks the
Oxidant Amplification Loop

One question regarding the abovementioned “Na/K-ATPase signaling-mediated oxidant
amplification loop” is, could this amplification loop be controlled and targeted for possible therapeutic
implication(s)? In the Na/K-ATPase/c-Src signaling complex model, it was demonstrated that the α1
ND1 domain binds to the c-Src tyrosine kinase domain and the α1 CD2 domain binds to the c-Src SH2
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domain in the “resting” state [55]. Upon ouabain stimulation, c-Src is activated (phosphorylation of
Tyr418) due to the disruption of the binding between the α1 ND1 domain and the c-Src tyrosine kinase
domain. Based on this working model, mapping of these domains led to the identification of a peptide
named NaKtide (derived from the Ser415-Gln434 of the pig α1 ND1 domain). In order to further explore
this relationship, a cell-permeable version of NaKtide, named pNaKtide, was created. A 13-amino-acid
TAT leader sequence makes pNaKtide positive and therefore cell permeable. pNaKtide targets
the α1/Src receptor complex close to the plasma membrane inside the cell [41,56]. Both NaKtide
and pNaKtide act as specific antagonists of c-Src phosphorylation (Figure 1), further demonstrating
that the binding of the α1 and c-Src and the conformational change are critical in the activation of
Na/K-ATPase signaling.
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Figure 1. A schematic illustration of action of pNaKtide: Under control state, c-Src SH2 domain binds
to α1 CD2 segment (indicated by arrow 1) and c-Src KD binds to α1 ND1 (indicated by arrow 2),
which keeps c-Src inactive. Upon ouabain binding to the α1 subunit, the α1 subunit favors E-2P
conformational status and c-Src KD released from α1 subunit that leads to phosphorylation of Tyr418
in c-Src KD. NaKtide and pNaKtide are derived from 20 aa (Ser415-Gln434) in α1 ND1, which can
bind to the c-Src KD for the competitive binding of α1 ND1 and KD, thus preventing phosphorylation
of Tyr418 in c-Src KD. In the illustration, ouabain is used as a representative of cardiotonic steroids.
SH2, c-Src SH2 domain; KD, c-Src kinase domain; CD2, α1 subunit CD2 segment; ND1, α1 subunit
ND1 segment.

Oxidative stress plays an important role in many pathophysiological conditions. The role of
pNaKtide in Na/K-ATPase signaling-mediated oxidant amplification loop has been investigated in
different cell types and animal models. For example, systemic administration of pNaKtide significantly
and effectively attenuates (1) 5/6th partial nephrectomy (PNx)-induced uremic cardiomyopathy
phenotypes in C57BL/6 mice [57]; (2) high-fat-diet-induced adipogenesis, a model of obesity and
metabolic syndrome [58]; (3) Western-diet-induced (containing high fat and high fructose) obesity,
hepatic steatosis, and fibrosis in C57BL/6 mice, as well as steatohepatitis and aortic atherosclerosis in
ApoE knockout mice [59]; (4) a Western-diet-accelerated aging process involving nuclear oxidative
stress in C57BL/6 mice [60]; as well as (5) unilateral ureteral obstruction (UUO)-mediated interstitial
fibrosis in C57BL/6J mice [61]. In these animal models, administration of pNaKtide specifically breaks
Na/K-ATPase signaling-mediated oxidant amplification loop, demonstrated by pNaKtide-induced
attenuation of c-Src activation, protein carbonylation, and other regulations. More molecular
mechanistic studies are necessary for possible therapeutic usage.

5. Na/K-ATPase Signaling-Mediated Transporter Endocytosis and Renal Sodium Handling

Over the last decade, the role of Na/K-ATPase signaling in renal proximal tubular sodium
handling and the role of oxidative modification of the Na/K-ATPase α1 subunit in Na/K-ATPase
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signaling were explored both in vitro and in vivo. The findings may explain some mechanism(s) related
to the Na/K-ATPase signaling–ROS amplification loop and subsequent regulation of salt-sensitivity.

It is well documented that the renal proximal tubule mediates over 60% of the filtered Na+

reabsorption, mainly through apical Na+ entry via NHE3 and basolateral Na+ extrusion through the
Na/K-ATPase. Coordinated and coupled regulation of NHE3 and the Na/K-ATPase is critical in
maintaining intracellular Na+ homeostasis and extracellular fluid volume [62–64].

In LLC-PK1 cells such as dopamine [65–68], low concentrations of ouabain stimulate endocytosis
of the α1/β1 subunits, NHE3 (Na+/H+ exchanger, isoform 3), and c-Src into early and/or
late endosomes, leading to net decreases in abundance of Na/K-ATPase and NHE3 in cell
surface, and thus decreases in transcellular 22Na+ transport [62,69–75]. This phenomenon is mainly
through a clathrin-dependent endocytic pathway and requires caveolin-1 and activation of c-Src
and PI3K. Furthermore, ouabain-induced endocytosis of Na/K-ATPase and NHE3 decreases in
transcellular 22Na+ reabsorption and is dependent on the ouabain-stimulated signaling function
of Na/K-ATPase without significantly affecting [Na+]i [70,76,77]. Inhibition of c-Src and PI3K activity
prevented ouabain-induced endocytosis of Na/K-ATPase and NHE3. Pretreatment of LLC-PK1
cells with membrane-permeable Ca2+ chelator BAPTA-AM attenuated ouabain-induced regulation of
NHE3 [77], suggesting ouabain-induced Ca2+ signaling might be involved in regulation [14]. In male
Sprague-Dawley rats fed a high-salt (4.0% NaCl) or normal-salt (0.4% NaCl) diet for 1 week,
a high-salt diet redistributes the Na/K-ATPase α1 subunit from plasma membrane fraction to
early/late endosomes, accompanied by a reduction of proximal tubular Na/K-ATPase ion-exchange
activity and enzymatic activity but an increase in urinary excretion of marinobufagenin (MBG)
and sodium. These effects were attenuated by administration of anti-MBG antibody prior to salt
load [74]. Moreover, this observation was further confirmed in vivo. By using Dahl salt-sensitive
and salt-resistant rats (Jr strains) as models, in vivo studies demonstrated that impairment of renal
proximal tubular Na/K-ATPase signaling causes experimental Dahl salt sensitivity [78]. In Dahl
salt-resistant but not salt-sensitive rats, a high-salt (2% NaCl, 1 week) diet activated proximal tubular
Na/K-ATPase signaling and stimulated coordinated redistribution of the Na/K-ATPase and NHE3,
leading to increases in total and fractional urinary sodium excretion as well as normal blood pressure.
However, the mechanism(s) underlying the difference of Na/K-ATPase signaling function between
Dahl salt-sensitive and salt-resistant rats, as well as the translation of Na/K-ATPase signaling to NHE3
regulation, are still unclear.

It is well established that both oxidative stress and high blood pressure are causes and
consequences of each other. Based on the findings of the amplification loop of Na/K-ATPase signaling
and ROS generation, we tested whether oxidative stress could activate the signaling function of
Na/K-ATPase and induce the abovementioned endocytosis process and regulation of renal sodium
handling. In our working model, increases in ROS generation, either by ouabain or by other stimuli
such as glucose oxidase, are critical in activation of Na/K-ATPase signaling, which mediates transporter
trafficking, transcellular Na+ transport, and urinary sodium excretion [45,46]. On the one hand,
pretreatment with antioxidant NAC abrogates ouabain-stimulated Na/K-ATPase signaling and
transcellular Na+ transport, suggesting that a certain level of basal ROS is required for initiation
of Na/K-ATPase signaling. On the other hand, without the presence of ouabain, increases in ROS
by extracellularly added glucose oxidase are able to activate Na/K-ATPase signaling, indicating that
activation of Na/K-ATPase signaling does require its specific ligands and that general stimuli, such as
oxidative modification alone, are able to activate Na/K-ATPase signaling [79].

However, the effect(s) and consequence(s) of ouabain- and ROS-induced endocytosis of
Na/K-ATPase/c-Src/EGFR [70,71] are not clear. It has been shown that endocytosis of signaling
molecules could be a way to terminate or propagate signaling and could further regulate endocytosis
itself [80–87]. In this regard, it is possible that ouabain- and ROS-induced endocytosis could be
an effective way to terminate the Na/K-ATPase signaling-mediated oxidant amplification loop by
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degradation of carbonylated Na/K-ATPase to maintain certain basal level of ROS and carbonylated
protein [88].

6. Perspectives: The Working Models of Na/K-ATPase Signaling

There are different proposed working models which explain the mechanisms underlying the
activation of the Na/K-ATPase signaling function, including: (1) the direct interaction of the
Na/K-ATPase α1 subunit with c-Src kinase which forms a functional Na/K-ATPase/c-Src signaling
receptor complex, a model has been demonstrated both in vitro and in vivo [55,89–91]; (2) c-Src is
activated primarily by an ATP-sparing effect (observed in a cell-free system) [92,93]; and (3) c-Src is
activated by transient interaction with a Na/K-ATPase α1/caveolin-1 complex (also observed in a
cell-free system) [94] (Figure 2). In these models, there is no doubt that c-Src activation is a proximal
step in Na/K-ATPase signaling. It is not a surprise that different working models are proposed
based on different experimental systems, and an ideal working model is developed based on new
developments and new technologies. As mentioned above, ouabain (and other cardiotonic steroids),
ROS, reactive nitrogen species (RNS), changes of ionic concentrations (bulky or local), and other
stimuli can activate different signaling pathways to excute different functional regulations. Moreover,
these different signaling pathways and functional regulations are also cell-dependent. A common
charateristic in these working models is that they are, at least partially, dependent on the conformation
change. Specifically, the E2-P conformational state of the Na/K-ATPase is favored and stabilized by
Na/K-ATPase inhibitors (ouabain, vanadate, oligomycin), energy status (ATP/ADP ratio), and change
in [Na+] and [K+]. While the E2-P conformational state of the Na/K-ATPase is favored, a “slower”
dynamic E-2P ↔ E1-P conformational change (in the presence of inhibitors and/or energy status)
might be an effective way to maintain and control the signaling strength and function. Nevertheless,
these hypotheses need to be experimentally demonstrated.
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