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Abstract

Motivation: Normalization to remove technical or experimental artifacts is critical in the analysis of single-cell RNA-
sequencing experiments, even those for which unique molecular identifiers are available. The majority of methods
for normalizing single-cell RNA-sequencing data adjust average expression for library size (LS), allowing the vari-
ance and other properties of the gene-specific expression distribution to be non-constant in LS. This often results in
reduced power and increased false discoveries in downstream analyses, a problem which is exacerbated by the high
proportion of zeros present in most datasets.

Results: To address this, we present Dino, a normalization method based on a flexible negative-binomial mixture
model of gene expression. As demonstrated in both simulated and case study datasets, by normalizing the entire
gene expression distribution, Dino is robust to shallow sequencing, sample heterogeneity and varying zero propor-
tions, leading to improved performance in downstream analyses in a number of settings.

Availability and implementation: The R package, Dino, is available on GitHub at https://github.com/JBrownBiostat/
Dino. The Dino package is further archived and freely available on Zenodo at https://doi.org/10.5281/zenodo.4897558.

Contact: brownj@biostat.wisc.edu or kendzior@biostat.wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past decade, advances in single-cell RNA-sequencing
(scRNA-seq) technologies have significantly increased the sensitivity
and specificity with which cellular transcriptional dynamics can be
analyzed (Bacher and Kendziorski, 2016; Haque et al., 2017;
Hwang et al., 2018; Kolodziejczyk et al., 2015; Wu et al., 2017).
Further, parallel increases in the number cells which can be simul-
taneously sequenced have allowed for novel analysis pipelines
including the description of transcriptional trajectories (Qiu et al.,
2017; Trapnell et al., 2014) and the discovery of rare sub-
populations of cells (Hwang et al., 2018; Satija et al., 2015; Tsoucas
and Yuan, 2018). The development of droplet-based, unique-mo-
lecular-identifier (UMI) protocols such as Drop-seq, inDrop and the
10x Genomics Chromium platform (Klein et al., 2015; Macosko
et al., 2015; Zheng et al., 2017) have significantly contributed to
these advances. In particular, the commercially available 10x
Genomics platform has allowed the rapid and cost-effective gene ex-
pression profiling of hundreds to tens of thousands of cells across
many studies to date.

The use of UMIs in the 10x Genomics and related platforms has
augmented these developments in sequencing technology by tagging
individual mRNA transcripts with unique cell and transcript specific
identifiers. In this way, biases due to transcript length and PCR amp-
lification have been significantly reduced (Grün et al., 2014; Islam
et al., 2014; Tung et al., 2017; Zheng et al., 2017). However, tech-
nical variability in library size (LS), defined as the sum of sequenced
UMIs for a given cell, remains. Consequently, normalization to re-
move excess variation due to LS is required to ensure accurate down-
stream analyses(Fig. 1). As a result, a number of normalization
methods have been developed to remove the effects of LS prior to
downstream analysis.

The simplest influence of LS on gene expression, the UMI counts
across cells for a given gene, is the (typically) linear increase
observed in expression with LS. As such, common methods for nor-
malization are based on global scale factors which scale all reads in
a cell uniformly with the goal of removing the effect of LS on aver-
age expression. In counts per ten-thousand (CPT), implemented in
the popular Seurat pipeline (Butler et al., 2018), each transcript
within a cell is scaled such that the sum of expression across
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transcripts within the cell equals ten thousand; counts per million
(CPM) is similar, but with the target per-cell sum equal to one mil-
lion. Another widely used method, Scran (Lun et al., 2016), pools
counts across groups of cells to calculate scale factors which are
more robust to low LS.

Bacher et al. (2017) showed that different groups of genes require
different scale factors, which compromises the performance of glo-
bal scale factor-based approaches. To address this, they proposed
scNorm which estimates scale factors via quantile regression separ-
ately for groups of genes having similar relationships between ex-
pression and LS. While useful, their approach was developed for
scRNA-seq data obtained via Fluidigm and similar protocols, and
does not apply directly to UMI count data. Specifically, in addition
to the distributional changes due to the deduplication of UMI data,
the authors note (scNorm GitHub page and Bioconductor vignette)
that for datasets with more than approximately 80% zeros, compo-
nents of the model may not converge. Typical UMI datasets can
have greater than 90% zeros (Townes et al., 2019).

Hafemeister and Satija recently demonstrated that analysis of
UMI data also requires different distributional parameters, if not dif-
ferent scale factors, for different groups of genes. They approach
normalization as a parametric regression problem and introduce
scTransform (Hafemeister and Satija, 2019) which models counts
using a negative-binomial generalized linear model (glm). In
scTransform, parameter estimates are smoothed across genes such
that genes with similar average expression also have similar model
parameters. Normalized data is then given by Pearson residuals from
the regression and, as a result, the normalized expression of a typical
gene has mean zero and unit variance. This approach attenuates the
dependence of both the mean and variance on LS.

However, variation due to LS remains in datasets normalized by
these techniques. In particular, there are shifts in the distributions of
normalized expression as a function of LS (Fig. 1) which then impact
downstream analyses (Fig. 2). A large contributor to this observed
effect is the reduction in the proportion of unnormalized zeros for a
given gene as LS increases.

To address this, we present Dino, an approach that utilizes a
flexible mixture of Negative Binomials model of gene expression to
reconstruct full gene-specific expression distributions which are in-
dependent of LS. By giving exact zeros positive probability, the
Negative Binomial components are applicable to shallow sequencing
(high proportions of zeros). Additionally, the mixture component is
robust to cell heterogeneity as it accommodates multiple centers of
gene expression in the distribution. By directly modeling possibly
heterogenous, gene-specific expression distributions, Dino outper-
forms competing approaches, especially for datasets in which the
proportion of zeros is high, as is typical for modern, UMI-based
protocols.

2 Materials and methods

Our proposed method for distributional normalization, Dino,
reconstructs gene-specific expression distributions and provides nor-
malized estimates of expression by constrained sampling from those
distributions. Specifically, Dino assumes a hierarchical Poisson
model on observed UMI counts with the distribution of Poisson
means modeled as a mixture of Gammas, scaled by LS. This
Gamma-Poisson model is equivalent to modeling counts as a mix-
ture of Negative Binomials. Normalized expression is then generated

Fig. 1. Evaluation of gene-specific expression distributions following normalization.

Expression data in the PBMC68K_Pure dataset were normalized by Scran,

scTransform and Dino. (a) and (b) Normalized expression is shown here for a homo-

geneous set of cells (CD4þ/CD45ROþ memory cells) to minimize the effects of cell

subpopulation heterogeneity. (a) Normalized expression from a typical gene

(NME1) under Scran, scTransform and Dino plotted against LS. Fitted regression

lines (solid black) show generally constant means across methods. Low-LS (5–25%

of LS) and high-LS (75–95% of LS) subsets of cells are indicated by dashed lines and

are used in the following panels. (b) Density plots of normalized expression from

low-LS and high-LS cells show that the constant mean is maintained by balancing

the changing proportions of zeros, or near zeros in the case of scTransform, with ex-

pression shifts in normalized non-zeros. (c) Quantile-quantile heatmaps compare

normalized expression quantiles in the high-LS (x-coordinate) and low-LS cells (y-

coordinate) across genes and cell-type annotations (Supplementary Section S4.3). As

in panel b, there are systematic shifts in the distributions.

Fig. 2. The effects of normalization on downstream DE and enrichment analysis. (a)

Expression data from the PBMC68K_Pure dataset were normalized and genes were

tested for DE using a Wilcoxon rank-sum test between low-LS and high-LS cells (5–

25% and 75–95% of LS respectively) within cell-type annotations. Box plots show

numbers of significant genes. Given that cells only differ in LS, significant results are

considered false positives. (b) Expression data from the EMT dataset were analyzed

using Monocle2 to identify genes with significantly variable expression over pseudo-

time. Total numbers of significant genes are shown in a bar plot. (c) Significance val-

ues of Hallmark terms enriched for DE genes from the EMT dataset, colored for

each normalization method, are plotted for the subset of terms previously identified

as defining expression shifts during epithelial to mesenchymal transition.
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by sampling from cell-specific posterior distributions of Poisson
means conditioned on observed LS and UMI counts. The estimated
distributions are constructed by sharing information across cells
while the use of a large number of mixture components approxi-
mates the flexibility of a non-parametric approach in order to ac-
commodate varying degrees of heterogeneity in the cell populations
under study.

2.1 Statistical model
The count data produced by UMI sequencing protocols lend them-
selves naturally to a glm parameterized by LS (Anders and Huber,
2010; Hafemeister and Satija, 2019) and the random sampling of
barcoded molecules from a large pool for sequencing is theoretically
well modeled by independent Poisson distributions on each gene
(Townes et al., 2019). Furthermore, Poisson means are expected to
scale proportionally with LS (Anders and Huber, 2010; Hafemeister
and Satija, 2019; Lun et al., 2016; Townes et al., 2019), giving
counts ygj from gene g in cell j the distribution ygj�fP(kgjdj) where fP

denotes a Poisson distribution with mean kgjdj. Defining dj to be the
cell-specific LS, kgj then represents the latent level of expression for
gene g in cell j, corrected for LS. Note that kgj is cell dependent since
latent levels of expression for a gene may vary across cells due to
population heterogeneity and other factors. For convenience of in-
terpretation on the kgj, calculated LS values are scaled prior to use in
the Dino model such that djMed¼1 where jMed is the index of the
cell with the median LS across cells.

The Dino algorithm defines the distribution of kgj across cells to
be the gene-specific expression distribution of interest. If one
assumes a Gamma distribution on the kgj, then the marginal distribu-
tion of the ygj is Negative Binomial, the model assumption made by
scTransform (Hafemeister and Satija, 2019), DESeq2 (Love et al.,
2014), ZINB-WaVE (Risso et al., 2018) and SAVER (Huang et al.,
2018). However, we observe that unimodal distributions on the
means, as implied by a single Gamma distribution on the kgj, are
often insufficient to capture the full heterogeneity present in genes of
interest (Supplementary Fig. S1). Thus, to increase the accuracy with
which the full gene-specific expression distribution may be estimated
for all genes, Dino further assumes the kgj arise from a mixture of
Gamma distributions, and defines normalized expression as samples
from the posterior distribution of the kgj.

As distribution estimation and normalization are both performed
at the gene level, the gene subscript, g, is hereafter dropped, and it is
noted that computations are repeated across genes. This defines the
Dino model as:

yj � f P kjdj

� �

kj �
X

K
pkf G lk

h
; h

� �

Here, fP is parameterized by mean kjdj and fG denotes a Gamma
distribution with shape and scale parameters of lk/h and h respect-
ively. The mixture component probabilities, pk, are such that
RKpk¼1. This parameterization is chosen to define the Gamma dis-
tribution in terms of its mean, lk. K is chosen to be sufficiently large
to accommodate both cellular heterogeneity and within-cell-type
over-dispersion of the kj with respect to a single Gamma mixture
component.

This approach, using a large number of components K, was
inspired by the ash model for control of false discovery rates in stat-
istical tests (Stephens, 2017); there, large mixtures of Normal and
Uniform distributions were used to approximate arbitrary unimodal
distributions with the infinite component model described as ‘a non-
parametric limit’. Similar results are demonstrated by Cordy and
Thomas in the context of distribution deconvolution (Cordy and
Thomas, 1997). For Dino, simulated gene expression similarly dem-
onstrates that larger estimates of K allow more accurate parametric
estimates of the underlying distribution of UMI counts
(Supplementary Figs S2 and S3). Dino sets the gene-specific value of

K as the minimum of 100 (default) and the square root of the num-
ber of yj which are greater than zero. Testing on alternate values of
K shows low sensitivity in downstream analysis to the choice of this
parameter, assuming K remains sufficiently large (Supplementary
Figs S4–S6). Since the negative binomial distribution can be alter-
nately defined as the Gamma-Poisson distribution as previously dis-
cussed, this formulation has the reassuring additional interpretation
of defining yj as a mixture of Negative Binomials.

2.2 Sampling normalized values from the posterior
The posterior distribution on kj is straightforward to compute:

P kjjyj; dj

� �
/ f P kjdj

� �X
k
pkf G lk

h
; h
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which reduces to
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where skj is the conditional likelihood that kj belongs to component
k given yj and dj, and c is a concentration parameter. Our testing
(Supplementary Figs S7–S9) has demonstrated that resampling from
the strict posterior distribution can lead to excessive variance in the
normalized expression which can obscure biological features of
interest. Therefore, c is included to both reduce the normalized vari-
ance and center normalized values around their corresponding scale-
factor values.

Default values of c¼ 15 have proven successful. This adjustment
can be seen as a bias in the normalized values toward a scale-factor
version of normalization, since, in the limit of c, the normalized ex-
pression for cell j converges to yj/dj. A modified expectation-
maximation (EM) algorithm (Jamshidian and Jennrich, 1997) is
used to estimate lk and skj (Supplementary Section S1.1). Separate
values of h are estimated for each gene based on gamma kernel dens-
ity estimation (Chen, 2000) (Supplementary Section S1.2). To ac-
commodate slight deviation from strict expression scaling with LS,
adjustments to dj are made prior to model parameter estimation
(Supplementary Section S1.3). Finally, parameter initialization relies
on a modified application of quantile regression (Branham, 1982;
Powell, 1984, 1986) (Supplementary Section S1.4). An alternate
(non-default) sampling method designed to preserve expression
ranks is also available to the user (Supplementary Section S1.5).

2.3 Datasets
Results from six publicly available datasets are evaluated:
PBMC68K_Pure, PBMC5K_Prot, MaltTumor10K, MouseBrain,
PBMC68K and EMT. Where applicable, analyzed expression was
derived from unfiltered gene-barcode matrices, with empty droplets
removed by the tools in the R package DropletUtils (Lun et al.,
2019).

PBMC68K_Pure is a partner dataset to PBMC68K (Zheng et al.,
2017) produced by purifying peripheral blood mononuclear cells
(PBMCs) into 10 cell types through the use of cell-type specific isolation
kits and separately sequencing each group. These cell-type annotations
are considered here as ground truth when evaluating the effects of nor-
malization on downstream clustering. For increased accuracy, the six
cell-types for which tSNE plots do not separate into sub-groups (Van
Der Maaten, 2014; van der Maaten and Hinton, 2008) were subset,
denoting low-heterogeneity references: CD4þ T Helper, CD4þ/CD25
T Reg, CD4þ/CD45RAþ/CD25- Naive T, CD4þ/CD45ROþ
Memory, CD56þ NK and CD8þ/CD45RAþ Naive Cytotoxic. Zheng
et al. identify these particular six cell-types as demonstrating little sub-
structure (Zheng et al., 2017).

EMT is a dataset of 5004 MCF10A mammary epithelial cells
induced to undergo spontaneous epithelial to mesenchymal transi-
tions through the cellular detection of neighboring unoccupied space
(McFaline-Figueroa et al., 2019). This spatial effect allowed the
authors to dissect an inner region a priori expected to be primarily
epithelial cells and an outer region a priori expected to be primarily
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mesenchymal cells. Cells from each region were then sequenced sep-
arately. From all the data published by the authors, the EMT dataset
we consider is denoted ‘Mock’ in the barcode metadata. Included in
the initial publication, the authors describe eight gene sets from the
Hallmark collection (Liberzon et al., 2015) which they consider to
be significantly enriched for activity during the epithelial to mesen-
chymal transition. We take this set of terms as a ground truth for
assessing the power of analysis based on each normalization
method.

Results from the PBMC68K_Pure and EMT datasets are shown
in the manuscript while results from other datasets are provided in
the supplement. Details on each of the datasets as well as their pre-
processing are provided in Supplementary Section S2.

The case study datasets are also used to generate simulated data-
sets with expression profiles designed to closely mirror individual ex-
perimentally observed cells. In brief, for a given case study dataset,
unsupervised clustering is used to define clusters. Two cells within
the same cluster and with similar LS are sampled and UMI counts
are summed across the two cells to make a pseudo-cell. Expression
from each gene of this pseudo-cell is then down-sampled using a bi-
nomial distribution to generate two new simulated cells which differ
in LS due to different binomial probability parameters. Constant bi-
nomial probabilities across genes results in equivalent expressed
(EE) between the two simulated cells, after accounting for LS, for all
but 10 genes for which differential expression (DE) is induced by al-
teration of the binomial probability. Here EE is used to denote a
gene whose average expression is equal across two cells (or two
groups of cells) which have been properly normalized for LS. DE
denotes a difference in means between two groups unless otherwise
specified. This process of constructing and down-sampling pseudo-
cells is repeated to generate a collection of cells with the same set of
EE and DE genes, but varying in LS; the process is repeated again for
other clusters to simulate subpopulation heterogeneity. These simu-
lated datasets are then used to quantify power and false positive
rates for DE testing following different normalization methods. Full
simulation details are described in Supplementary Section S3.
Different methods of pre-clustering cells yield similar results
(Supplementary Figs S10–S12).

2.4 Application of normalization methods
For each dataset considered, normalized estimates of expression
were obtained from Dino (v0.6.2), Scran (v1.16.0), scTransform
(v0.2.1), CPM and CPT. We also consider un-normalized UMIs for
reference. Further information on package defaults, annotation ver-
sions and other software is given in Supplementary Section S4. The
implementation of scTransform provides both normalized expres-
sion in terms of regression residuals (recommended for most analysis
applications by the authors) and normalized expression in terms of a
corrected UMI counts matrix. We consider both in this manuscript
and refer to the residuals matrix as scTrans and the corrected counts
matrix as scTransCnt.

Given its additional complexity, Dino is generally more compu-
tationally demanding than existing methods. However, it remains
competitive even in the context of the large datasets currently being
generated. We performed a test of computational intensity on a
2017 MacBook Pro with a 3.1 GHz quad-core CPU and 16 GB of
RAM. Optimizations in the Dino package, including the estimation
of model parameters on a default subset of 10 000 cells when input
data exceeds that number, allow Dino to successfully normalized
datasets which are too large for other applications to handle on this
hardware (Supplementary Fig. S13).

3 Results

3.1 LS-dependent patterns in normalized data
To compare Dino, Scran and scTransform, we normalized the
PBMC68K_Pure data using each method. Given the cell-type purifi-
cation of this dataset, cells within a given annotation are expected to
be largely homogeneous and, consequently, should exhibit little dif-
ference in expression among cells following normalization.

Examination of the normalized expression between low-LS and
high-LS CD4þ/CD45ROþ memory cells shows that existing meth-
ods exhibit significant LS-dependent effects. As shown in Figure 1a,
for a normalized gene to maintain average expression that is relative-
ly independent of LS, the higher proportion of zeros in the low-LS
group is balanced by inflation of the non-zeros. This leads to shifts
in the densities of the normalized non-zeros between low and high-
LS cells, as shown in Figure 1b. To evaluate this effect across all
genes, we compare the quantiles in low-LS and high-LS cells for a
random sample of genes across all cell-types in PBMC68K_Pure
through a modified Q-Q plot. As with traditional Q-Q plots, high
frequency off the diagonal in Figure 1c indicates differences in the
distribution of normalized expression between low-LS and high-LS
cells (Supplementary Section S4.3). Scran and scTransform demon-
strate systematic shifts in the distribution of normalized expression
as a function of LS. Normalized expression from Dino, however,
mitigates these effects, producing more equivalent expression distri-
butions across low and high-LS cells. We observe similar results for
other case study datasets (Supplementary Fig. S14).

3.2 Effects of normalization on differential expression

analysis
To evaluate the extent to which LS-dependent differences in the ex-
pression distributions affect downstream differential expression
(DE) analysis, we used the Wilcoxon rank-sum test, the default test
in the Seurat pipeline as of writing, to identify significantly DE genes
between low and high-LS cells. Tests were conducted within each of
the six annotated cell-types in the PBMC68K_Pure dataset, resulting
in six separate measures of significant genes. Figure 2a demonstrates
that many genes are identified as significant by most methods. As
each cell-type is homogeneous by construction, differences in LS are
not expected to indicate true biological variability and significant
results are thus considered false positives. These results are consist-
ent with the changes in normalized expression distributions observed
in Figure 1 as the Wilcoxon test, as well as others widely used in
scRNA-seq analysis such as MAST (Finak et al., 2015), is susceptible
to differences in distribution, not merely differences in means.
Similar results are observed for the MaltTumor10K and
PBMC5K_Prot datasets compared against pseudo-annotations of
cell-type (Supplementary Fig. S15). A control comparison further
indicates that observed high rates of significant genes are largely due
to false positives. When comparisons are made between randomly
selected cells as opposed to low-LS versus high-LS cells, exactly 0
genes are significant (P-adj � 1e-2) following a test of DE.

To evaluate DE analysis in the positive case where DE genes are
expected to exist, we considered a case study dataset of cells under-
going spontaneous epithelial to mesenchymal transitions from the
EMT dataset (McFaline-Figueroa et al., 2019). Following the origin-
ally published analysis pipeline, we used Monocle2 (Qiu et al.,
2017; Trapnell et al., 2014) to construct a pseudo-time model of the
experimentally induced differentiation tree (Supplementary Section
S4.4). Cells along the primary branch of the differentiation tree were
tested for DE, here defined as having a significant change in expres-
sion over pseudo-time.

As with the negative control examples of Figure 2a and
Supplementary Figure S15, Dino normalized data results in the few-
est significant genes (Fig. 2b). Results from an enrichment analysis
(Fig. 2c) suggest that the reduction in the number of significant genes
found by Dino is likely due to a reduction in false positives, as with
the negative control, rather than an undesirable reduction in power.
Specifically, we performed gene set enrichment analysis (GSEA) on
the Hallmark collection of gene sets (Liberzon et al., 2015).
Enrichment significance values are plotted in Figure 2c for the eight
terms identified by McFaline-Figueroa et al. as significant markers
of EMT activity. Dino normalization results in competitive signifi-
cance in four of the eight terms and shows the highest GSEA signifi-
cance in the remaining four terms. Notably, Dino shows improved
enrichment results for the term defining the epithelial to mesenchy-
mal transition; the Dino adjusted P-value (P-adj ¼ 3.3e-4) is close to
an order of magnitude more significant than the nearest alternate
method (CPT, P-adj ¼ 1.9e-3).
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Simulated datasets provide further insights consistent with the

case study results regarding DE analysis. To quantify the relation-
ship between true positive rates (TPR) and false positive rates (FPR),
we simulated heterogenous cell populations from experimentally
observed expression with known DE and EE genes (Supplementary
Section S3). Following normalization, DE analysis was conducted

using a Wilcoxon rank-sum test. Figure 3 plots average ROC curves
for each normalization method where the average is taken over 30
datasets simulated from the PBMC68K_Pure dataset. For most
methods, it can be observed that high power is confounded by high
FPRs. As with the negative control, however, Dino controls FPR to

much lower levels. Repeated simulations and analysis across the
other five datasets considered yield similar results, as does analysis
based on MAST (Supplementary Figs S16 and S17). Performance is
more similar across methods when DE tests are conducted via t-tests,
since t-tests identify shifts in means and are not sensitive to other dif-

ferences in distributions (Supplementary Fig. S18). Point estimation
of TPR/FPR controlling adjusted P-values at 0.01 through the
method of Benjamini and Hochberg (Benjamini and Hochberg,
1995) supports the ROC plots (Supplementary Tables S1–S3).

3.3 Effects of normalization on clustering
The effect of normalization on clustering was evaluated by compar-
ing clusters derived from data normalized by each method with the
annotations in the PBMC68K_Pure dataset using the adjusted Rand

index (ARI). As shown in Figure 4, for one sub-sample of cells,
Dino, Scran and scTrans outperform other methods; Dino shows
slightly although not significantly improved performance over
scTrans and Scran (Fig. 4a). To exacerbate the differences in
sequenced LS and thereby highlight the effect of differences in LS on

clustering, we randomly down-sampled half of the 25000 cells to
25% of their original LS. Figure 4b shows the derived clusters with
the down-sampled cells (bold) compared to the unmodified cells.
Some effect of LS is observed in the clustering, and ARIs for all nor-
malization methods decreased, as expected. However, Dino normal-

ized data retains a more accurate differentiation between cells with
an ARI of 0.491 compared to 0.375 and 0.352 for scTrans and
Scran, respectively.

Figure 4c shows results from the analysis repeated across 24 sam-
ples of 25 000 cells. As with the sample shown in Figure 4a, Dino
and Scran perform comparably (medians of 0.601 and 0.608 respect-
ively), and uniformly better than scTrans (median of 0.590). In the
down-sampled case, Dino performs significantly better than compet-
ing methods (P< 2.2e-16 under a t-test). Similar results are observed
for the MaltTumor10K and PBMC5k_Prot datasets (Supplementary
Figs S19 and S20).

4 Discussion

Droplet-based, UMI protocols provide unprecedented cellular reso-
lution in expression profiling. However, the use of UMIs does not re-
move the need for effective normalization in the analysis of such
data, and the extreme sparsity of these high-throughput experiments
introduces new challenges for LS correction. Dino adapts to these
challenges by correcting the full expression distribution of each gene
for LS-dependent variation, rather than only correcting mean ex-
pression as with most existing methods. This approach increases
both power and precision in down-stream analysis.

As noted in methods, our approach assumes that latent counts
for a given gene in a given cell are Poisson distributed, with latent
means described by a Gamma mixture. The Gamma-Poisson frame-
work is common in single-cell RNA-seq approaches (Hafemeister
and Satija, 2019; Huang et al., 2018; Love et al., 2014; Risso et al.,
2018); however, the Gamma mixture component introduced here
directly accommodates heterogeneity which leads to improved oper-
ating characteristics in a number of settings. Dino normalizes obser-
vations by resampling from the gene-specific posterior distribution
to provide normalized estimates of expression. While the default ap-
proach presented here provides unconstrained sampling up to differ-
ences in sample-specific posteriors as detailed in methods, a user
may choose to perform an alternate restricted quantile sampling that
aims to preserve un-normalized expression ordering in the normal-
ized data (Supplementary Section S1.5). Other measures from the
posterior could potentially be obtained (e.g. the posterior mean or

Fig. 3. The effects of normalization on downstream DE analysis. Simulated data

based on the PBMC68K_Pure dataset were normalized using each method. ROC

curves colored by normalization method define the relationship between average

TPR and average FPR for a Wilcoxon rank-sum test, where the average is calculated

across 30 simulated datasets.

Fig. 4. The effects of normalization on clustering. (a) tSNE plots of normalized

PBMC68K_Pure data, colored by 6 cell-type annotations, show similarly high clus-

tering accuracy across methods. (b) The same clustering plots as in (a), but with half

the data down-sampled (down-sampled cells in bold) prior to normalization to pro-

duce greater differences in LS. (c) Boxplots of ARIs for multiple un-modified and

down-sampled datasets across 24 samples of 25 thousand cells from the

PBMC68K_Pure dataset.
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median). However, this is not recommended in practice—and not an
available option in the distributed package—as doing so preserves
the LS-dependent variation in distribution observed in existing meth-
ods, especially for low and moderately expressed genes
(Supplementary Fig. S21).

In some cases, such as when a cell type under study down/up-
regulates a significant majority of DE genes compared to other cell types
being sequenced, a researcher may find that LS is correlated with true
biological variability. In these situations, normalization to remove the
effects of LS would further remove biological variation of interest. To
accommodate these situations, Dino allows the user to supply alternate,
cell-specific size factors, such as those estimated by Scran, as the meas-
ure of technical nuisance variation. Implementation details are available
in the package documentation and vignette.

In contrast to existing methods, the resampling performed by Dino
accommodates the varying proportions of zeros across LS, reducing or
removing the effect of LS on the full expression distribution. In addition,
by resampling from the full gene-specific distribution, Dino produces
greater homogeneity of normalized expression across LS within cell
type, and therefore leads to more accurate downstream analyses that are
robust to heterogeneous cell populations.

Acknowledgements

The authors thank Matt Bernstein for conversations that improved the

manuscript.

Funding

JB was supported by a National Library of Medicine Bio-Data Science

Training program (Grant no. T32LM012413). CK was supported by a

National Institutes of Health grant (Grant no. NIHGM102756).

Conflict of Interest

The authors declare that they have no competing interests.

References

Anders,S. and Huber,W. (2010) Differential expression analysis for sequence

count data. Genome Biol., 11, R106.

Bacher,R. et al. (2017) SCnorm: robust normalization of single-cell RNA-seq

data. Nat. Methods, 14, 584–586.

Bacher,R. and Kendziorski,C. (2016) Design and computational analysis of

single-cell RNA-sequencing experiments. Genome Biol., 17, 1–14.

Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B,

57, 289–300.

Branham,R.L.J. (1982) Alternatives to least squares. Astron. J., 87, 928.

Butler,A. et al. (2018) Integrating single-cell transcriptomic data across differ-

ent conditions, technologies, and species. Nat. Biotechnol., 36, 411–420.

Chen,S.X. (2000) Probability density function estimation using gamma ker-

nels. Ann. Inst. Stat. Math., 52, 471–480.

Cordy,C.B. and Thomas,D.R. (1997) Deconvolution of a distribution func-

tion. J. Am. Stat. Assoc., 92, 1459–1465.

Finak,G. et al. (2015) MAST: a flexible statistical framework for assessing

transcriptional changes and characterizing heterogeneity in single-cell RNA

sequencing data. Genome Biol., 16, 1–13.

Grün,D. et al. (2014) Validation of noise models for single-cell transcriptom-

ics. Nat. Methods, 11, 637–640.

Hafemeister,C. and Satija,R. (2019) Normalization and variance stabilization

of single-cell RNA-seq data using regularized negative binomial regression.

Genome Biol., 20, 296.

Haque,A. et al. (2017) A practical guide to single-cell RNA-sequencing for bio-

medical research and clinical applications. Genome Med., 9, 1–12.

Huang,M. et al. (2018) SAVER: gene expression recovery for single-cell RNA

sequencing. Nat. Methods, 15, 539–542.

Hwang,B. et al. (2018) Single-cell RNA sequencing technologies and bioinfor-

matics pipelines. Exp. Mol. Med., 50, 1.

Islam,S. et al. (2014) Quantitative single-cell RNA-seq with unique molecular

identifiers. Nat. Methods, 11, 163–166.

Jamshidian,M. and Jennrich,R.I. (1997) Acceleration of the EM Algorithm by

using Quasi-Newton Methods. J. R. Stat. Soc. Ser. B (Stat. Methodol.), 59,

569–587.

Klein,A.M. et al. (2015) Droplet barcoding for single-cell transcriptomics

applied to embryonic stem cells. Cell, 161, 1187–1201.

Kolodziejczyk,A.A. et al. (2015) The technology and biology of single-cell

RNA sequencing. Mol. Cell, 58, 610–620.

Liberzon,A. et al. (2015) The molecular signatures database hallmark gene set

collection. Cell Syst., 1, 417–425.

Love,M.I. et al. (2014) Moderated estimation of fold change and dispersion

for RNA-seq data with DESeq2. Genome Biol., 15, 1–21.

Lun,A.T.L. et al. (2019) EmptyDrops: distinguishing cells from empty droplets

in droplet-based single-cell RNA sequencing data. Genome Biol., 20, 63.

Lun,A.T.L. et al. (2016) Pooling across cells to normalize single-cell RNA

sequencing data with many zero counts. Genome Biol., 17, 1–14.

Van Der Maaten,L. (2014) Accelerating t-SNE using tree-based algorithms. J.

Mach. Learn. Res., 15, 3221–3245.

van der Maaten,L. and Hinton,G. (2008) Visualizing high-dimensional data

using t-SNE. J. Mach. Learn. Res., 9, 2579–2605.

Macosko,E.Z. et al. (2015) Highly parallel genome-wide expression profiling

of individual cells using nanoliter droplets. Cell, 161, 1202–1214.

McFaline-Figueroa,J.L. et al. (2019) A pooled single-cell genetic screen identi-

fies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal

transition. Nat. Genet., 51, 1389–1398.

Powell,J.L. (1986) Censored regression quantiles. J. Econom., 32, 143–155.

Powell,J.L. (1984) Least absolute deviations estimation for the censored re-

gression model. J. Econom., 25, 303–325.

Qiu,X. et al. (2017) Reversed graph embedding resolves complex single-cell

trajectories. Nat. Methods, 14, 979–982.

Risso,D. et al. (2018) A general and flexible method for signal extraction from

single-cell RNA-seq data. Nat. Commun., 9, 284.

Satija,R. et al. (2015) Spatial reconstruction of single-cell gene expression

data. Nat. Biotechnol., 33, 495–502.

Stephens,M. (2017) False discovery rates: a new deal. Biostatistics, 18,

275–294.

Townes,F.W. et al. (2019) Feature selection and dimension reduction for

single-cell RNA-Seq based on a multinomial model. Genome Biol., 20, 1–16.

Trapnell,C. et al. (2014) The dynamics and regulators of cell fate decisions are

revealed by pseudotemporal ordering of single cells. Nat. Biotechnol., 32,

381–386.

Tsoucas,D. and Yuan,G.-C. (2018) GiniClust2: a cluster-aware, weighted en-

semble clustering method for cell-type detection. Genome Biol., 19, 58.

Tung,P.Y. et al. (2017) Batch effects and the effective design of single-cell gene

expression studies. Sci. Rep., 7, 1–15.

Wu,A.R. et al. (2017) Single-cell transcriptional analysis. Annu. Rev. Anal.

Chem., 10, 439–462.

Zheng,G.X.Y. et al. (2017) Massively parallel digital transcriptional profiling

of single cells. Nat. Commun., 8, 1–12.

4128 J.Brown et al.


